INDEX

Note: Page numbers in “f” refer to figures; page numbers followed by “t” indicate tables.

Aβ-derived diffusible ligands (ADDLs), 37
Aβ-42, overproduction of, 164
AβPP-Aβ peptide deposition, in AD, 4, 7
impaired insulin/IGF signaling and, 6–7
AβPP gene, mutation in, 15
Acetylcholine (Ach), 119, 198, 201, 442
Acetylcholinesterase (AChE), 198
Acetylcholinesterase inhibitors (AChEi), 241–242
Acute phase protein, 318
Acute stress, 447
N-acetylcysteine, 267
AD. See Alzheimer disease (AD)
Adipocytes, 277
Adipocytokines, 305–306
cardiovascular risk and
adiponectin, 315–316
C-reactive protein (CRP), 317t, 318–319
leptin, 313–315, 314t
resistin, 316–318, 317t
production of, oxidative stress and, 277
Adipokines, 467, 288
Adiponectin, 63, 65, 277288, 299, 315–316
in obesity, 427–428
and cardiovascular risk, 428
atherosclerotic inflammation, 429–430
endothelial cells, 428
macrophages, 429
monocytes, 429
vascular smooth muscle cells (VSMCs), 428
experimental and clinical data, 299–300
physiologic functions, 427
therapeutic strategies, 300
AdipoR1 receptor, 288, 427
AdipoR2 receptor, 288, 427
Adipose tissue macrophages (ATMs), 284, 285
Adipose tissue, 413
diabetic organ, 312–313
inflammation, 284–286
insulin-stimulated effects on, 3
production of ROS in, 276
weight loss, 319–320
Advanced glycation end products (AGEs), 7, 329, 347,
532
Adventitia, 410, 411
Aerobic exercise, 463
Aging
and brain insulin resistance, 120–121
and insulin/IGF resistance, 9–10, 18
lifestyle modifications and, 10
role of insulin in, 96–97
Agouti-related peptide (AgRP), 199
AgRP gene, 478

© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
Allicin, 266
S-allyl-mercaptocaptopril (CPSSA), 267
\(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazolopropionic acid (AMPA), 36
Alzheimer A\(\beta\)-mediated neurotoxicity, 163–164
amyloid beta interaction with membranes, 166–167, 167f
amyloid beta peptides, 164
cholesterol oxidation, 171–172
localization of amyloid beta and membrane response, 167–171, 168f, 169f, 171f
membrane oxidation, effect of, on neurotoxicity by A\(\beta\) peptides, 172–173
model membrane systems, 164–165, 165f
Alzheimer disease (AD), 4, 115–116, 163, 180, 201, 383–384, 493. See also Aging
aging and, 9–10
alterations of eCB levels in, 222–224
AMPK in, 372
animal models, 399–400
anti-diabetic agents with, 401–403, 402f
anti-diabetic, hypoglycemic drugs for, use of, 100
BDNF in, 202
brain insulin and IGF resistance in, 5, 126
causes of, 9–16
consequences of, 5
cerebral microvascular disease in, 8–9
cholinergic system and, 202
clinical diagnosis, 4
dementia, 180
metabolic syndrome as risk factors for, 180
diagnosis of, 115
double-transgenic models of, 401
etiology of, 116
exercise in, benefits of, 206
familial, 4
genetic modulation, of insulin signaling, 401
impaired insulin signaling and tau pathology in, 122–124
inflammatory condition in, 202
insulin receptor and, 36–40
amyloid-\(\beta\), 36–37
IR signaling, 37–40, 39f
tau, 37, 38f
insulin signaling and, 52
DAPK/Pin1 signaling, 54
FOXO proteins, regulation of, 53
mTORC2, 53
mTORC1 activation, 52–53
IR/IGF-1R signaling in, role of, 31–40 (see also Insulin receptor signaling)
mechanisms, 403f
models with diabetes, 384
amyloid burden in, 384–386, 385f
impaired diabetic phenotype in, 387–389
insulin signaling in, 386–387
tau phosphorylation, 387, 388f
neuropathology, 4–5
brain insulin/IGF resistance and, 6–9 (see also Insulin/IGF resistance, in AD)
obesity and, 10–11
occurrence, 4
overview, 395
oxidative stress and inflammation in, 202
pathogenesis, 52
extrinsic factors, 16–17 (see also Liver-brain axis of neurodegeneration)
inflammatory process in, involvement of, 202
insulin resistance in, 51–66 (see also Insulin resistance)
intrinsinc pathways, 17–18
lipid peroxidation, role of, 202
reverberating mal-signaling network, 16
prevention of, 180, 187–188
grape-derived polyphenols in, role of, 180–182, 182f
modifiable lifestyle interventions in, 182–186 184f
PUFAs and, 201
research into, 163–164
risk factors for, 116, 530f
role of insulin in, 97–100
sporadic, 4–6, 116
STZ injection in transgenic mouse models of, 398, 400
transgenic mouse models, 400–401
as type 3 diabetes, 5, 98
experimental data on, 5–6
American diet
consumption, 532
vs. ancestor’s diet, 530, 531
AMP-activated protein kinase (AMPK), 55, 65, 237, 465–466, 477, 478, 479
activation of, 366–367
in adipose tissue, 369
in Alzheimer disease (AD), 372
background, 363–364
expression of, 365f
and human health, 367–371
in Huntington disease (HD), 372–373
immunolocalization of, 366f
in liver, 368–369
molecular target, 374
in nervous system, 369–371, 371f
organization of, 364, 365f, 366f
overview, 363
in pancreas, 368
in Parkinson disease (PD), 373–374
pharmacological compounds that alter, 367
in skeletal muscle, 368
AMPA receptors, 489, 490
receptor trafficking, 490–491
AMPK. See AMP-activated protein kinase (AMPK)
AMPK-FOXO3 loop, inhibition of, 64
AMPK signaling, for energy and redox homeostasis, 55
Amyloid beta (Aβ), 493–494
Amyloid-beta neurotoxicity, insulin resistance and, 124–126
Amyloid beta peptides, 6–7, 36–37, 76, 124, 164
interaction with membrane lipids, 166–167, 167f
production of, 164
Amyloid-beta precursor protein (AβPP), 4
Amyloid precursor protein (APP), 36, 56, 164
Anandamide. See N-arachidonoylthanolamide (AEA)
Anemia, 341
Angiotensin II, 347–348, 443
Angiotensin-(1-7), 443
AngII type 1 receptor (AT1R), 60
AngII type 2 receptor (AT2R), 60
Angiotensin II (AngII), 60
and AD, 64
and ROS, 60–61
Angiotensin II receptor blockers (ARBs), 278–279
Antidepressants, 206
Anti-hyperglycemics, in AD, 13
Anti-oxidative supplements, 279
Apelin (AP), 445
Apocynin, 276
Apo-lipoprotein B, 411, 415
APOE4, 15, 384
Apolipoprotein E (ApoE) gene, 15, 116
Apoptosis signal-regulating kinase-1 (ASK1), 61
Appetite, control of, by neuropeptides, 199
Arachidonic acid (ARA), 138, 138f, 142. See also Eicosanoids
N-arachidonoyl-thanolamide (AEA), 146, 219. See also Endocannabinoid system (eCBS)
production of, 220
2-arachidonoylglycerol (2-AG), 146, 219. See also Endocannabinoid system (eCBS)
production of, 220
ARBs. See Angiotensin II receptor blockers (ARBs)
Arterial stiffness, 467–468
Arteries, 410
Arylalkylamine-N-acetyltransferase (AANAT), 239
Ataxia-telangiectasia mutated (ATM), 55, 64–65
Atg5, 59
Atherosclerosis (AS), 409
early phase, 424
effector cells, 424, 425f
lymphocytes, 426
Th1/Th2-type immune balance, 426
impact of metabolic syndrome on
dyslipidemia, 414–415
hypercoaguable state, 416
hyperglycemia, 414
hypertension, 415–416
inflammation, 413–414
insulin resistance, 413–414
inflammation, 429–430
lipoproteins, 426–427
mechanisms, 410
originates in youth, 413
perpetuation and advanced phase, 424, 425f
ATM signaling, as redox regulator, 55–56, 57f
ATP-dependent ubiquitin-proteasome system, 59
ATIR signaling, 60–61
Attention bias, 255
Autophagy, IR/AD and, 59–60
Autophagy-specific gene proteins (Atgs), 59
Axin/APC/β-catenin complex, 4
BAD (Bcl-2/Bcl-X-associated death promoter), 34–35
Bcl-2 associated anthogamone-1 (BAG-1), 237, 238
BDNF. See Brain-derived neurotrophic factor (BDNF)
Beclin 1, 59
BED. See Binge eating disorder (BED)
Beta-site APP cleaving enzyme (BACE), 164
Bijasar (Pterocarpus marsupium), 263–264
Bilirubin, 339–340
Biliverdin, 339
Binge eating
metabolic impact of, 252–253
negative emotional states and, 255
Binge eating disorder (BED), 250
binge eating episodes, criteria for, 250t
brain and energy balance, 253–254
criteria for, 251t
and development of metabolic syndrome, 253
eating- and weight-related behavioral correlates, 251
obese patients with, studies on, 251
overweight and eating behavior, 251–252, 252f
psychophysiological mechanisms, role of, 254–256
Blood brain barrier (BBB), insulin transport across, 35
Blood donation, 341–343
Borderline hypertensive rats (BHR), 447
Brain
cholesterol in, 151
glucose uptake in, 8
Brain (Continued)
insulin actions in, 35–36, 119–120
insulin/IGF signaling in, 3, 8
cross talk with Wnt/β-catenin and Notch, 3–4
inhibition of, 6 (see also Alzheimer disease (AD))
mechanisms of, 3
insulin-leptin signaling in, 75–80
insulin production in, 117
insulin receptor distribution in, 117
insulin receptor signaling in, 35–36, 117–119
insulin resistance, 120
in AD, 126
aging and, 120–121
cortisol and catecholamines, 122
obesity and peripheral, 121–122
and protein anormalities, 122–126, 123f
IR expression in, 35
metabolic derangements, and neurodegenerative
disease, 9 (see also Insulin/IGF resistance,
in AD)
Brain-derived neurotrophic factor (BDNF), 201
in AD, 202
and LXA₄, interaction between, 201
and PUFAs, interaction between, 205
Brain energy metabolism, role of insulin in, 89–90
Brain IDO activation, 520–521
Brain inflammatory disorder, 521
Brain insulin receptor, 86
Brain insulin resistant state, 98
Brain reward system, overeating and, 254
Brain-derived neurotrophic factor (BDNF), 521, 522
Brown adipose tissue (BAT), 298, 312
β-catenin, 4
β-secretase BACE1, 36
Calpain-Cdk5, oxidative stress and, 63
Calpains, 59, 66
cAMP response element binding (CREB), 88
CA1 synapses, 488, 489
CaMKKβ, 366–367
Cannabinoid, 226
Cannabinoids, 150
in neurological disorders, 150–151
Cannabis sativa, 219
Cardiovascular diseases, 341–343, 448
cerebral hypoxia, 449–450
heart failure, 449
hypertension, 448–449
impact of metabolic syndrome on, 412–413
intracranial hemorrhage, 450
ischemia, 449–450
neurological diseases, 450
stoke, 450
Cardiovascular neurons, 440
distribution of, 440–441
neurochemical regulation of, 441
Cardiovascular regulation
acute stress, 447
cardiovascular diseases, evidence indicating, 448
cerebral hypoxia, 449–450
heart failure, 449
hypertension, 448–449
intracranial hemorrhage, 450
ischemia, 449–450
neurological diseases, 450
stroke, 450
cardiovascular neurons
distribution of, 440–441
neurochemical regulation of, 441
chronic stress, 447
conventional neurotransmitters, 441
catecholamines, 442
GABA, 442
glutamate, 442
neuroanatomy of, 440
neurochemistry of, 440
nonconventional neurotransmitters
neuropeptides, 443–446
ouabain-like factor, 446–447
steroids, 446–447
obesity, 447–448
overview, 439–440
Carnitine palmitoyltransferase (CPT), 464
Carnitine palmitoyltransferase 1 (CPT1), 477f, 479
Catalase, 276
Catecholamines, 122, 442
Caudal ventrolateral medulla (CVLM), 441
C-C chemokine receptor 2 (CCR2), 284
C-reactive protein (CRP), 284, 317f, 318–319, 425
CDK5-calpain interaction, 59
Central nervous system (CNS), 89, 117. See also Brain
role of insulin in, 119–120
brain energy metabolism, 89–90
neuroprotection, 92–94
synaptic transmission and learning/memory, 90–92
Ceramide 1-phosphate, 138
Ceramides, 16, 138, 145
and insulin resistance, 16
and liver–brain axis of neurodegeneration, 17
in metabolic syndrome, 145–146
and neurodegeneration, 11–13, 12f
in neurological disorders, 151
synthesis of, 145
INDEX

Dishevelled, activation of, 59
Divalent metal ion transporter 1 (DMT1), 336, 348
DM. See Diabetes mellitus (DM)
Docosahexaenoic acid (DHA), 138, 204–205
Docosanoids, 138, 139f, 142
Donepezil, 241–242
Dopamine, 119
Down syndrome, 15
Duodenal cytochrome b (DCYTB), 336
Dyslipidemia, 414–415
Eating disorders, 80
eCBS. See Endocannabinoid system (eCBS)
Ectopic fat, 507
EETs. See Epoxyeicosatrienoic acids (EETs)
Eicosanoids, 138, 138f, 148
in metabolic syndrome, 142–143, 144f
in neurological disorders, 148–149
Ellagic acid, 263
Emotional eating, 255
Endocannabinoids, 146
in metabolic syndrome, 146–147
Endocannabinoid system (eCBS), 219–220, 227f
alterations in
in metabolic disorders, 220–222
in neuroinflammation and AD, 222–224, 223f
in stress, depression and psychiatric disorders, 224–226
role of, in control of metabolism, 220–221
Endocannabinoinds (eCB), 219. See also
Endocannabinoid system (eCBS)
Endoplasmic reticulum (ER) stress, in AD, 7–8
Endothelial nitric oxide (eNO) generation, 201
Endothelial cells, 428
Endothelial injury, 424
Endothelial NO synthase (eNOS), 428
Endothelium, 410–411
Endurance exercise, 464
Energy homeostasis, regulation of, 76–78, 77f. See also
Insulin-leptin signaling, in brain
Energy intake, 255
Enterocytes, 504
Epicatechin, 264
Epigenetic modifications, 186–187
and diabetes with cognitive impairments, 187
and role in diabetes, 186–187
Epoxyeicosatrienoic acids (EETs), 143, 149
ERKs. See Extracellular regulated kinases (ERKs)
ERK signaling, hepatic activation of, 199
ERK1/2 signaling pathway, 88–89
Essential fatty acids, metabolism of, and role in
inflammation, 203f
E3 ubiquitin ligases, 59
Eugenol, 265
Exercise
aerobic metabolism, 465f
beneficial effect of, 206
effects, 462–463
on metabolic organs, 467–468
overview, 461, 461f
regular exercise, molecular mechanisms of, 465–467
single bout of exercise, 463–465, 464f
Extracellular mitogen-activated protein kinase (Erk
MAPK), 3
Extracellular regulated kinases (ERKs), 76
Extracellular signal-regulated kinases-1/2 (ERK1/2), 35
Familial AD (FAD), 15. See also Alzheimer disease (AD)
FAD1, 15
FAD2, 15
FAD3, 15–16
FAD4, 16
Fatty acid amide hydrolase (FAAH), 146
Fatty acids
in metabolic syndrome, 140–142
in neurological disorders, 147–148
Fibrillar tau, neurotoxic effects, 6
Food craving, 255
Food intake, regulation of. See Insulin-leptin signaling, in
brain
Forkhead box o transcription factors (Foxos), 35
Forkhead box O1 (FOXO1), 476
Forkhead-winged-helix transcription factor (FOXP3), 285
Found in Inflammatory Zones (FIZZ), 301
FOXO
in oxidative stress, 63
regulation of, insulin signaling in, 53
Framingham study, 278
Free fatty acids (FFAs), 312, 533
Fronto-temporal lobar dementias, 9
Fructose
effects on
blood lipids in humans, 509
blood pressure, 510–511
gender, 511
human health, 508
uric acid concentrations, 510–511
human obesity, 508–509
insulin sensitivity, 510
glucose homeostasis, 510
liver metabolism, 502–503, 504f
metabolic effects, in animal models, 507–508, 507f
metabolism, 503–507, 505f, 506f, 531, 532
nonalcoholic fatty liver disease (NAFLD), 509–510
overview, 501–502
Full-length adiponectin (fAd), 427
Functional MRI, 9
GABAergic neurons, 442
Gamma-aminobutyric acid (GABA) receptor, 35, 442
GABAergic neurons, 442
Garlic (Allium sativum), 266–267
Gasotransmitters, 446
Gene therapy, 101
Ghrelin action on alternative canonical energy sensors, 479–480
effects on orexigenic NPY/AGRP neurons, 476, 476f
hypothalamic actions of, 476–477
hypothalamic fatty acid metabolism, 477–478
and hypothalamic SIRTUIN1 (SIRT1)/P53 axis, 478
overview, 475
stomach-derived peptide modulating energy balance, 476
Giant unilamellar vesicles (GUVs), preparation of, 165, 165f
Globular adiponectin, 427, 428
GLP-1 receptor (GLP-1R) agonists, 101
Glucagon like peptide-1 (Glp-1), 6, 54, 101, 201, 401, 403
Glucose, 503, 504, 532
metabolism, 371
Glucose-dependent insulinotropic peptide (GIP), 54
Glucose-6-phosphate dehydrogenase (G6PD), 56, 505
Glucose transporter protein (GLUT4), 3, 8
Glucose uptake, in brain, 8
GluR2-lacking AMPA receptors, 489, 490
Glutathione peroxidase (GPX), 276
Glut genes, 450
Glutamate, 442
Glycation, 532
Glycogen synthase kinase 3β (GSK-3β), 3, 6, 34, 37, 118, 238
and hyper-phosphorylation of tau, 123–124
inhibitors, use of, 101
pro-apoptotic effect, 87
Glycogen synthase kinase 3 (GSK3), 52, 65
Gramicidin A, 166
Granulocyte macrophage-colony stimulating factor (GM-CSF), 425
Grape seed polyphenolic extract (GSE), 181. See also DIM-mediated cognitive deterioration
Heart disease, risk factor, 530f
Heart failure, 449
Heme degradation, 339
fate, 339f
Heme iron transporter (HCP1), 336
Heme oxygenase (HO), 143, 348–349
Hepcidin, 336, 349–350
Hereditary hemochromatosis (HH), 345
HIF-1α factor, 450
High density lipoproteins (HDL), 415
High-fructose corn syrup (HFCS), 502, 530–531
Hippocampal synaptic plasticity, 488–489
Hippocampus role in regulation of energy balance, 75 (see also Insulin-leptin signaling, in brain)
role of insulin in, 119
Histamine, 442
Histone acetyltransferase (HAT), 187
Histone deacetylases (HDACs), 187
HLA20, iron chelating compounds, 352, 353
HMW adiponectin, 428
Htt gene, 373
Human insulin, production of, 3
Human Islet amyloid polypeptide (amylin, hIAPP), 166–167
Human obesity, 508–509
Huntington disease (HD) AMPK in, 372–373
20-hydroxyeicosatetraenoic acid (20-HETE), 149
3-hydroxykynurenine (3-OHK), 236
3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, 147
4-hydroxynonenals (4-HNE), 138, 142, 143, 149
in neurological disorders, 149–150
Hypercoaguable state, 416
Hyperglycemia, 329, 347, 371, 414
Hyperglycemia-induced ROS, RAS activation by, 60
Hyperinsulinemia, 330–331
Hyperinsulinemia, 4, 8, 76
Hyperphosphorylation, 37
Hypertension, 415–416, 448–449, 450
Hyperuricemia, 507–508, 510
and apoptotic cell death, 95
Hypoinsulinemia, 427, 429
Hypomagnesemia, 95
Hypothalamus, 532
Hypothalamic neuropeptides, and metabolic syndrome, 199–200
Hypoxia inducible factor (HIF)-1α, 284
Hypoxia, 427
INDEX

IDE. See Insulin-degrading enzyme (IDE)
IGF-1. See Insulin-like growth factor-1 (IGF-1)
IGF binding proteins (IGFBPs), 3
IGF-1 knockout mice, 39
IGF-1, 386
IL-1RA, 286–287
Incident stroke, 413
Incretins, 101
Indoleamine 2,3-dioxygenase (IDO), 236
Inflammatory subset, 425
Inflammation, markers of, 198
Inhibitor (B kinase (IKK), 287
Interferon-gamma (IFN-γ), 426
Iron
advanced glycated endproducts (AGEs), 347
biological functions, 339–340, 339f
chemical features and toxicity, 340, 340f
deficiency, 339r
blood donation, 341–343
cardiocascular diseases, 341–343
diabetic patients, cautions for, 343–344
glycated hemoglobin levels, 340–341
insulin resistance, 340–341
insulin sensitivity, 341–343
heme oxygenase (HO), 348–349
hepcidin, 349–350
homeostatic regulation, 336–339
metabolism, 336, 337f
overview, 335–336
pathological effects of angiotensin II, 347–348
retinol-binding protein (RBP), 349
therapy for diabetes and diabetic complications, 351–353
Iron overload, 339r
diabetic complications, 346
gestational diabetes, 345–346
insulin resistance, 344–345
type 1 diabetes, 345–346
type 2 diabetes, 344–345
Insulin, 2–3, 76, 85–86, 117, 445, 505
in brain, 117
icv administration of, 100, 119
intranasal application, 32, 35, 40, 100–101, 119
neuroprotection by, 92–94, 93f
against age-related neurodegeneration and AD pathology, 96–100
against chronic effects of diabetes, 94–96
pro-metabolic effects of, 3
role of
in AD, 97–100
in aging, 96–97
in brain, 3
in brain energy metabolism, 89–90
in cognitive functions, 117
in synaptic transmission and learning/memory, 90–92
targets of, 3
as therapeutic window against diabetes- and age-related neurodegeneration, 100–102
Insulin-degrading enzyme (IDE), 7, 99, 125, 532
Insulin/IGF resistance, in AD, 6
amyloid-beta (AβPP-Aβ) and, 6–7
causes of
aging, 9–10
familial/genetic cofactors, 15–16
insulin resistance diseases, 10–13
lifestyle-induced accelerated aging, 10
metabolic syndrome, 13
nitrosamines, 13–15
nonalcoholic fatty liver disease, 11–13, 12f
obesity, 10–11
type 2 diabetes mellitus, 11
cerebral microvascular disease and, 8–9
endoplasmic reticulum stress and, 7–8
metabolic deficits and, 8
oxidative stress and, 7
tau pathology and, 6
Insulin-leptin signaling, in brain, 75–80, 77f
abnormalities in, and metabolic alterations, 79
cross talk between, 78
energy homeostasis, regulation of, 76–78, 77f
and neurodegenerative diseases, 79–80
Insulin-like growth factor-1 (IGF-1), 3, 239
Insulin-like growth factor-1 receptor (IGF-1R), 31, 32, 86
Insulin resistance, 331, 340–341, 414, 427–428, 532, 533
definition, 330
endoplasmic reticulum stress and, 289
pathways, 286–289
Insulin receptor, activation of, 532
Insulin receptor-mediated signaling cascades
active Akt, alternative downstream effectors of, 88
brain insulin receptor, 86
ERK1/2 signaling pathway, 88–89
IR structure and signaling pathways, 86–87
PI3K/Akt pathway, 87
Insulin receptor signaling
in Alzheimer disease, 37–40, 38f, 39f
in brain, 35–36
insulin action in brain, 35–36
insulin transport across BBB, 35
IR expression, in brain, 35
pathway, 32
insulin-like growth factor-1 receptor, 32
insulin receptor, 32
insulin receptor substrates, 32–33
MAP-kinase pathway, 35
PI3-kinase pathway, 33–35
SH2 adaptor proteins, 33
Insulin receptors (IRs), 32, 148
in non-nervous tissues, 118
Insulin receptor substrate-1 (IRS1), 52, 286
insulin receptor substrate 2 (IRS2), 9
Insulin receptor substrates (IRS), 3, 32–33, 86
Insulin resistance, 4, 51, 117, 198
in AD pathogenesis, 51–52
AMPK signaling, 55
ATM signaling, 55–56
autophagy and, 59–60
CDK5-calpain interaction in, 59
insulin signaling and, 52–54
novel integrating model for, 62, 64–66
oxidative stress in, 60–63
sirtuins and, 56–58
Wnt/β-catenin signaling, 54–55
and amyloid-beta neurotoxicity, 124–126
consequences of, 4
definition of, 4
hypothalamic dysfunction role in, 199–200
oxidative stress and, 277–278
Insulin sensitivity, 341–343
Insulin sensitizer agents, 122
in AD, 13
Interleukin-1 (IL-1), 202, 286
Interleukin-17 (IL-17), 426
Interleukin-18 (IL-18), 426
Interleukin-4 (IL-4), 425
Interleukin (IL-6), 198
Interleukin-6 (IL-6), 287, 328, 414
Intracranial adhesion molecule (ICAM), 411
Intracranial hemorrhage, 450
IR/IGF-1/IRRS-1 signaling, 38, 39f
IRS-2 knockout mice, 91
Ischemia, 449–450
Ischemic stroke, 412, 413
Islet amyloid polypeptide (IAPP), 170
Isocitrate dehydrogenase (IDH2), 58
Isoprostanes (IsoP), 138
JAK-STAT pathway, 487
Jamun (Eugenia jambolana), 262–263
Janus kinase 2 (JAK2), 76
Karela (Momordica charantia), 264
Kelch-like ECH-associated protein 1 (Keap-1), 97
Kynurenine acid (KYNA), 236, 237
Kynurenine (kyn), 236, 237
Kynurenine pathway, 520f
Labile iron pool (LIP), 338, 339
Lactose, 502
Lean body mass (LBM), 463
Leptin, 76, 221, 236, 242, 288, 303, 313–315, 314r, 445
and aging, 492–493
AMPA receptor trafficking, 490–491
amyloid beta, 493–494
and development, 492
expression in brain, 486
high levels of, 79, 80
hippocampal synaptic plasticity, 488–489
and insulin, role in modulation of energy balance (see Insulin-leptin signaling, in brain)
intracellular pathways by, activation of, 237
morphological changes induced by, 491–492
mTOR pathway, 487–488
neurodegenerative disorders, 493
neuroprotection, 493
neuroprotective effects of, 80
NMDA receptor function by, 490
novel form of hippocampal LTD, 489
overview, 485–486
pro-inflammatory roles, 304
receptor, 486
expression in CNS, 486
signaling, 487
reverses established LTP, 489–490
suppressor of cytokine signaling (SOCS)-3, 487
in therapy, 304–305
transport across BBB, in obesity, 76
transport to brain, 488
and TRYCATs, 237
leptin and melatonin, 239
leptin resistance, 237–238
leptin resistance/decreased CNS leptin, and neurodegeneration, 238–239
wider leptin and melatonin interactions, 239–241
Leptin-deficient patients, 80
Leptin-induced depotentiation, 489
Leptin receptor b (LepRb), 288
Leptin receptor, 77, 237–238
Leukotrienes (LTs), 138, 138f
Lipid mediators, 137–138. See also Lipid mediators;
Metabolic syndrome (MetS); Neurological disorders
cholesterol-derived, 138
docosanoids, 138, 139f
eicosanoids, 138, 138f
lysospholipids, 138
in metabolic syndrome and neurological disorders, 139–140, 141r
Lipid mediators (Continued)
role of, 139
sphingolipid-derived, 138
Lipid rafts, 142
Lipopolysaccharides (LPS), 290
Lipoproteins, 426–427
Lipotoxicity, 507
Lipoxins (LXs), 138, 138f
Liver–brain axis of neurodegeneration, 16–17
ceramides and, 17
human and experimental studies, 17
Liver × Receptor (LXR), 147
Liver metabolism, 502–503, 504f
Liver, insulin-stimulated effects on, 3
Long-term depression (LTD), 488, 489
Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) study, 315
Long-term potentiation (LTP), 488
Long-term potentiation (LTP), 91–92, 117, 185
Low-density lipoproteins (LDL), 415, 415, 424
Ludwigshafen Risk and Cardiovascular Health (LURIC), 317
Lymphocytes, 426
Lysophospholipids, 138
Macrophage-colonystimulating factor (M-CSF), 425
Macrophages, 424, 425, 429
Magnetic resonance imaging (MRI), 9
Magnetic spectroscopy, 9
Male Sprague Dawley rats, 347
Malondialdehyde (MDA), 95
Mal-signaling loop, and AD, 16
Mammalian target of rapamycin (mTOR), 287, 479
Mammalian target of rapamycin (mTOR)-rictor complex (mTORC2), 52
MAPK/ERK pathway, 118
MAP-kinase pathway, 35, 87
Maresins, 138, 139f
Maternal high-fat diet (mHFD), during pregnancy, 241
Mechano growth factor. See Insulin-like growth factor-1 (IGF-1)
Mediterranean diet, 141
Melatonin, 239, 242–243
Membrane fusion, 170–171
Memory and learning, effects of insulin on, 91–92
Metal transporter protein 1 (MTP1), 348
Metformin, 367
Metabolic syndrome (MetS), 13, 139, 183, 185, 249, 261–262, 275. See also Diet-induced metabolic syndrome (DIM)
atherosclerosis development, impact on dyslipidemia, 414–415
hypercoaguuable state, 416
hyperglycemia, 414
hypertension, 415–416
inflammation, 413–414
insulin resistance, 414
binge eating and, relationship between, 249–250
cardiovascular disease, 197–198
cardiovascular disease, impact on, 412–413
clinical diagnosis of, 410
waist circumference, 411
ceramides in, 145–146
cholesterol and oxy/hydroxysterol in, 147
cholinergic anti-inflammatory pathway in, 198
clinical manifestations of, 261
diacylglycerols in, 144–145, 144f
eicosanoids in, 142–143, 144f
endocannabinoids in, 146–147
exercise in, benefits of, 206
fatty acids in, 140–142
history, 410
hypothalamic inflammation in, 200–201, 204f
hypothalamic neuropeptides and, 199–200
as inflammatory condition, 198
interactions among lipid mediator in, 152–153
medicinal plants in management of, 262, 262f
bijasar, 263–264
jamun, 262–263
karela, 264
lalsun, 266–267
methi, 264–265
onion, 267
tulsi, 265–266
ongoing debate of, 417
prevalence of, 261
role in neurodegeneration, 13
Metabotropic glutamate receptors (mGluRs), 489
Metformin, 78, 101, 242
Methi (Trigonella foenum graecum), 264–265
S-methyl cysteine sulphoxide (SMCS), 267
MetS. See Metabolic syndrome (MetS)
Microdomains, 152
Mild cognitive impairment (MCI), 11, 121
Minocycline, 224
Mitochondrial dysfunction, 331
Mitogen activated protein kinase (MAPK), 35
MitoNEET, 338–339
Model membrane systems, 164–165, 165f, 166f
Monoacylglycerol lipase (MAGL), 146
Monocyte chemo-attractant protein (MCP)-1, 284
Monocyte chemoattractant protein-1 (MCP-1), 276
Monocyte chemotactic protein-1 (MCP-1), 414
Monocyte subsets, 424–425
Monocytes, 424, 429
Morris water maze test (MWM), 91
Motor neuron disease, 9
M30, iron chelating compounds, 352, 353
mTORC1, 52–53, 59–60
activity, loss of, 65
mTORC1/S6K1 pathway, 52–53
MTOR pathway, 487–488
Multiple systems atrophy, 9
Myokines, 464
μ-opioid receptor, 240–241
NADPH oxidases (Nox), 60, 276, 278
NADPH, maintenance of, during stress conditions, 56
Nagoya-Shibata-Yasuda (NSY), 385
Nampt gene, 305
National Cholesterol Education Program (NCEP), 410, 413
National Cholesterol Education Program’s Adult Treatment Panel III report (ATP III), 197
Natriuretic peptides, 445
Neurofibrillary tangles (NFTs), 372
Neurofibrillary tangles (NFT), 122, 201
in AD diagnosis, 116
Neurofuran, 138, 139
Neurogenesis, 239
Neuro-imaging techniques, 9
Neuroketal, 138, 139
Neurological disorders, 139, 149. See also Lipid mediators; Metabolic syndrome (MetS)
brain damage in, 149
cannabinoids in, 150–151
ceramide in, 151
diacylglycerol in, 150
eicosanoids in, 148–149
fatty acids in, 147–148
4-hydroxynonenal in, 149–150
interactions among lipid mediator in, 152–153
lipid mediators in, increased levels of, 139–140
oxy/hydroxy cholesterol in, 151–152
risk factors for, 140
Neuronal insulin receptors, 532
Neuronal stem cells (NSCs), 36
Neuron-specific IR knockout (NIRKO) mice, 90, 92, 100
Neuropeptide Y (NPY), 199
Neuropeptides, 443–446
Neuropathology, in schizoaffective patients, 235
Neuroprostanes, 138, 139
Neuroproteins, 138, 139
Neuroprotection, insulin role in, 92–94, 93f
Neuropsychiatric symptoms
from acute sickness behavior to, 519–520
behavior, 518–519
cytokine-induced brain IDO activation and, 520–521, 520f
emotional and cognitive alterations, 521
brain inflammatory disorder, 521
mechanisms, 521–522
inflammation, 518–519
mechanisms, 517–518
metabolic syndrome and, 516
animal models of, 516–517
overview, 515–516
sickness, 518–519
Neurotoxic AβPP-Aβ oligomers, 4–5
n-3 fatty acids in diet, depletion of, 141
NFT. See Neurofibrillary tangles (NFT)
Nicotinamide phosphoribosyl transferase (NAMPT), 305
Nitric oxide, 411, 446
Nitrates and fertilizers, use of, 14
Nitrosamines, 13
epidemiological evidence, 13–14
experimental data, 14
high doses of, 14
and insulin resistance diseases, 13–15, 16
lower doses of, 14
as mediators of disease, 13
N-methyl-D-aspartate activated (NMDA) receptor, 488, 489, 490
N-nitrosodiethylamine (NDEA), 14
N-nitrosodimethylamine (NDMA), 14
Nonconventional neurotransmitters
peptides, 443–446
ouabain-like factor, 446–447
steroids, 446–447
Non-esterified fatty acids (NEFA), 504f
Norepinephrine, 119
Northwick Park Heart Study, 416
Notch signaling, role of, 3–4
NP-1. See Neuroprotectin D1 (NPD1)
Npy gene, 477
Npy gene, 478
NPY2 receptors, 445
Nrf-2/antioxidant responsive element (ARE), 88
Nuclear factor-κB (NF-κB), 88
Nucleoredoxin (Nrx), 61
Nucleus tractus solitarius (NTS), 441
Obese (ob) gene, 288, 313, 486
ObR, leptin receptor, 486
OB-Rb receptor, 304
ObRb, leptin receptor, 486, 487
ObRe, leptin receptor, 486
ObRs, leptin receptor, 486
Obesity, 284, 311, 447–448, 509. See also Metabolic syndrome (MetS)

- adipose tissue inflammation in
- and immune cells infiltration, 285–286
- and macrophages infiltration, 284–285
- alterations of eCB levels in, 221
- growth hormone deficiency and, 9
- hypothalamic dysfunction role in, 199–200
- and insulin/IGF resistance, in AD, 10–11
- and metabolic syndrome, 261, 275
- and oxidative stress in adipose tissue, 276, 276f
- and peripheral insulin resistance, 121–122
- as risk factor for neurodegenerative disorders, 76

Olanzapine, 226, 243
N-oleoylethanolamine (OEA), 220
2-oleoylglycerol, 220
\(\omega-3\) fatty acids, 202
Onion (Allium cepa), 267
Opioids, 240–241
Orexigenic neurons, 445
Orexigenic peptides, 445
Orexins, 445
Osteoprotegerin (OPG), 425

Overnutrition

- and obesity, 253–254
- and oxidative stress, 277

Overweight and eating behavior, 251–252, 252f

Oxidative and nitrosative stress (O&NS) pathways, 235, 236

Oxidative phosphorylation (OXPHOS), 329

Oxidative stress, 52, 275–276, 331

- and adipocytokines, 277, 277f
- and clinical treatments, 278–279
- insulin/IGF resistance and, 7, 8
- and insulin resistance, 277–278
- in IR/AD pathogenesis, 60
- angiotensin II and ROS, 60–61
- calpain-cdk5, 63
- FOXO protein, 63
- sirtuins, 62–63
- thioredoxin and nucleoredoxin systems, 61
- thioredoxin-interacting proteins, 61–62
- and metabolic syndrome, 278
- obesity and, 276, 276f
- overnutrition and, 277
- and oxidation of membrane lipids, 172

Oxidized-LDL (oxLDL), 426–427

Oxycholesterols, 172
Oxygen regulated protein (ORP), 289
Oxy/hydroxysterols, 147
- in metabolic syndrome, 147
- in neurological disorders, 151–152
Oxytocin, 444
Oxytocin receptors (OTR) gene, 444
Oxytocinergic neurons, 444

p53, 65
P42/p44 MAPKs pathway, 487
Paleolithic diet, 530
N-palmitoylethanolamine (PEA), 220
Parkinson disease (PD), 450
- AMPK in, 373–374
- molecular link between type 2 diabetes, 331–332
- overview, 327–328
p35-Cdk5 complex, 59
Parabrachial nucleus (PBN) complex, 440–441
Paraventricular nucleus (PVN), 440
Parkinsonism-dementia with Lewy bodies (DLB), 9
Passive avoidance test, 91
PDK1, 52
Pentose phosphate pathway (PPP), 56
Peptidyl-prolyl isomerase (Pin1), 54, 66
Periaqueductal gray (PAG), 440–441
Peripheral cytokines, 518, 519f
Peripheral hyperinsulinemia, and insulin resistance, 121
Peroxiredoxins, 63
Peroxisome proliferator-activated receptor gamma (PPAR\(\gamma\)), 101, 300, 306, 403
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1\(\alpha\)), 464
Peroxisome proliferator-activated receptors (PPARs), 101, 425
Phenphormin, 367
Phanlatoxin, 490
Phosphatidylinositide 3-kinases (PI3K), 33, 52, 386
Phosphoinositide-dependent protein kinase (PKD), 33
Phosphoinositol-3-kinase-3-kinase (PI3K), 6
Phosphoinositol-3-kinase (PI3K)-Akt, 3
Phospholipase A\(_2\) (PLA\(_2\)), 138
Phospholipase C (PLC), 144
Phosphorylated cAMP response-element binding protein (pCREB), 477
P13K/Akt pathway, 87
P13K/Akt/CREB-mediated protection, disruption of, 88
P13-kinase, 487, 491
P13-kinase pathway, 33–35
P13K-like kinase (PIKK), 55
P13K/protein kinase B (Akt) pathway, 76
Pioglitazone, 305, 338
Plaques, 412
Plaques and tangles, in AD, 201
Plasma aldosterone, 416
Plasminogen-activator inhibitor 1 (PAI-1), 416
Poly (rC)-binding protein 1 (PCBP1), 338
Polyphenolics, dietary. See also DIM-mediated cognitive deterioration
benefits of, 181
combinatorial polyphenol treatment, efficacy of, 183
Concord grape juice, 181
grape seed polyphenolic extract, 181
resveratrol, 181–182
Polyunsaturated fatty acids (PUFAs), 201
in AD, 202, 204–205
and BDNF, interaction between, 205
in depression, 206
and LXA₄, interaction between, 201
Positron emission tomography (PET) scan, 9
p53 S18-deficient animals, 56
p53 tumor suppressor, 56
Post-polio syndrome, 10
Prader-Willi syndrome, 476
Pre-B cell colony enhancing factor (PBEF), 305
Presenilin 1 (PS1) gene, 15–16
PRKAA1 gene, 364
PRKAA2 gene, 364
Processed and preserved foods, nitrosamine compounds
in, 14. see also Nitrosamines
Proinflammatory cytokines, 518
Proopiomelanocortin (POMC) neurons, 78
Proopiomelanocortin (POMC), 369
Prostaglandins (PGs), 138, 138
Protein degradation, 59
Protein kinase B (PKB/AKT), 33–34, 117–118
Protein kinase Cε (PKCε), 145
Protein misfolding disorders, 64
Protein-phosphatase 2A (PPA2), 37, 145
Protein-disulphide isomerase (PDI), 329
Psychosocial stress, 224
PtdIns 3K/Akt, 145
PUFAs. See Polyunsaturated fatty acids (PUFAs)
Quinolinic acid (QUIN), 236
RANTES fractalkin, 425
Rapamycin, 65
Raptor, 55
Reactive nitrogen species (RNS), 7, 329–330, 340,
447
Reactive oxygen species (ROS), 7, 328, 329–330, 340,
426, 446–447
and AMPK pathway, 55
angiotensin II and, 60–61
generation of, in adipose tissue, 275–276
sources of, 60
Receptor activator of nuclear factor-(NF)-kappaB ligand (RANKL), 425
Receptor for advanced glycation endproducts (RAGE), 329, 385
Reduced volume, 170
Regulatory T (TREGs) cells, 285, 286
Renin, 443
Renin angiotensin system (RAS), 60, 300, 416, 443
Representative myokine, 464
“Resident macrophages”, 285
Resistance training, 463
Resistin, 316–318, 317r
epidemiological evidence, 301–302
mechanisms, 301
Resistin-like molecules (RELM), 301
Resolvins, 138, 139f
Resting metabolic rate (RMR), 463
Respiratory burst oxidases, 60
Resveratrol, benefits of, 181–182. See also DIM-mediated
cognitive deterioration
Resveratrol, 367
Retinol-binding protein (RBP), 349
Retinol-binding protein 4 (RBP4), 302
clinical studies, 303
experimental data, 303
Retn gene, 301
Rictor, loss of, 53
Rodents
Cognitive and Emotional Alterations in, 517
modeling metabolic syndrome in, 516–517
Rosiglitazone, 101
Rosiglitazone therapy, 303
Rostral ventrolateral medulla (RVLM), 441, 442, 443
Saccharomyces cerevisiae technology, for insulin
production, 3
SBI. See Silent brain infarction (SBI)
Senile plaques (SP), in AD diagnosis, 115–116
Serotonin, 206, 442
Serum catecholamine, 416
Serum ferritin, 344, 350
Sestrins, 55
SH2 adaptor proteins, 33
SH2-containing inositol 5′-phosphatase 2 (SHIP2), 90
SHIP2 knockout mice, 90
Signal transducer and activator of transcription 3 (STAT3), 76
Silent brain infarction (SBI), 191, 194
clinical impacts of, 192–193
definition, 191
and depression, 192
Silent brain infarction (SBI) (Continued)
epidemiology and characteristics of, 191–192, 192f
mechanisms of, in MetS, 193–194
metabolic syndrome and, 193
Single bout of exercise, 463–465, 464f
Single nucleotide polymorphisms (SNPs), in leptin, 238
Sirt1-deficient cells, 56
Sirtuins, 56–58, 58f, 64
mammalian, 56
in oxidative stress, 62–63
Sirt1, 56–57
Sirt2, 57–58, 64
Sirtuin-1, 237, 478, 479
Skeletal muscle, insulin-stimulated effects on, 3
SNAP25 (synaptosomal-associated protein of 25 kDa), 205
Sodium nitrite, use of, as food preservative, 14
Soluble epoxide hydrolase (sEH), 143
Somatomedin C. See Insulin-like growth factor-1 (IGF-1)
Son of sevenless (SOS) protein, 33, 88
Sphero-stomatocytes, formation of, 170
Sphingolipid-derived lipid mediators, 138
Sphingomyelin synthase (SMS), 151
Sphingosine, 138
Sphingosine 1-phosphate, 138
Spontaneously hypertensive rats (SHR), 449
 Src homology collagen (Shc), 487
SREBP-1c, transcription factor, 532
STAT3, 487
Stearoyl-CoA desaturase 1, 142
Steatohepatitis, and neurodegeneration, 11–13
Steroids, 446–447
Sterol regulatory element-binding protein-2 (SREBP-2), 147
Streptozotocin (STZ), 5, 13–14
 icv injection of, 119
Streptozotocin-induced diabetes, 199
Stress-related neuropsychiatric disorders, 224
Stroke, 450
 risk factor, 530f
Stroma vascular fraction (SVF), 284
Styrian Juvenile Obesity Study (STYJOBS), 429
“Syndrome X”, 410
Substance P (SubP), 239–240
Sucrose, 502, 503
Superoxide dismutase (SOD) 1, 276
Suppressor of cytokine signaling 3 (SOCS3), 301, 350, 487
Suppressor of cytokine signaling 3 (SOCS3), 76
Sympathetic nervous system, 416
Synaptic disconnection, in AD neurodegeneration, 6
Synaptic plasticity, 5
 IR in, 119
Synaptic transmission, role of insulin in, 90–91
T lymphocytes, 412
Tobacco nitrosamines, exposure to, 14
Toll-like receptors, 225
Transgenic animal models of PD, 331
Transient Ischemic Attack (TIA), 412, 413
Transient receptor potential vanilloid 1 (TRPV1) channel, 220
Transport protein ferroportin 1 (FPT-1), 336
Tryptophan catabolite (TRYCAT) pathway, 236
Tryptophan 2,3-dioxygenase (TDO), 236
Tuberous sclerosis complex 2 (TSC2), 34, 52, 55
Tulsi (Ocimum sanctum), 265–266
Type 1 diabetes mellitus (T1DM), 117, 397
Type 2 diabetes mellitus (T2DM), 117, 253, 329–331, 398
and AD, 11, 31, 98–99
hypothalamic dysfunction role in, 199–200
and insulin resistance, 94
VMH-lesioned animals and, 199
mechanisms, 403f
molecular link between Parkinson disease (PD), 331–332
overview, 395
and progression of neurodegeneration, 122
Type 3 diabetes, 372
Unfolded protein response (UPR), 289
Vagal tone, 199
Vagus nerve, 198
 as messenger between liver and brain, 198–199
Vascular cell adhesion molecule (VCAM), 411
Vascular smooth muscle cells (VSMCs), 428
Vasopressin (AVP), 443–444
Vasopressinergic neurons, 443
Ventromedial hypothalamus (VMH)-lesion induced obesity, 198
Ventromedial nucleus of the hypothalamus (VMH), 478
Very low-density lipoproteins (VLDL), 414
Visceral fat syndrome, 298
Visceral obesity, 278
Visfatin, 298, 305
Weight loss
 after Roux-en-Y gastric bypass surgery, 200
 and cognitive performance, 11
West of Scotland Coronary Prevention Study (WOSCOPS), 313
Western diet, 141, 148
White adipose tissue (WAT), 221, 298, 312, 313
Wnt/β-catenin signaling, 54–55
 role of, 3–4
World Health Organization, diagnostic criteria for metabolic syndrome, 249, 250
X-box binding protein 1 (XBP1), 289
Xanthine oxidase, 466