Index

antioxidant in food processing, 155, 168
antioxidant formation, thermal treatment, 169
Maillard reaction products, 166
nitrite salts, 169
radical scavenging antioxidants, 169
spices added to meat, 167
depletion in thermal processing, 169
antioxidants and disease prevention, 146, 169
“antioxidant paradox”, 149
estrogen agonists, 149
antioxidants and atherosclerosis, 147
antioxidants and cancer, 147
antioxidants and cardiovascular disease, 169
antioxidants and ocular disease, 147
antioxidants and the onset of disease, 148
antioxidants, flavonoids and phenolic acids, 148
against diabetes, 148
neurodegenerative diseases polyphenolics and cardiovascular diseases, 148
catalase (Cu, Fe), 146
free radical scavengers, 146
haemopexin, 147
heptoglobins, 147
metabolic defense mechanisms, 146
metallothionein, 147
nutritional antioxidants mechanisms, 147
superoxide dismutase (SOD), 145
transferrin, 147
antioxidants in the human diet, 155, 169
antioxidants and oxidative stress, 147, 148, 150, 171, 172
endogenous antioxidants, 172
catalase, 172
consumption of nuts, fruits, 172
cyclooxygenases (COX) and lipoxygenases, 172
dismutases, 172
cancer, 50
effect of linoleic acid, 51
fish oils effect, 51
role of dietary fat, 50
three distinct phases, 50
cardiovascular disease, 48
balance between ω-6 and ω-3, 50
cholesterol and coronary heart disease, 48
dietary fatty acids and cardiovascular disease, 48
fatty acid composition and blood pressure, 50
fatty acid composition, 50
hypertension, 50
inflammatory mediators and platelet function, 50
saturated fatty acids, 48
chemistry of oxidation reactions in foods, 155
free radical definition, 156
free radical reactions in foods, 158
hydrogen peroxide (H₂O₂), 156
hydroperoxyl (HOO•), 156
chemistry of oxidation reactions in foods
(Continued)
hydroxyl (HO•), alkoxyl (RO•), 156
singlet oxygen (1O2), 156
superoxide anion (O2•−), 156
common fatty acids, health effects, 47
concentration of bioactive lipids, 111
advantages, 112
application examples, 112
concentration of omega 3, 112, 113
recovery of tocopherols and phytosterols, 112
chromatography, 114
concentrate omega 3 fatty acids, 113
fractionation of polyunsaturated fatty, 114
process description, 114
process description, 115
processing conditions, 112
recovery of squalene, 114
remove volatile contaminants, 112
short path distillation, 112
supercritical Fractionation, 113
urea crystallization, 113
conjugated linoleic acids (CLA), 51, 211
definition, 51
foods enriched in CLA, 212
found in, 69
isomers, 51
physiological health, 51, 52, 53
synthesis, 51
unresolved adverse effects, 68
conjugated linolenic acids (CLnA), 69
bioactive properties, 69
found in, 69
cosmetic properties of fats and oils, 223
current trends in fats and foods, 1
consumer spending, 1
convenience and novel products, 1
fast food restaurants, 1
restaurant take-out, 1
diacylglycerols and adipose, 210
Commercial products with DAG, 210
diacylglycerols (DAG), 210
Nutritional advantage, 210
dietary fat intake trends, 7
of added fats, Americans typical consumption, 8
intake of essential fats, 7
monounsaturated, average intake, 7
percentage of energy from fat, 7
polyunsaturated, average intake, 7
saturated, average intake for, 7
snacks an appreciable source of calories, 8
trans fats intakes, 8
dietary fats and oils, main function of, 39
edible fats and oils, composition, 39, 40
composition, 40
examples, 40
five main vegetable oils, 40
high oleic peanut oils, 43
lard tallow, 39
margarine, 40
milk fat, 20, 39, 52, 69, 71, 72, 114, 131, 135, 167, 199
olive oil, 43
palm oil high yield, 40
peanut oil, 43
rapeseed cultivars, 43
soybeans breeding programs, 40
sunflower dominant genes, 43
sunflower oil high linoleic, 40
tallow, 39
marine lipids composition, 42
marine lipids improves health, 44
emulsions, 116
antioxidant systems, 116
blending omega 3 oils, 116
nano particles, 117
antioxidant protection, 118
drug carrier systems, 118
liposomes, 117
phospholipids, 117
solid lipid nanoparticles, 118
types of Liposomes, 118
epigentic “Dietary Transitions”, 183
epigenetics and genetic changes, 183
types of changes, 183
epigenetics and obesity, 183
genes and satiety, 183
essential fatty acids in cognitive development, 198
essential fatty acids in infant diets, 196
AA and DHA in the fetus brain, 196
AA content of human milk, 197
breast milk and fish consumption, 197
human milk and PUFAs, 197
DHA in human milk, 197
infants developmental needs and PUFAs, 196
omega 3 intake recommendations, 197
essential fatty acids in visual development, 198
 cerebrosides, 200
 cholesterol, 200
 contains hormones, 200
 DHA and ARA supplementation, 198
 DHA in term infants, 198
 DHA in the brain and eye, 198
 DHA, metabolic roles, 198
 enzymes, 200
 gangliosides, 200
 growth factors, 200
 human milk, 200
 immune factors, 200
 lipids of the human brain, 198
 maternal prenatal fish intake, 199
 omega 3s and infant immune system, 199
 other lipids in infant development, 200
 phospholipids, 200
 sphingolipids, 200
 sulfatides, 200
 viable cells, 200
 extraction of bioactive lipids, 109
 examples, 111
 anise, 110
 basil, 110
 chamomile, 110
 clove, 110
 coriander, 110
 limonene, 110
 marigold, 110
 oregano, 110
 pepper, 110
 rosemary, 110
 sage, 110
 thyme, 110
 supercritical extraction, 110
 farnesoid x receptor (FXR), 180
 action mechanism, 180
 FXR and cholesterol, 180
 in intestine and liver, 180
 fat consumption trends, 4
 consumption of added fats, 4
 consumption of fats, 4
 fatty acid composition of the main oils, 3
 fats and oils, 39
 bioactive properties of, 39
 minor components, 53
 cholesterol, 53
 cholesterol and phytosterols, 53
 fats and oils in foods, 83
 fats as nutrients, 5
 dietary guidelines RDAs AI, 5
 lipid nutritional supplements, 5
 omega 3s, 5
 main components crude edible oils, 84
 metabolism, 53
 new processing techniques, 84
 new regulations required trans fat, 85
 processing techniques for, 83
 sterols, 53
 recommend a total daily fat intake, 5
 fatty acid desaturation and elongation, 45
 docosahexaenoic acid metabolism, 46
 eicosapentaenoic acid metabolism, 46
 elongase and desaturase enzymes, 45
 essential fatty acids metabolism, 46
 linoleic acid metabolism, 46
 α-linolenic acid metabolism, 46
 fatty acid metabolism and utilization, 44
 absorption, 44
 bile acids and dietary fats, 44
 chylomicrons, 44
 digestion, 44
 lipoprotein lipase, 44
 pancreatic lipase, 44
 transport, 44
 fatty acids, 45
 cetyl CoA, 45
 chylomicrons and adipose tissue fat metabolism, 45
 fatty acid synthase, 45
 glucagon and lipolysis, 45
 insulin and lipolysis, 52, 184
 mitochondrial enzymes, 45
 oxidation, 45
 β-oxidation of saturated fatty acids, 45
 palmitate can be elongated and desaturated, 45
 peroxisomal β-oxidation, 45
 synthesis, 45
 triacylglycerols conversion from fatty acids, 45
 adipose tissue, 45
 in the liver, 45
 fatty acyls, types, 18
 monounsaturated fatty acyls, 21
 “omega nomenclature”, 20
 other, 21
 acetylenic fatty acids, 21
 fatty aldehydes, 22
 long-chain fatty alcohols, 22
260 Index

fatty acyls, types (Continued)
polyunsaturated fatty acyls (PUFA), 21
produced during the hydrogenation, 21
PUFA are metabolized in vivo, 21
saturated fatty acyls, 20
structures and nomenclatures of fatty acids, 19
formulation of foods with bioactive lipids, 207
formulation of foods with functional lipids, 207
consumers demands, 209
formulation of functional foods, 209
ethical and functionality issues, 209
fractionated lipids and cocoa butter substitutes, 70
cocoa butter replacements, 70
illipe fat (Shorea stenoptera), 70
kokum butter (Garcinia indica), 70
lecithin, 70
melting properties, 70
milk fat, 70
palm oil, tripalmitin, palmitolein, 70
sal fat (Shorea robusta), 70
Salatrim™, 70
shea butter (Butyrospermum parkii), 70
free radicals in food processing, 164
in cereal products, 164
free radicals in wheat flour, oats, 164
cereals, secondary oxidation product, 165
tocopherols loss and processing, 165
unprocessed grains, 164
future trends, 11
environmental and social impact, 12
functional foods market, top opportunities, 12
future trends in foods, 12
technologies in growing and harvesting, 11
timeline, 13
glycerolipids, 22
glycerolglycans, 22
hydrolyzed by lipases, 22
isomers, 22
major lipids in oilseeds and vegetable oils, 22
structural modifications, 22
TAGs. 22 represent the majority of dietary lipids, 23
triacylglycerols crystal networks, 23, 34, 35
glycerophospholipids, 23
fod applications, 25
most known, 24
properties, 24
structures, 24
health and nutrition claims in other countries, 252
european guidelines, 252
general function claims under Article 13.1, 252
nutrition content claims, Australia, 254
nutrition content claims, New Zealand, 254
omega3 fatty acids labeling, 252
reduction of disease risk and claims, Article 14, 252
health claims of fats and oils in foods, 245
food labeling guidelines, 245
food labels example, 247
food labels, must include, 246
labeling systems and symbols, 247
new front-of-package (FOP) systems, 248
nutrition labeling and education act, 246
nutrition labels and healthier diets, 246
systems and symbols, 245
infant diet, lipids, 193
adequate intakes of fat for infants, 197
basic nutrients, 192
micronutrients, 193
bioactive components, 192
mother’s milk energy source, 192
breast milk, oligosaccharides, 192
composition of infant formula, 194
daily recommended intakes (DRIs), 193
essential fatty acids in infant diet, 196
fat metabolism in infants, 197
formula feeding recommended, 200
high quality protein, 194
human milk, 194
human milk major lipids, 194
infant formulas, 193
infants and mother’s milk, 193
lactose, 192
lipids in infant development, 193
micronutrients in an infant’s diet, 193
mother’s milk bioactive compounds, 192
nutrition requirements for infants, 192
phospholipids in infant formula, 195
short and medium-chain fatty acids (MCT), 195
trans fatty acids in infant formula, 196
labeling fats and oils in foods, 245
adequate intakes, 251
dietary supplement labels categories, 248
excellent Source, 250
guidelines, 249
health and nutrition claims in food labelling, 248
health claim on labeling, 249
health claims in food labelling, 249
labeling precondition, 250
qualified health claims, 250
recommended daily allowance, 250
structure function, 250
labeling of fats and cholesterol in foods, 248
FDA for nutrient content claims fat, 248
for cholesterol, 248
lifestyle-related diseases, 142
γ-Linolenic acid (GLA), 53
bioactive properties, 68
inhibition of platelet aggregation and thrombosis, 53
modulator of inflammation, 53
lipid oxidation milk products, 165
cholesterol, oxidation products, 166
cholesterol oxidation toxicity, 165
functional and sensory changes, 165
meat, warmed over-flavor, 167
milk and omega-3 fatty, 165
oxidation and cooked meat, 167
effect of unsaturation of PUFAs, 167
flavor compounds, oxidized meat, 168
free radicals produced, 167
oxidation reaction in meats, 167
cysteine and tyrosine oxidation, 167
oxidized milk, volatile compounds, 166
shelf-life, 165
spontaneous off-flavor (SOF), 165
unsaturated fatty acids, 165
lipids, 17
chemical properties of lipids, 31
enzyme hydrolysis, 32
hydrogenation, 33
hydrogenation, generation of trans, 33
hydrogenation, stabilization of oils, 33
hydrolyzing phospholipids, 3
natural lipases reactions, 32
oxidation reactions, 33
phospholipases, 31
phospholipases specificity of, 33
production of diesel oils from triacylglycerols, 32
saponification, 31
transesterification, 32
transmethylation, 32
triacylglycerol lipases, 31
class characteristics, 18
classification, 17
acyl- and non-acyl lipids, 17
animal, 18
complex lipids, 17
microbial, 18
neutral, 18
plant lipids, 18
polar lipids, 18
trivial names, 18
definitions, 17
neutral lipids, 17
physical properties of lipids, 34
crystallization kinetics, 34
crystal polymorphic forms, 35, 36
effect of minor lipid components, 35
fat crystal networks, 34, 35
Fats, melting point, 34
lipid bilayers, 37
liposomes, 36
phospholipids micelles, 36
smoke and flash points, 35
unsaponifiable materials, 17
lipids as micronutrients, 141
bioactive lipids and metabolic syndrome, 143
cardio protective effects, 145
conjugated linoleic acid (CLA), 51, 57, 59, 130, 133, 146, 186, 210, 213, 228, 229
weight management mechanism, 146
IOM (2010) recommendation for omega 3, 143
mechanisms, 143
lipids, daily calorie intake, 141
lipids in cosmetic applications, 233
applications of lipids in cosmetics, 233
ceramides in the stratum corneum, 235
cholesterol in the stratum corneum, 235
common lipid used in cosmetics, 233
cosmetics, examples, 233
emu oil, 234
epidermal differentiation and hormone receptors, 237
glycerol, commonly used used humectant, 235
lipids in skin repair, 234
oleic acid and emolliency, 235
omega 3 fatty acids in cosmetics, 234
polyunsaturated fatty, antimicrobial activity, 234
Index

lipids in cosmetic applications (Continued)

- skin dryness and lowered levels of ceramides, 235
- stratum corneum, lipid composition, 236
- structured lipids in cosmetics, 235
- structured lipids in pharmaceuticals, 235
- typical properties of desired in cosmetic products, 233

lipids in drug delivery, 227

- controlled release of drugs, 227
- emulsifiers and emollients, 227
- lipids, as fillers, binders, 227
- lubricants, solubilizers, 227
- vegetable oils, as excipients, 227

- lipids in oral and parenteral drug delivery, 231
 - fatty acids, improved the bioavailability, 231
 - liposome systems, 231
 - new approaches, 231
 - oral and parenteral administration, 231
 - SEDDS (self-emulsifying drug delivery systems, 231
 - triacylglycerol, delivery of peptides, 231
 - transport, lymphatic system, 231

- lipids in transdermal applications, 228
 - enhanced percutaneous drug delivery, 230
 - epidermis, drug delivery, 229
 - ethosomal carriers, 230
 - human epidermis, strata, 229
 - iontophoresis, ultrasound, electroporation, 230
 - lipid micro emulsions and trans dermal transport, 230
 - lipid nano emulsions and trans dermal transport, 230
 - phosphatidylcholine, 230
 - sebaceous lipids, major components, 229
 - skin, composition, 228
 - skin, function, 228
 - skin, key lipids, 229
 - skin, portal of entry for drugs, 228
 - stratum corneum, behavior, 228
 - topical applications, 230
 - transdermal drug delivery, advantages, 228
 - lipids, major types in the human body, 142
 - lipid-soluble vitamins, 75

- addition to several foods, 215
- coenzyme Q10, 76, 216
- biological effects, 76
- microencapsulation and micellar solubilization, 214

- liver x receptors (LXRs), 180
- liver X receptor in the liver, 179
- LXR agonists, 179
- insulin effect, 179
- n-3 and n-6 PUFAs effects, 179
- LXRs and cholesterol, 179
- nuclear receptors and gene transcription, 179
- retinoid X receptor (RXR), 179

- medium chain fatty acids, lauric acid, 69
- lauric acid, 69
- mechanism(s), 69
- rapid metabolism, 69
- metabolic fatty acids, 224
- metabolic oxidation reactions, 145

- types of oxidation reactions, 145
- imbalance in ROS production, 145
- PUFAs and ROS, 146
- types of ROS, 146
- types of ROS reactions, 146
- metabolic syndrome, 143
- microencapsulation, 115
- cost, 117
- effective delivery systems, 118, 232
- encapsulation is used to mask off-flavors, 117
- fish oils, 117
- flavor encapsulation, 117
- materials, 117
- process description, 117
- protection against oxidation, 117
- micronutrients and lipids, 137
- antioxidant micronutrients, 137
- fat-soluble vitamins, 138
- micronutrient intake biomarkers, 137
- micronutrient intake requirements, 137
- recommended daily allowances, 139
- trace elements, 137
- key functions, 137
- water-soluble vitamins, 139
- micronutrients and metabolic oxidation, 144
- antioxidants and metabolic oxidation, 145
- related diseases, 145
- vitamin E and myocardial infarction, 145
- vitamins C and E, 14
- zinc and selenium and oxidant stress, 145
- modified oils-synthesis, 125

- nutrigenomics and lipids, 175
- cyberlipids, 176
- effects that various fatty acids, 176
Index

263

gene transcription, 176
genome-wide association studies (GWAS), 175
homeostasis, 177
human genome and personalized genetics, 175
lipid bank, 176
lipid library, 176
LIPID MAPS, 176
lipidome, 176
lipidomics, 176
nuclear receptors, 177
nutrigenomics definition, 175
personalized nutrition, 175
prostanoid metabolites, 176
sphinGOMAP, 176
target genes, 177

nutrigenomics and obesity, 181
adipogenesis, 182
adipogenesis and PPARs, 182
adipogenesis and SREBP1, 182
adiponectin, 182
gene loci and glucose and insulin metabolism, 183
genes and obesity, 181
genes that encode leptin, 182
 genetic variation and obesity, 182
GWA and complex human obesity, 182
insulin and obesity, 185
lipogenesis and glycolysis, 182
lipolysis, 182
lipolysis and catecholamines, 184
obesity and gene loci FTO, 183
FTO locus and appetite, 183
obesity causes, 181
nutrigenomics metabolic pathways, 183
nutrigenomics and caloric restriction, 185
nutrigenomics aspects of n-3 PUFAs, 184
systems biology, 183
coenomics and metabolomics of lipids, 184

obesity and diabetes, 47
activated receptors (PPARs) and sterol regulatory element binding proteins (SREBP)s, 47
coronary heart disease risk factors, 47
dietary fatty acids, metabolites, 47
hypertriglyceridemia, 47
insulin resistance, 47
metabolic syndrome, 47

omega-3 fatty acids, 51
ALA, EPA and DHA, 67
desirable intake of EPA and DHA, 252
flaxseed, 67
inflammation modulators, 51
omega-3 Fatty Acids, Commercial products, 210
challenges for incorporation, 211
processing conditions, 211
antioxidants, 211
micro-encapsulation, 211
spreads with fish oils, 210
perilla, 68
prevention of cardiac sudden death, 68
recommended intake, 51
stearidonic, 68

oxidation of proteins, peptides, and amino acids, 160, 161
cross-linking, 160
chemical structure the antioxidant, 162
during food processing, 160
metal-catalyzed protein oxidations, 161
food protein oxidation and sensory, 161
food protein oxidation and structural, 162
inhibition of oxidation, 162
lipid oxidation factors, 162
oxidation inhibitors, phenolics, 162
quenching both singlet oxygen, 163
stabilization by resonance, 162
secondary antioxidants, 163
tocopherols and tocotrienols, lipid solubility, 163

oxidation reactions, 155, 156
catalyzed by singlet oxygen, 156
lipases, prooxidant effects, 156
lipoxygenases, 156
main volatile compounds, 160
oxidation, initial products and catalysts, 156
oxidation reaction sequence, 158
oxidation, secondary products, 157
effect on sensory, 157
oxidizability of PUFA, 158
photosensitizers, 158, 159, 161, 165, 166
protein oxidation, 160
secondary oxidation and off-flavors, 159
transition metal ions, iron and copper ions, 156
electron donors, 156
prooxidants, 156
Index

oxidative stability, 76
vitamin A, 76
beneficial effects, 53, 77, 134, 212, 217
vitamin D, 76
vitamin E, 76
different forms of vitamin E, 76, 217
vitamin K, 77
beneficial effects, 77

palmitoleic acid, 69
bioactive properties, 70
macadamia nut, 70
mechanism(s), 70

pharmaceutical properties of fats and oils, 223
bioactive lipids, 223
fish oils, shark cartilage, shark liver oil, 223
lipids, in the human body, 223
lipids, role in cell membrane structure, 223

plant sterol and stanol preparations, 75
effect on serum/plasma LDL-cholesterol, 75
mechanisms, 76

plant sterols and stanols, 144, 208
efficacy, 208
foods enriched in sterols and stanols, 209
food applications, 144
stanols in commercial margarine, 209
structured lipids, 144
structured phospholipids, 144
“phosphatidylserine (ps) health claims, 144

polyketides, 30, 32
bioactivity, 31

polyunsaturated fatty acids, synthesis of eicosanoids, 46
cyclooxygenase, 46
eicosanoid metabolites, 46
tocotrienols, 29
leukotrienes, 47
lipoxygenase, 46
lipoxygenase activities, 46
prostaglandins, 46
thromboxanes, 46
pregnane X receptor (PXR), 181
steroid X receptor, 181
vitamin E and PXR ligand, 181
xenobiotic X receptor (SRX), 181

preenol lipids, 26
chlorophylls, 30
coenzyme Q10, 30
isoprenoids, 27
Lingly-chain isoprenoid alcohols, 27
provitamin A, carotenoids, 29
squalene, 28 carotenoids, 26
tocopherols, 27
tocotrienols, 29
ubiquinones, 30
vitamin E, 29
vitamin K, 28, 30

processing for functional and nutritional Applications, 109
cosmetic, 109
food supplements, 109
pharmaceutical, 109

production of edible oils, 85
analytical requirements for crude vegetable oil, 91
definition, 91
impurities, 91
three basic processing steps, 91
bleaching of edible oils, 95
activated charcoal, 95
filters, 96
neutral clays, 95
normal conditions, 95
silica gels, 95
types of clays, 95
undesirable effect of acid activated clays, 95
cauterizing, 96
neutralizing agents, 94
refining conditions, 94
refining of frying oils, 95
refining with adsorbents, 94
soapstock removal, 94
chemical reactions in triglycerides, 90
hydrogenation, 91
hydrolysis, 90
interesterification, 91
isomerization, 91
oxidation, 91
polymerization, 91
saponification, 91
trans fatty acids, 91
degumming, 93
long mix method, 93
short mix, 93
deodorization of vegetable oils, 97
conditions, 97
deodorizer distillate, 98
heating systems, 98
quality requirements, 97
vacuum systems, 98
fractionation, 99
fully refined vegetable Oil, 104
specifications, 104
hydrogenation, 100
catalyst Selectivity, 101
conditions, 101
main objectives of hydrogenation, 100
trans isomers development, 101, 102
methods for extraction, 85
continuous loop, shallow bed, 87
deep bed rotary extractor, 87
deep-bed stationary, 87
horizontal bed extractor, 87
mechanical pressing, 85
pre pressing before solvent extraction, 90
pressing, 89
processing of vegetable oils, 91
refining of vegetable oils, 91, 92
solvent extraction, 85
types of solvent extractors, 87
types of solvents, 85
organoleptic properties, 103
physical refining, 99
physical refining definition, 99
advantages, 99
specifications for fats and oils products, 103
specifications of a shortening, 104
stability, 103
types of crystals, 105
types of oil products, 102
types of shortenings, 105
production trends of fats and oils, 2
application of oils in cooking, 2
common fatty acids found in oilseeds, 3
major vegetable oils, 2
production of fats and oils world wide, 2
world production, 2
quality of lipids, 237
oil quality evaluation factors, 238
oils in cosmetics, 238
quality of lipids, cosmetic applications, 237
toxicity tests for cosmetics, 238

saccharolipids, 28
lipopolysaccharide, 28
olestra, 30

solid fats in drug delivery, 231
lipid microemulsions, intravenous administration, 232
lipophilicity and cellular uptake, 232
nanoparticle suspensions, 232

positively charged submicron emulsions, 232
tris-lipidation, 232
special dietary fatty acids, 51
specialty lipids, nutraceutical and functional, 65
classification, 65
deinition, 65
especial constituents, 65, 66
specialty oils, 66
biological effects, 67
composition, 68
erucic acid, 66
high oleic acid oils, 66
lorenzo’s oil, 67
nutraceutical applications, 66
other specialty lipids in fats and oils, 77
γ-oryzanols, 76
sesamin, 77
sesamolin, 77
substitutes for hydrogenated oils, 66

sphingolipids, 25
important components of membranes in microorganisms, plants, and animals, 25
properties, 25
structures, 25

stabilization of bioactive lipids, 118
delivery, 119
‘fishy’ flavor compounds, 119
interesterification techniques, 119
oxidation, 119
oxidation protection, 119
stable lipid blends, 119
sterol lipids, 26
Δ3-avenasterol, 26, 27
campesterol, 26
cholesterol, 26
phytosterols, 26
plant sterols, 26
sitosterol, 26
sterol glycosides, 27
stigmasterol, 26
sterols and stanols, generally-recognized-as-safe, 209
phytosterolemia and atherosclerosis, 209
sterols and oxidation, 209
structured lipids, 125
applications, 125
commercial applications, 128
nutraceutical lipids, 128
human milk fat substitutes, 129
immobilized enzyme, 129
medium-chain triacylglycerols, 129
structured lipids (Continued)

- omega 3, 128
- oxidative stability, 129
- interesterification, 125
- acidolysis, 126
- alcoholysis, 126
- applications, 126
- chemical interesterification, 126
- definition, 125
- enzymatic interesterification, 127
- lipases, types, 127
- reaction conditions, 127
- enzymes, 129
- structured phospholipids, 125
- transesterification, 126
- catalysts, 126
- reaction Mechanism, 126
- structured lipids and phospholipids, 73
 - diacylglycerols, 73
 - low calorie fat and oil substitutes, 73
 - metabolism, 74
 - Olestra®, 30, 31, 75
- structured phospholipids, 130
 - chemical modification, 130
 - enzymatic modification, 130
 - phospholipids major sources, 130
 - phospholipids uses, 130
- structured lipids Crystallization, 132
 - beta and beta prime, 132
 - melting and rheology, 132
 - oils, crystal forming properties, 133
- structured phospholipids, different
 - applications, 131
- structured phospholipids with omega 3s, 132
- structured triacylglycerols, 71
 - chemical interesterification, 71
 - enzymatic interesterifications, 71
 - lipase-catalyzed hydrolysis, 73
 - applications, 73
 - digestion and absorption, 72
 - lipogenesis, 73
 - metabolism, 74
 - oxidation, 74

tocopherols, 54

- absorption, 55
- deposition, 55
- dietary requirements, 56

- genes, 55
- metabolism, 55
- other biological effects, 56
- pharmacokinetics, 55
tocotrienols, biological effects, 56
toll-like receptors (TLR), 181
TLRs and cytokines, 181
TLRs and interferon, 181
TLRs and kinase protein family, 181
TLRs and n-3 PUFAs, 181
trends in healthy fats and foods, 9
- challenges, 9
- convenience, 9
dietary Guidelines for Americans,
 - recommendations, 9
- health drivers, 10
- obesity, 9
top 11 health concerns, 11

vitamins, 57

- biotin, (Vitamin B7 or Vitamin H), 140
- boron, 141
- calcium, 140
- choline, 140
- chromium, 141
- copper, 141
- floride, 141
- fluoride, 141
- folate or Vitamin B9, 140
- iodine, 141
- iron selenium, 140
- magnesium, 140
- molybdenum, 141
- niacin, or Vitamin 3, 138
- nickel, 141
- vanadium, 141
- vitamin A function, 57, 138
- vitamin B1 (Thiamine), 138
- vitamin B2 (riboflavin), 138
- vitamin B5, 139
- vitamin B5 or pantothenate, 140
- vitamin C, 138
- vitamin E, 28, 29, 39, 55, 56, 75, 76, 85, 98,
 - 138, 139, 145, 147, 148, 165, 177, 179, 181, 215, 225, 226
- vitamin D, 138
- vitamin K, 57
- zinc, 141