Contents

List of Contributors xiii
Preface xix

1 Introduction 1
Christine Seymour and Gintaras V. Reklaitis
1.1 Quality by Design Overview 1
1.2 Pharmaceutical Industry 2
1.3 Quality by Design Details 3
1.4 Chapter Summaries 4
References 7

2 An Overview of the Role of Mathematical Models in Implementation of Quality by Design Paradigm for Drug Development and Manufacture 9
Sharmista Chatterjee, Christine M. V. Moore, and Moheb M. Nasr
2.1 Introduction 9
2.2 Overview of Models 9
2.3 Role of Models in QbD 12
2.3.1 CQA 13
2.3.2 Risk Assessment 13
2.3.3 Design Space 14
2.3.4 Control Strategy 19
2.4 General Scientific Considerations for Model Development 20
2.4.1 Models for Process Characterization 21
2.4.2 Models for Supporting Analytical Procedures 22
2.4.3 Models for Process Monitoring and Control 22
2.5 Scientific Considerations for Maintenance of Models 22
2.6 Conclusion 23
References 23
3 Role of Automatic Process Control in Quality by Design 25
3.1 Introduction 25
3.2 Design of Robust Control Strategies 31
3.3 Some Example Applications of Automatic Feedback Control 35
3.4 The Role of Kinetics Modeling 40
3.5 Ideas for a Deeper QbD Approach 42
3.6 Summary 44
Acknowledgments 46
References 47

4 Predictive Distributions for Constructing the ICH Q8 Design Space 55
John J. Peterson, Mohammad Yahyah, Kevin Lief, and Neil Hodnett
4.1 Introduction 55
4.2 Overlapping Means Approach 56
4.3 Predictive Distribution Approach 59
4.4 Examples 61
4.4.1 A Mechanistic Model Example 62
4.4.2 An Empirical Model Example 64
4.5 Summary and Discussion 68
Acknowledgment 69
References 69

5 Design of Novel Integrated Pharmaceutical Processes:
A Model-Based Approach 71
Alicia Román-Martínez, John M. Woodley, and Rafiqul Gani
5.1 Introduction 71
5.2 Problem Description 73
5.2.1 Mathematical Formulation 73
5.2.2 Solution Approach 75
5.3 Methodology 76
5.3.1 Superstructure 77
5.3.2 Model Development 78
5.3.3 Decomposition Strategy 79
5.4 Application: Case Study 80
5.4.1 Stage 1: Problem Definition 81
5.4.2 Stage 2: Data/Information Collection/Analysis 81
5.4.3 Stage 3: Superstructure, Model Development, and Decomposition Strategy 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.4</td>
<td>Stage 4: Generation of Feasible Candidates and Screening</td>
<td>82</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Stage 5: Screening by Process Model</td>
<td>84</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Stage 6: Evaluation of the Feasible Options: Calculation of the Objective Function</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>Methods and Tools for Design Space Identification in Pharmaceutical Development</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Fani Boukouvala, Fernando J. Muzzio, and Marianthi G. Ierapetritou</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>6.2</td>
<td>Design Space: A Multidisciplinary Concept</td>
<td>98</td>
</tr>
<tr>
<td>6.3</td>
<td>Integration of Design Space and Control Strategy</td>
<td>102</td>
</tr>
<tr>
<td>6.4</td>
<td>Case Studies</td>
<td>102</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Design Space of a Continuous Mixer: Use of Data-Driven-Based Approaches</td>
<td>102</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Roller Compaction Case Study: Integration of Control Strategy and Its Effects on the Design Space</td>
<td>107</td>
</tr>
<tr>
<td>6.4.2.1</td>
<td>Deterministic Design Space</td>
<td>110</td>
</tr>
<tr>
<td>6.4.2.2</td>
<td>Stochastic Design Space</td>
<td>112</td>
</tr>
<tr>
<td>6.4.2.3</td>
<td>Effect of Control Strategies on the Design Space</td>
<td>113</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>Using Quality by Design Principles as a Guide for Designing a Process Control Strategy</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Christopher L. Burcham, Mark LaPack, Joseph R. Martinelli, and Neil McCracken</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>125</td>
</tr>
<tr>
<td>7.2</td>
<td>Chemical Sequence, Impurity Formation, and Control Strategy</td>
<td>130</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Chemical Sequence</td>
<td>130</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Impurity Formation</td>
<td>131</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Control Strategy</td>
<td>136</td>
</tr>
<tr>
<td>7.3</td>
<td>Mass Transfer and Reaction Kinetics</td>
<td>140</td>
</tr>
<tr>
<td>7.3.1</td>
<td>CO₂ Mass Transfer Model</td>
<td>140</td>
</tr>
<tr>
<td>7.3.1.1</td>
<td>Determination of Henry’s Law Constant</td>
<td>143</td>
</tr>
<tr>
<td>7.3.1.2</td>
<td>Determination of the Mass Transfer Coefficient</td>
<td>145</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Reaction Kinetics</td>
<td>149</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Deprotection Reaction Kinetics</td>
<td>151</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Calculation of Dissolution Constants</td>
<td>157</td>
</tr>
<tr>
<td>7.3.2.3</td>
<td>Coupling Reaction Kinetics</td>
<td>159</td>
</tr>
<tr>
<td>7.4</td>
<td>Optimal Processing Conditions</td>
<td>165</td>
</tr>
</tbody>
</table>
8 A Strategy for Tablet Active Film Coating Formulation Development Using a Content Uniformity Model and Quality by Design Principles 193

Wei Chen, Jennifer Wang, Divyakant Desai, Shih-Ying Chang, San Kiang, and Olav Lyngberg

8.1 Introduction 193
8.2 Content Uniformity Model Development 197
8.2.1 Principles of the Model 198
8.2.2 Total Residence Time and Fractional Residence Time 199
8.2.3 The RSD Model Derivation 201
8.2.4 Model Parameters and Their Measurements 204
8.2.4.1 Tablet Velocity 205
8.2.4.2 Tablet Number Density 207
8.2.4.3 Spray Zone Width 208
8.3 RSD Model Validation and Sensitivity Analysis for Model Parameters 212
8.3.1 Model Validation 213
8.3.2 Effect of Spray Zone Width on Content Uniformity 215
8.3.3 Effect of Tablet Velocity on Content Uniformity 216
8.3.4 Effect of Tablet Size on Content Uniformity 217
8.3.5 Effect of Pan Load on Content Uniformity 217
8.3.6 Effect of Coating Time on Content Uniformity 218
8.4 Model-Based Design Space Establishment for Tablet Active Film Coating 219
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.1</td>
<td>Establish a Model-Based Process Design Space at a Defined Scale</td>
<td>220</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Model-Based Scale-Up</td>
<td>226</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Model-Based Process Troubleshooting</td>
<td>228</td>
</tr>
<tr>
<td>8.5</td>
<td>Summary</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Notations</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>230</td>
</tr>
<tr>
<td>9</td>
<td>Quality by Design: Process Trajectory Development for a Dynamic</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Pharmaceutical Coprecipitation Process Based on an Integrated Real-Time Process Monitoring Strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huiquan Wu and Mansoor A. Khan</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>235</td>
</tr>
<tr>
<td>9.2</td>
<td>Experimental</td>
<td>237</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Materials</td>
<td>237</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Equipment and Instruments</td>
<td>237</td>
</tr>
<tr>
<td>9.3</td>
<td>Data Analysis Methods</td>
<td>239</td>
</tr>
<tr>
<td>9.3.1</td>
<td>PCA and Process Trajectory</td>
<td>239</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Singular Points of a Signal</td>
<td>239</td>
</tr>
<tr>
<td>9.4</td>
<td>Results and Discussion</td>
<td>240</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Using Offline NIR Measurement to Characterize the Naproxen–Eudragit L100 Binary Powder Mixing Process</td>
<td>241</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Using In-Line NIR Spectroscopy to Monitor the Alcohol–Water Binary Liquid Mixing Process</td>
<td>242</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Real-Time Integrated PAT Monitoring of the Dynamic Coprecipitation Process</td>
<td>243</td>
</tr>
<tr>
<td>9.4.4</td>
<td>3D Map of NIR Absorbance–Wavelength–Process Time (or Process Sample) of the Coprecipitation Process</td>
<td>244</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Process Signature Identification</td>
<td>245</td>
</tr>
<tr>
<td>9.4.6</td>
<td>Online Turbidity Monitoring of the Process</td>
<td>248</td>
</tr>
<tr>
<td>9.5</td>
<td>Challenges and Opportunities for PCA-Based Data Analysis and Modeling in Pharmaceutical PAT and QbD Development</td>
<td>250</td>
</tr>
<tr>
<td>9.6</td>
<td>Conclusions</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>253</td>
</tr>
<tr>
<td>10</td>
<td>Application of Advanced Simulation Tools for Establishing Process</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Design Spaces Within the Quality by Design Framework</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siegfried Adam, Daniele Suzzi, Gregor Toschkoff, and Johannes G. Khinast</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>10.2</td>
<td>Computer Simulation-Based Process Characterization</td>
<td>261</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Background</td>
<td>261</td>
</tr>
</tbody>
</table>
10.2.2 Goals 263
10.2.3 Material and Methods 264
10.2.3.1 Application of QbD Concepts 264
10.2.3.2 Model and Numerical Simulation 267
10.2.3.3 Process Characterization Experimental Design 268
10.2.4 Results and Discussion 272
10.2.5 Conclusion 276
10.3 Characterization of a Tablet Coating Process via CFD Simulations 276
10.3.1 Introduction 276
10.3.2 Background 278
10.3.3 Methods 280
10.3.3.1 Model and Numerical Simulation 281
10.3.3.2 Simulation Design and Characterization 284
10.3.3.3 Potentially Critical Input Parameters 286
10.3.4 Results and Discussion 287
10.3.4.1 Time Development of Mean Thickness and RSD 288
10.3.4.2 Knowledge Space 290
10.3.5 Summary 294
10.4 Overall Conclusions 294

11 Design Space Definition: A Case Study—Small Molecule Lyophilized Parenteral 301
Linas Mockus, David LeBlond, Gintaras V. Reklaitis, Prabir K. Basu, Tim Paul, Nathan Pease, Steven L. Nail, and Mansoor A. Khan

11.1 Introduction 301
11.2 Case Study: Bayesian Treatment of Design Space for a Lyophilized Small Molecule Parenteral 302
11.2.1 Arrhenius Accelerated Stability Model with Covariates for a Pseudo-Zero-Order Degradation Process 302
11.2.2 Design Space Definition 307
11.3 Results 307
11.4 Conclusions 311
Appendix 11.A Implementation Using WinBUGS and R 311

11.A.1 WinBUGS Model 312
11.A.2 Data Used for Analysis 312
11.A.3 Calling WinBUGS from R 314
11.A.4 Calculating the Predictive Posterior Probability of Meeting Shelf Life 315
Notation 316
Acknowledgments 317
References 317
12 Enhanced Process Design and Control of a Multiple-Input Multiple-Output Granulation Process 319
 Rohit Ramachandran
 12.1 Introduction and Objectives 319
 12.2 Population Balance Model 320
 12.2.1 Compartmentalized Population Balance Model 322
 12.3 Simulation and Controllability Studies 323
 12.4 Identification of Existing “Optimal” Control-Loop Pairings 327
 12.4.1 Discarding n_1 328
 12.4.2 Discarding n_2 328
 12.4.3 Discarding n_3 328
 12.4.4 Discarding n_4 329
 12.4.5 Discussion 329
 12.5 Novel Process Design 330
 12.5.1 Identification of Kernels 331
 12.5.2 Proposed Design and Control Configuration 331
 12.6 Conclusions 335
 References 336

13 A Perspective on the Implementation of QbD on Manufacturing through Control System: The Fluidized Bed Dryer Control with MPC and NIR Spectroscopy Case 339
 Leonel Quiñones, Luis Obregón, and Carlos Velázquez
 13.1 Introduction 339
 13.2 Theory 340
 13.2.1 Fluidized Bed Dryers (FBDs) 340
 13.2.2 Process Control 341
 13.2.2.1 Proportional Integral Derivative (PID) Control 342
 13.2.2.2 Model Predictive Control (MPC) 342
 13.3 Materials and Methods 344
 13.3.1 Materials 344
 13.3.2 Equipment 344
 13.3.3 MPC Implementation 346
 13.4 Results and Discussion 348
 13.4.1 Process Model 348
 13.4.2 Control Performance with Nominal Process Parameters 349
 13.4.3 Control Performance with Non-nominal Model Parameters 352
 13.5 Continuous Fluidized Bed Drying 355
 13.6 Control Limitations 356
 13.7 Conclusions 357
 Acknowledgment 357
 References 357
14 Knowledge Management in Support of QbD 361
G. Joglekar, Gintaras V. Reklaitis, A. Giridhar, and Linas Mockus
14.1 Introduction 361
14.2 Knowledge Hierarchy 363
14.3 Review of Existing Software 364
14.4 Workflow-Based Framework 365
14.4.1 Scientific Workflows 366
14.4.2 Business Workflows 367
14.4.3 Comprehensive Workflow-Based Knowledge Management System 368
14.5 Drug Substance Case Study 368
14.5.1 Process Description 368
14.5.2 Workflow-Based Representation of the Semagacestat Study 370
14.5.3 Using Workflows 373
14.6 Design Space 374
14.6.1 Design Space Example 374
14.6.2 Systematic Approach to Determining Design Space 375
14.6.3 Workflow-Based Approach to Design Space Development 375
14.6.4 Drug Product Case Study 378
14.7 Technical Challenges 382
14.7.1 Human–Machine Interaction Design 382
14.7.2 Extraction of Operational Data 383
14.7.3 Collection of Tacit Knowledge 383
14.8 Conclusions 384
References 385

Index 387