Contents

Preface \hspace{1cm} page ix

1. **Lewis Basicity and Affinity Measurement: Definitions and Context** \hspace{1cm} 1
 1.1 The Brönsted Definition of Acids and Bases \hspace{1cm} 2
 1.2 Scales of Brönsted Basicity and Affinity in Solution \hspace{1cm} 3
 1.3 Scales of Brönsted Basicity and Affinity in the Gas Phase \hspace{1cm} 6
 1.4 The Lewis Definition of Acids and Bases \hspace{1cm} 6
 1.5 Quantum Chemical Descriptions of Lewis Acid/Base Complexes \hspace{1cm} 10
 1.5.1 Valence-Bond Model \hspace{1cm} 10
 1.5.2 Perturbation Molecular Orbital Theory \hspace{1cm} 10
 1.5.3 Variational Supermolecular Method and Energy Decomposition Schemes \hspace{1cm} 12
 1.5.4 Natural Bond Orbital Theory \hspace{1cm} 17
 1.5.5 Quantum Theory of Atoms in Molecules \hspace{1cm} 18
 1.6 Measurement of Lewis Basicity \hspace{1cm} 20
 1.6.1 Gas-phase Reactions \hspace{1cm} 21
 1.6.2 Solution Reactions \hspace{1cm} 22
 1.6.3 Standard State Transformations \hspace{1cm} 23
 1.6.4 Choice of Solvent \hspace{1cm} 24
 1.7 Measurement of Lewis Affinity \hspace{1cm} 24
 1.8 The Role of the Solvent \hspace{1cm} 29
 1.9 Spectroscopic Scales of Basicity (Affinity) \hspace{1cm} 34
 1.10 Polybasic Compounds \hspace{1cm} 38
 1.11 Attempts at a Quantitative Formulation of the Lewis Definition of Acids and Bases \hspace{1cm} 42
 1.11.1 Hard and Soft Acids and Bases \hspace{1cm} 42
 1.11.2 The ECW and ECT Models \hspace{1cm} 47
 1.11.3 The Beta and Xi Equation \hspace{1cm} 52
 1.11.4 A Chemometric Approach \hspace{1cm} 53
 1.11.5 Quantum Chemical Descriptors for Basicity Scales \hspace{1cm} 56
 1.12 Concluding Remarks and Content of Chapters 2–7 \hspace{1cm} 58
 References \hspace{1cm} 60

2. **The Donor Number or SbCl₅ Affinity Scale** \hspace{1cm} 71
 2.1 Structure of SbCl₅ Complexes \hspace{1cm} 71
 2.2 Definition of the Donor Number Scale \hspace{1cm} 73
 2.3 Experimental Determination of the Donor Number \hspace{1cm} 73
Contents

2.4 The Donor Number Scale: Data 74
2.5 Critical Discussion 80
 References 81

3 The BF₃ Affinity Scale 85
3.1 Structure of BF₃ Complexes 86
3.2 Definition of the BF₃ Affinity Scale 88
3.3 Experimental Determination of the BF₃ Affinity Scale 89
3.4 The BF₃ Affinity Scale: Data 90
3.5 Discussion 102
 3.5.1 Medium Effects 102
 3.5.2 Hardness of BF₃ 102
 3.5.3 Comparison of the BF₃ and SbCl₅ Affinity Scales 103
 3.5.4 Computation of the BF₃ Affinity 104
3.6 Conclusion 105
 References 106

4 Thermodynamic and Spectroscopic Scales of Hydrogen-Bond Basicity and Affinity 111
4.1 Structure of Hydrogen-Bonded Complexes 113
4.2 Hydrogen-Bond Basicity Scales: Early Works 117
4.3 The 4-Fluorophenol Hydrogen-Bond Basicity Scale 119
 4.3.1 Definition 119
 4.3.2 Method of Determination 119
 4.3.3 Polyfunctional Hydrogen-Bond Acceptors 120
 4.3.4 Data 121
 4.3.5 Range of Validity of the Scale 167
4.4 Hydrogen-Bond Affinity Scales: Early Studies 168
4.5 The 4-Fluorophenol Affinity Scale 170
4.6 Comparison of 4-Fluorophenol Affinity and Basicity Scales 185
4.7 Spectroscopic Scales 188
 4.7.1 Infrared Shift of Methanol 188
 4.7.2 Solvatochromic Shifts of 4-Nitrophenol and 4-Nitroaniline 210
4.8 Conclusion 221
 References 221

5 Thermodynamic and Spectroscopic Scales of Halogen-Bond Basicity and Affinity 229
5.1 Structure of Halogen-Bonded Complexes 231
5.2 The Diiodine Basicity Scale 237
 5.2.1 Definition of the Scale 237
 5.2.2 Methods for the Determination of Diiodine Complexation Constants 238
 5.2.3 Temperature Correction 239
 5.2.4 Solvent Effects 239
 5.2.5 Data 243
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Is the Diiodine Basicity Scale a General Halogen-Bond Basicity Scale?</td>
<td>283</td>
</tr>
<tr>
<td>5.4 The Diiodine Affinity Scale</td>
<td>285</td>
</tr>
<tr>
<td>5.5 Spectroscopic Scales</td>
<td>286</td>
</tr>
<tr>
<td>5.5.1 Infrared Shifts of ICN, I₂ and ICl</td>
<td>286</td>
</tr>
<tr>
<td>5.5.2 The Blue Shift of the Diiodine Visible Band</td>
<td>306</td>
</tr>
<tr>
<td>5.6 Conclusion</td>
<td>309</td>
</tr>
<tr>
<td>References</td>
<td>309</td>
</tr>
<tr>
<td>6 Gas-Phase Cation Affinity and Basicity Scales</td>
<td>323</td>
</tr>
<tr>
<td>6.1 Cations as Lewis Acids in the Gas Phase</td>
<td>323</td>
</tr>
<tr>
<td>6.2 Structure of Cation/Molecule Adducts</td>
<td>326</td>
</tr>
<tr>
<td>6.3 Experimental Techniques for Measuring Gas-Phase Cation Affinities and Basicities</td>
<td>334</td>
</tr>
<tr>
<td>6.3.1 High-Pressure Mass Spectrometry (HPMS)</td>
<td>334</td>
</tr>
<tr>
<td>6.3.2 Collision-Induced Dissociation Threshold (CIDT)</td>
<td>335</td>
</tr>
<tr>
<td>6.3.3 Ligand-Exchange Equilibrium Measurements in Trapping Devices</td>
<td>336</td>
</tr>
<tr>
<td>6.3.4 Selected Ion Flow Tube (SIFT)</td>
<td>337</td>
</tr>
<tr>
<td>6.3.5 Kinetic Method</td>
<td>337</td>
</tr>
<tr>
<td>6.3.6 Radiative Association Kinetics (RAK)</td>
<td>338</td>
</tr>
<tr>
<td>6.3.7 Blackbody Infrared Radiative Dissociation (BIRD)</td>
<td>338</td>
</tr>
<tr>
<td>6.3.8 Vaporization and Lattice Energies</td>
<td>339</td>
</tr>
<tr>
<td>6.4 Ion Thermochemistry Conventions</td>
<td>339</td>
</tr>
<tr>
<td>6.5 Lithium, Sodium, Potassium, Aluminium, Manganese, Cyclopentadienylnickel, Copper and Methylammonium Cations affinity and Basicity Scales</td>
<td>340</td>
</tr>
<tr>
<td>6.5.1 Lithium</td>
<td>340</td>
</tr>
<tr>
<td>6.5.2 Sodium</td>
<td>346</td>
</tr>
<tr>
<td>6.5.3 Potassium</td>
<td>353</td>
</tr>
<tr>
<td>6.5.4 Aluminium</td>
<td>354</td>
</tr>
<tr>
<td>6.5.5 Manganese</td>
<td>354</td>
</tr>
<tr>
<td>6.5.6 Cyclopentadienylnickel</td>
<td>360</td>
</tr>
<tr>
<td>6.5.7 Copper</td>
<td>366</td>
</tr>
<tr>
<td>6.5.8 Methylammonium</td>
<td>371</td>
</tr>
<tr>
<td>6.6 Significance and Comparison of Gas-Phase Cation Scales</td>
<td>370</td>
</tr>
<tr>
<td>6.6.1 Properties of Cations and Significance of MCB and MCA Scales</td>
<td>370</td>
</tr>
<tr>
<td>6.6.2 Relationship of MCA with MCB</td>
<td>381</td>
</tr>
<tr>
<td>6.6.3 The Computation of MCB and MCA Scales</td>
<td>382</td>
</tr>
<tr>
<td>6.6.4 MCA and MCB Scales and the Concept of a Cation/π Interaction</td>
<td>383</td>
</tr>
<tr>
<td>6.6.5 Conventional Versus Ionic Hydrogen-Bond Basicity and Affinity Scales</td>
<td>386</td>
</tr>
<tr>
<td>6.6.6 Comparison of Cation Basicity Scales</td>
<td>387</td>
</tr>
<tr>
<td>References</td>
<td>389</td>
</tr>
<tr>
<td>7 The Measurement of Lewis Basicity and Affinity in the Laboratory</td>
<td>401</td>
</tr>
<tr>
<td>7.1 Calorimetric Determination of the BF₃ Affinity of Pyridine by Gas/Liquid Reaction</td>
<td>401</td>
</tr>
</tbody>
</table>
Contents

7.1 Introduction: Principles and Difficulties in the Calorimetric Measurement of the Enthalpy of a Gas/Liquid Reaction 401
7.1.1 Reagents and Equipment 403
7.1.2 Experiment 404
7.1.3 Results 405

7.2 Calorimetric Determination of the BF₃ Affinity of Pyridine by Liquid/Liquid Reaction 406
7.2.1 Introduction: Measuring Relative BF₃ Affinity by Ligand Exchange in Solution 406
7.2.2 Reagents and Equipment 407
7.2.3 Experiment 407
7.2.4 Results 407

7.3 Determination by FTIR Spectrometry of the Complexation Constants of 4-Fluorophenol with Isopropyl Methyl Ketone and Progesterone 408
7.3.1 Introduction: Recognition of Progesterone by its Receptor 408
7.3.2 Reagents and Equipment 409
7.3.3 Experiment 409
7.3.4 Results and Discussion 410

7.4 Determination by FTIR Spectrometry of the Complexation Enthalpy and Entropy of 4-Fluorophenol with Cyclopropylamine 413
7.4.1 Introduction 413
7.4.2 Reagents and Equipment 414
7.4.3 Experiment 414
7.4.4 Results 414
7.4.5 Comparison with Theoretical Calculations 417

7.5 FTIR Determination of the OH Shift of Methanol Hydrogen Bonded to Pyridine, Mesitylene and N-Methylmorpholine 418
7.5.1 Introduction 418
7.5.2 Reagents and Equipment 418
7.5.3 Experiment 419
7.5.4 Results and Discussion 419

7.6 Solvatochromic Shifts of 4-Nitrophenol upon Hydrogen Bonding to Nitriles 420
7.6.1 Introduction 420
7.6.2 Reagents and Equipment 421
7.6.3 Experiment 421
7.6.4 Results and Discussion 422

7.7 Determination of the Complexation Constant of Diiodine with Iodocyclohexane by Visible Spectrometry 424
7.7.1 Introduction: Measuring the Weak Diiodine Basicity of Haloalkanes 424
7.7.2 The Rose–Drago Method 424
7.7.3 Reagents and Equipment 426
7.7.4 Experiment 426
7.7.5 Results and Discussion: Illustration of the HSAB Principle 427
Contents

7.8 Determination of the Complexation Enthalpy and Entropy of Diiodine with Dimethyl Sulfoxide by Visible Spectrometry 429
 7.8.1 Introduction 429
 7.8.2 Reagents and Equipment 429
 7.8.3 Experiment 429
 7.8.4 Results 430
 7.8.5 Discussion 432

7.9 FTIR Determination of the Shift of the I–C Stretching of Iodine Cyanide upon Halogen Bonding to Phosphine Chalcogenides 434
 7.9.1 Introduction 434
 7.9.2 Reagents and Equipment 435
 7.9.3 Experiment 435
 7.9.4 Results and Discussion: \(\Delta \nu(\text{ICN}) \) as a Spectroscopic Scale of Halogen-Bond Affinity 435

7.10 Blue Shift of the Visible Diiodine Transition Upon Halogen Bonding to Pyridines 436
 7.10.1 Introduction 436
 7.10.2 Reagents and Equipment 437
 7.10.3 Experiment 437
 7.10.4 Results and Discussion: Substituent Effects 438

7.11 Mass Spectrometric Determination of the Gas-Phase Lithium Cation Basicity of Dimethyl Sulfoxide and Methyl Phenyl Sulfoxide by the Kinetic Method 439
 7.11.1 The Kinetic Method 439
 7.11.2 Reagents and Equipment 440
 7.11.3 Experiment 441
 7.11.4 Data Treatment 442
 7.11.5 Discussion: Substituent Effects 444

References 445

Index 447