CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xvii</td>
</tr>
<tr>
<td>Foreword</td>
<td>xix</td>
</tr>
<tr>
<td>Preface</td>
<td>xxiii</td>
</tr>
<tr>
<td>Contributors</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1. Introduction: The Concept of Biomimicry and Bioinspiration in Chemistry

Timothy W. Hanks and Gerhard F. Swiegers

1.1 What is Biomimicry and Bioinspiration? | 1 |
1.2 Why Seek Inspiration from, or Replicate Biology? | 3 |
 1.2.1 Biomimicry and Bioinspiration as a Means of Learning from Nature and Reverse-Engineering from Nature | 3 |
 1.2.2 Biomimicry and Bioinspiration as a Test of Our Understanding of Nature | 4 |
 1.2.3 Going Beyond Biomimicry and Bioinspiration | 4 |
1.3 Other Monikers: Bioutilization, Bioextraction, Bioderivation, and Bionics | 5 |
1.4 Biomimicry and Sustainability | 5 |
1.5 Biomimicry and Nanostructure | 7 |
1.6 Bioinspiration and Structural Hierarchies | 9 |
1.7 Bioinspiration and Self-Assembly | 11 |
1.8 Bioinspiration and Function | 12 |
1.9 Future Perspectives: Drawing Inspiration from the Complex System that is Nature | 13 |
References | 14 |
2. Bioinspired Self-Assembly I: Self-Assembled Structures
Leonard F. Lindoy, Christopher Richardson, and Jack K. Clegg

2.1 Introduction

2.2 Molecular Clefts, Capsules, and Cages
 2.2.1 Organic Cage Systems
 2.2.2 Metallosupramolecular Cage Systems

2.3 Enzyme Mimics and Models: The Example of Carbonic Anhydrase

2.4 Self-Assembled Liposome-Like Systems

2.5 Ion Channel Mimics

2.6 Base-Pairing Structures

2.7 DNA–RNA Structures

2.8 Bioinspired Frameworks

2.9 Conclusion

References

Gianfranco Ercolani and Luca Schiaffino

3.1 Introduction

3.2 Statistical Factors in Self-Assembly

3.3 Allosteric Cooperativity

3.4 Effective Molarity

3.5 Chelate Cooperativity

3.6 Interannular Cooperativity

3.7 Stability of an Assembly

3.8 Conclusion

References

4. Bioinspired Molecular Machines
Christopher R. Benson, Andrew I. Share, and Amar H. Flood

4.1 Introduction

 4.1.1 Inspirational Antecedents: Biology, Engineering, and Chemistry
4.1.2 Chemical Integration 75
4.1.3 Chapter Overview 77

4.2 Mechanical Effects in Biological Machines 78
4.2.1 Skeletal Muscle’s Structure and Function 78
4.2.2 Kinesin 79
4.2.3 F1-ATP Synthase 80
4.2.4 Common Features of Biological Machines 82
4.2.5 Variation in Biomotors 83
4.2.6 Descriptions and Analogies of Molecular Machines 83

4.3 Theoretical Considerations: Flashing Ratchets 83

4.4 Sliding Machines 86
4.4.1 Linear Machines: Rotaxanes 86
4.4.2 Mechanistic Insights: Ex Situ and In Situ (Maxwell’s Demon) 89
4.4.3 Bioinspiration in Rotaxanes 93
4.4.4 Molecular Muscles as Length Changes 93

4.5 Rotary Motors 102
4.5.1 Interlocked Rotary Machines: Catenanes 103
4.5.2 Unimolecular Rotating Machines 104

4.6 Moving Larger Scale Objects 104

4.7 Walking Machines 106

4.8 Ingenious Machines 109
4.8.1 Molecular Machines Inspired by Macroscopic Ones: Scissors and Elevators 109
4.8.2 Artificial Motility at the Nanoscale 109
4.8.3 Moving Molecules Across Surfaces 110

4.9 Using Synthetic Bioinspired Machines in Biology 111

4.10 Perspective 111
4.10.1 Lessons and Departures from Biological Molecular Machines 114
4.10.2 The Next Steps in Bioinspired Molecular Machinery 115

4.11 Conclusion 116

References 116

Pilar Aranda, Francisco M. Fernandes, Bernd Wicklein, Eduardo Ruiz-Hitzky, Jonathan P. Hill, and Katsuhiko Ariga

5.1 Introduction

5.2 Silicate-Based Bionanocomposites as Bioinspired Systems

5.3 Bionanocomposite Foams

5.4 Biomimetic Membranes

5.4.1 Phospholipid–Clay Membranes

5.4.2 Polysaccharide–Clay Bionanocomposites as Support for Viruses

5.5 Hierarchically Layered Composites

5.5.1 Layer-by-Layer Assembly of Composite-Cell Model

5.5.2 Hierarchically Organized Nanocomposites for Sensor and Drug Delivery

5.6 Conclusion

References

Fabio Nudelman and Nico A. J. M. Sommerdijk

6.1 Inspiration from Nature

6.2 Learning from Nature

6.3 Applying Lessons from Nature: Synthesis of Biomimetic and Bioinspired Materials

6.3.1 Biomimetic Bone Materials

6.3.2 Semiconductors, Nanoparticles, and Nanowires

6.3.3 Biomimetic Strategies for Silica-Based Materials

6.4 Conclusion

References

7. Bioinspired Catalysis

Gerhard F. Swiegers, Jun Chen, and Pawel Wagner

7.1 Introduction
7.2 A General Description of the Operation of Catalysts

7.3 A Brief History of Our Understanding of the Operation of Enzymes

7.3.1 Early Proposals: Lock-and-Key Theory, Strain Theory, and Induced Fit Theory

7.3.2 The Critical Role of Molecular Recognition in Enzymatic Catalysis: Pauling’s Concept of Transition State Complementarity

7.3.3 The Critical Role of Approach Trajectories in Enzymatic Catalysis: Orbital Steering, Near Attack Conformers, the Proximity Effect, and Entropy Traps

7.3.4 The Critical Role of Conformational Motion in Enzymatic Catalysis: Coupled Protein Motions

7.3.5 Enzymes as Molecular Machines: Dynamic Mechanical Devices and the Entatic State

7.3.6 The Fundamental Origin of Machine-like Actions: Mechanical Catalysis

7.4 Representative Studies of Bioinspired/Biomimetic Catalysts

7.4.1 Important General Characteristics of Enzymes as a Class of Catalyst

7.4.2 Bioinspired/Biomimetic Catalysts that Illustrate the Critical Importance of Reactant Approach Trajectories

7.4.3 Bioinspired/Biomimetic Catalysts that Demonstrate the Importance and Limitations of Molecular Recognition

7.4.4 Bioinspired/Biomimetic Catalysts that Operate Like a Mechanical Device

7.5 The Relationship Between Enzymatic Catalysis and Nonbiological Homogeneous and Heterogeneous Catalysis

7.6 Selected High-Performance NonBiological Catalysts that Exploit Nature’s Catalytic Principles

7.6.1 Adapting Model Species of Enzymes to Facilitate Machine-like Catalysis

7.6.2 Statistical Proximity Catalysts
CONTENTS

7.7 Conclusion: The Prospects for Harnessing Nature’s Catalytic Principles 203
References 204

8. Biomimetic Amphiphiles and Vesicles 209
Sabine Himmelein and Bart Jan Ravoo
8.1 Introduction 209
8.2 Synthetic Amphiphiles as Building Blocks for Biomimetic Vesicles 210
8.3 Vesicle Fusion Induced by Molecular Recognition 216
8.4 Stimuli-Responsive Shape Control of Vesicles 224
8.5 Transmembrane Signaling and Chemical Nanoreactors 231
8.6 Toward Higher Complexity: Vesicles with Subcompartments 239
8.7 Conclusion 245
References 246

9. Bioinspired Surfaces I: Gecko-Foot Mimetic Adhesion 251
Liangti Qu, Yan Li, and Liming Dai
9.1 The Hierarchical Structure of Gecko Feet 251
9.2 Origin of Adhesion in Gecko Setae 252
9.3 Structural Requirements for Synthetic Dry Adhesives 253
9.4 Fabrication of Synthetic Dry Adhesives 254
9.4.1 Polymer-Based Dry Adhesives 254
9.4.2 Carbon-Nanotube-Based Dry Adhesives 278
9.5 Outlook 284
References 286

10. Bioinspired Surfaces II: Bioinspired Photonic Materials 293
Cun Zhu and Zhong-Ze Gu
10.1 Structural Color in Nature: From Phenomena to Origin 293
10.2 Bioinspired Photonic Materials 296
10.2.1 The Fabrication of Photonic Materials 297
10.2.2 The Design and Application of Photonic Materials 298
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Conclusion and Outlook</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>319</td>
</tr>
<tr>
<td>11.</td>
<td>Biomimetic Principles in Macromolecular Science</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>Wolfgang H. Binder, Marlen Schunack, Florian Herbst, and Bhanuprathap Pulamagatta</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>323</td>
</tr>
<tr>
<td>11.2</td>
<td>Polymer Synthesis Versus Biopolymer Synthesis</td>
<td>325</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Features of Polymer Synthesis</td>
<td>325</td>
</tr>
<tr>
<td>11.2.2</td>
<td>“Living” Chain Growth</td>
<td>326</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Aspects of Chain Length Distribution in Synthetic Polymers: Sequence Specificity and Templating</td>
<td>328</td>
</tr>
<tr>
<td>11.3</td>
<td>Biomimetic Structural Features in Synthetic Polymers</td>
<td>330</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Helically Organized Polymers</td>
<td>330</td>
</tr>
<tr>
<td>11.3.2</td>
<td>β-Sheets</td>
<td>333</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Supramolecular Polymers</td>
<td>334</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Self-Assembly of Block Copolymers</td>
<td>337</td>
</tr>
<tr>
<td>11.4</td>
<td>Movement in Polymers</td>
<td>343</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Polymer Gels and Networks as Chemical Motors</td>
<td>343</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Polymer Brushes and Lubrication</td>
<td>346</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Shape-Memory Polymers</td>
<td>349</td>
</tr>
<tr>
<td>11.5</td>
<td>Antibody-Like Binding and Enzyme-Like Catalysis in Polymeric Networks</td>
<td>352</td>
</tr>
<tr>
<td>11.6</td>
<td>Self-Healing Polymers</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>362</td>
</tr>
<tr>
<td>12.</td>
<td>Biomimetic Cavities and Bioinspired Receptors</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Stéphane Le Gac, Ivan Jabin, and Olivia Reinaud</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>367</td>
</tr>
<tr>
<td>12.2</td>
<td>Mimics of the Michaelis–Menten Complexes of Zinc(II) Enzymes with Polyimidazolyl Calixarene-Based Ligands</td>
<td>368</td>
</tr>
<tr>
<td>12.2.1</td>
<td>A Bis-aqua Zn(II) Complex Modeling the Active Site of Carbonic Anhydrase</td>
<td>369</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Structural Key Features of the Zn(II) Funnel Complexes</td>
<td>371</td>
</tr>
</tbody>
</table>
12.2.3 Hosting Properties of the Zn(II) Funnel Complexes: Highly Selective Receptors for Neutral Molecules 372
12.2.4 Induced Fit: Recognition Processes Benefit from Flexibility 373
12.2.5 Multipoint Recognition 374
12.2.6 Implementation of an Acid–Base Switch for Guest Binding 375

12.3 Combining a Hydrophobic Cavity and A Tren-Based Unit: Design of Tunable, Versatile, but Highly Selective Receptors 377
12.3.1 Tren-Based Calix[6]arene Receptors 377
12.3.2 Versatility of a Polyamine Site 378
12.3.3 Polyamido and Polyureido Sites for Synergistic Binding of Dipolar Molecules and Anions 380
12.3.4 Acid–Base Controllable Receptors 383

12.4 Self-Assembled Cavities 383
12.4.1 Receptors Decorated with a Triscationic or a Trisalanion Binding Site 384
12.4.2 Receptors Capped Through Assembly with a Tripodal Subunit 387
12.4.3 Heteroditopic Self-Assembled Receptors with Allosteric Response 388
12.4.4 Interlocked Self-Assembled Receptors 389

12.5 Conclusion 391
References 392

Andrea M. Della Pelle and Sankaran Thayumanavan

13.1 Introduction 397
13.2 Dendrimer Architectures 399
13.2.1 Dendrimer as a Chromophore 399
13.2.2 Dendrimer as a Scaffold 401
13.3 Electronic Processes in Light-Harvesting Dendrimers 403
13.3.1 Energy Transfer in Dendrimers 403
13.3.2 Charge Transfer in Dendrimers 405
13.4 Light-Harvesting Dendrimers in Clean Energy Technologies 407
13.5 Conclusion 413
References 414

14. Biomimicry in Organic Synthesis 419
Reinhard W. Hoffmann

14.1 Introduction 419

14.2 Biomimetic Synthesis of Natural Products 420
14.2.1 Potentially Biomimetic Synthesis 423

14.3 Biomimetic Reactions in Organic Synthesis 437

14.4 Biomimetic Considerations as an Aid in Structural Assignment 447

14.5 Reflections on Biomimicry in Organic Synthesis 448
References 450

15. Conclusion and Future Perspectives: Drawing Inspiration from the Complex System that Is Nature 455
Clyde W. Cady, David M. Robinson, Paul F. Smith, and Gerhard F. Swiegers

15.1 Introduction: Nature as a Complex System 455

15.2 Common Features of Complex Systems and the Aims of Systems Chemistry 457

15.3 Examples of Research in Systems Chemistry 460
15.3.1 Self-Replication, Amplification, and Feedback 460
15.3.2 Emergence, Evolution, and the Origin of Life 464
15.3.3 Autonomy and Autonomous Agents: Examples of Equilibrium and Nonequilibrium Systems 465

15.4 Conclusion: Systems Chemistry may have Implications in Other Fields 468
References 470

Index 473