CONTENTS

Preface xiii

Notation xv

Table of cases: Trials used as examples in more than one chapter in the book xviii

1 Introduction 1

1.1 Introduction to randomised trials 2

1.2 Explanatory or pragmatic trials 2

1.3 How does a cluster randomised trial differ from other trials? 3

1.3.1 Recruitment, randomisation and consent 4

1.3.2 Definition of cluster size 7

1.3.3 Analysis and sample size 7

1.3.4 Interventions used in cluster randomised trials 8

1.4 Between-cluster variability 9

1.4.1 Factors that contribute to between-cluster variability 9

1.4.1.1 Geographical reasons 9

1.4.1.2 Individuals choose the cluster to belong to 9

1.4.1.3 Healthcare provided to the cluster 9

1.4.2 Measuring between-cluster variability 9

1.5 Why carry out cluster randomised trials? 10

1.5.1 The intervention necessarily acts at the cluster level 10

1.5.2 Practical and/or ethical difficulties in randomising at individual level 10

1.5.3 Contamination at health professional level 11

1.5.4 Contamination between members of a cluster 12

1.5.5 Cost or administrative convenience 12

1.5.6 Ensuring intervention is fully implemented 12

1.5.7 Access to routine data 13

1.6 Quality of evidence from cluster randomised trials 13
Contents

5.1.3 Choosing factors to balance in designs that are not completely randomised
5.1.4 Stratified designs
5.1.5 Stratified random sampling within clusters
5.1.6 Minimisation
5.1.7 Other techniques for balancing factors between trial arms
5.1.8 Blocking
5.1.9 Matched-pair designs
5.1.10 Unequal allocation to intervention arms
5.2 Cohort versus cross-sectional designs
5.3 Parallel designs with more than two arms
5.3.1 Introduction
5.3.2 Trials with one more arm than there are active interventions
5.3.3 Full factorial designs
5.3.4 Randomisation at cluster and individual level
5.4 Crossover designs
5.5 Further design considerations
5.5.1 Pseudo cluster randomisation
5.5.2 Stepped wedge designs
5.5.3 Equivalence and non-inferiority trials
5.5.4 Delayed intervention
5.6 Summary

References

Analysis

6.1 Data collection and management
6.2 Analysis – an introduction
6.2.1 Comparing analyses that do and do not take account of clustering
6.2.2 The intra-cluster correlation coefficient
6.3 Analyses for two-arm, completely randomised, stratified or minimised designs
6.3.1 Analyses that do not allow the inclusion of covariates
6.3.2 Analysis allowing for the inclusion of covariates at the cluster level only
6.3.3 Analyses allowing for the inclusion of covariates at individual and cluster level
6.3.3.1 Introduction to different models
6.3.3.2 Continuous outcomes – population-averaged and cluster-specific models
6.3.3.3 Continuous outcomes – generalised estimating equations
6.3.3.4 Continuous outcomes – mixed effects models
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3.5</td>
<td>Continuous outcomes – other methods of analysis</td>
<td>116</td>
</tr>
<tr>
<td>6.3.3.6</td>
<td>Continuous outcomes – comparison of methods</td>
<td>116</td>
</tr>
<tr>
<td>6.3.3.7</td>
<td>Binary outcomes – population-averaged and cluster-specific models</td>
<td>117</td>
</tr>
<tr>
<td>6.3.3.8</td>
<td>Binary outcomes – generalised estimating equations</td>
<td>119</td>
</tr>
<tr>
<td>6.3.3.9</td>
<td>Binary outcomes – mixed effects models</td>
<td>120</td>
</tr>
<tr>
<td>6.3.3.10</td>
<td>Binary outcomes – other methods of analysis</td>
<td>122</td>
</tr>
<tr>
<td>6.3.3.11</td>
<td>Binary outcomes – comparison of methods</td>
<td>122</td>
</tr>
<tr>
<td>6.3.3.12</td>
<td>Count outcomes</td>
<td>122</td>
</tr>
<tr>
<td>6.3.3.13</td>
<td>Time-to-event outcomes</td>
<td>124</td>
</tr>
<tr>
<td>6.4</td>
<td>Analyses for other designs</td>
<td>124</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Matched designs</td>
<td>124</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Parallel trials with more than two arms</td>
<td>125</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Crossover, stepped wedge and pseudo cluster randomised designs</td>
<td>128</td>
</tr>
<tr>
<td>6.5</td>
<td>Intention to treat and missing values</td>
<td>129</td>
</tr>
<tr>
<td>6.6</td>
<td>Analysis planning</td>
<td>131</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary</td>
<td>132</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>133</td>
</tr>
</tbody>
</table>

7 Sample size calculations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Factors affecting sample size for cluster randomised designs</td>
<td>138</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Measuring between-cluster variation in an outcome variable</td>
<td>138</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Definition of cluster size</td>
<td>139</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Variability in cluster size</td>
<td>140</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Clinically important difference</td>
<td>140</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Sample size formulae for individually randomised trials</td>
<td>141</td>
</tr>
<tr>
<td>7.2</td>
<td>Calculating sample size using the intra-cluster correlation coefficient</td>
<td>142</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Increasing the number of clusters to allow for a clustered design</td>
<td>142</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Increasing cluster size to allow for a clustered design</td>
<td>143</td>
</tr>
<tr>
<td>7.3</td>
<td>Sample size calculations for rates</td>
<td>145</td>
</tr>
<tr>
<td>7.4</td>
<td>Restricted number of clusters</td>
<td>146</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Administrative reasons</td>
<td>146</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Few clusters are available</td>
<td>147</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Cost or other practical difficulties of delivering the intervention</td>
<td>147</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Minimum number of clusters required</td>
<td>148</td>
</tr>
<tr>
<td>7.5</td>
<td>Trials with a small number of clusters</td>
<td>149</td>
</tr>
</tbody>
</table>
CONTENTS

7.5.1 Adjustment to sample size calculations when number of clusters is small 149
7.5.2 Balance between the arms in cluster characteristics 149
7.5.3 Loss of intact clusters 150

7.6 Variability in cluster size
7.6.1 Using coefficient of variation in cluster size for estimating sample size 151
7.6.2 Estimating coefficient of variation in cluster size 152
7.6.3 Small clusters arising from incident cases 152
7.6.4 Variable cluster size for rates 154

7.7 Comparison of different measures of between-cluster variability
7.7.1 Estimating sample size using between-cluster variance 154
7.7.2 Estimating sample size using between-cluster coefficient of variation in outcome 156
7.7.3 Comparison of measures of between-cluster variability for means 156
7.7.4 Comparison of measures of between-cluster variability for proportions 157

7.8 Matched and stratified designs
7.8.1 Matched and stratified designs comparing means 161
7.8.2 Matched and stratified designs comparing proportions 161
7.8.3 Matching correlation 162
7.8.4 Strength of relationship between stratification factors and outcomes 163
7.8.5 Cluster size as a stratification factor in primary care 163
7.8.6 Summary of the effect of stratification on power 165

7.9 Sample size for other designs
7.9.1 Unequal numbers in each arm 166
7.9.2 Block randomisation 166
7.9.3 Minimisation 166
7.9.4 Cohort versus cross-sectional studies 166
7.9.5 More than two intervention arms 167
7.9.6 Factorial designs 168
7.9.7 Crossover trials 169

7.10 Summary

References 169

8 The intra-cluster correlation coefficient 172
8.1 What is the ICC? 173
8.1.1 Proportion of variance interpretation 173
8.1.2 Pair-wise correlation interpretation 174
8.1.3 Relationship between proportion of variance and pair-wise correlation interpretations 174
8.1.4 Kappa interpretation 174
8.1.5 Interpretation in cluster randomised trials 175
8.2 Sources of ICC estimates 175
 8.2.1 ICC estimates from trial reports 175
 8.2.2 ICC estimates from lists 176
 8.2.3 Patterns in ICCs 178
8.3 Choosing the ICC for use in sample size calculations 179
 8.3.1 Single ICC estimate from an existing source 180
 8.3.2 Single ICC estimate from pilot study 180
 8.3.3 Single ICC estimate based on patterns in ICCs 182
 8.3.4 Using more than one ICC estimate from existing sources 182
 8.3.5 Baseline or interim sample size calculations 183
 8.3.6 Comparing different methods 184
 8.3.7 Sensitivity analyses 185
8.4 Calculating ICC values 185
 8.4.1 Analysis of variance 186
 8.4.2 Pearson product-moment correlation coefficient 187
 8.4.3 Mixed effects models 189
 8.4.4 Generalised estimating equations 191
 8.4.5 Negative ICCs 191
8.5 Uncertainty in ICCs 192
8.6 Summary 193
References 193

9 Other topics 196
Richard Grieve

 9.1 Systematic reviews 197
 9.1.1 Inclusion criteria 197
 9.1.2 Quality 198
 9.1.3 Heterogeneity 200
 9.1.4 Meta-analyses—incorporating cluster randomised trials using the design effect 203
 9.1.5 Other methods of incorporating cluster randomised trials in meta-analyses 206
 9.1.6 Incorporating stratified and matched trials into a meta-analysis 206
 9.1.7 Reporting systematic reviews 207
 9.2 Cost effectiveness analyses 207
 9.2.1 Cost effectiveness analyses and cluster randomised trials 208
 9.2.2 Appropriate methods for cost effectiveness analyses of cluster randomised trials 210
 9.2.2.1 Bivariate multilevel models 210
 9.2.2.2 Two-stage bootstrap 210
 9.2.2.3 Robust variance methods 211
 9.2.3 Current state of knowledge and areas for future research 211
 9.3 Process evaluation 212
9.4 Monitoring 213
9.5 Summary 215
References 215

10 Trial reporting 218
10.1 Trial quality and reporting quality 218
 10.1.1 Checklists for assessing the quality of cluster randomised trials 219
 10.1.2 CONSORT statement for reporting trials 221
 10.1.3 Extension to the CONSORT statement for cluster randomised trials 227
 10.1.4 Other extensions to the CONSORT statement 227
10.2 Steps to improve trial reporting in the early stages of the trial 227
 10.2.1 Trial registration 227
 10.2.2 Publication of trial protocol 230
10.3 Reporting randomised trials in journal and conference abstracts 230
10.4 Application of CONSORT statement to cluster randomised trials 232
 10.4.1 Item 1a: Information in title 232
 10.4.2 Item 2: Background information 234
 10.4.3 Item 3: Trial design 237
 10.4.4 Item 4: Description of participants 239
 10.4.5 Item 5: Description of interventions 239
 10.4.6 Item 6: Outcomes 241
 10.4.7 Item 7: Sample size and interim analyses 243
 10.4.8 Item 8: Generation of random allocation sequence 244
 10.4.9 Item 9: Allocation concealment 245
 10.4.10 Item 10: Who generated allocation sequence, enrolled participants and assigned participants to their groups 245
 10.4.11 Item 11: Blinding 247
 10.4.12 Item 12: Statistical methods 248
 10.4.13 Item 13: Participant flow 249
 10.4.14 Item 14: Recruitment 252
 10.4.15 Item 15: Baseline data 255
 10.4.16 Item 16: Numbers analysed 257
 10.4.17 Item 17: Outcomes and estimation 257
 10.4.18 Item 18: Ancillary analyses 258
 10.4.19 Item 19: Adverse events 259
 10.4.20 Item 20: Limitations 260
 10.4.21 Item 21: Generalisability 261
 10.4.22 Item 22: Interpretation 261
 10.4.23 Other information 262
10.5 Summary 262
References 263

Index 267