Index

α-D-GalNAc transferases 36–8, 45
α-D-Manp 362, 366
ab initio methods 360, 364–5, 372
adibatic maps 343, 371–2
advanced glycation end-products (AGEs) 183
AFM see atomic force microscopy
AGEs see advanced glycation end-products
AMBER 344, 369, 375, 378, 381
amino acids
glycosylation 153–7, 169–70
protein–carbohydrate interactions 435–44
animal-specific lectins 417, 418–22
anion exchange HPLC 211–12
ANNs see artificial neural networks
antigens
carbohydrate-active enzymes 101
carbohydrates 41
glycosylation 163
lectins 422
nuclear magnetic resonance 314–15
API see Application Programming Interfaces
Application Programming Interfaces (API) 127
aroatic amino acids 153–4
artificial neural networks (ANNs)
data processing 326–9
NeuroCarb 325–31
nuclear magnetic resonance 321–34
performance 333
prediction of glycosylation sites 164–5
supervised learning 322–5
test phase 329–30
training and validation phase 329
unsupervised learning 322–6
work phase 331
atomic force microscopy (AFM) 346
β-D-Galp 437–8, 443
β-elimination of GAGs 272–3
back-propagation algorithm 324–5
bacterial
lectins 418
monosaccharides 30
oligosaccharides 76–7
polysaccharides 40–1, 296
Bacterial Carbohydrate Structure Database
(BCSDB) 50–1, 55–6, 66
BCSDB see Bacterial Carbohydrate Structure Database
big-PI 182
BIOPSEL program 315
BLAST-based analysis 95–6, 120, 126
BLASTN searches 8
BRENDA database 120, 122
C-mannosylation 144, 171, 182–3
C-type lectins 417, 419–20, 423, 425
CabosML 50–1, 59–61
calnexin (CNX) 146–8, 415, 419
calreticulin (CRT) 146–7, 415
Cambridge Structural Database (CSDB)
337, 390
capillary electrophoresis (CE) 205–6, 210–11, 213, 281–3
CarbBank 14–16, 50–1, 52–4, 299
carbohydrate esterases (CEs) 93
carbohydrate-active enzymes 91–118
abstract/symbolic representations 128
artificial neural networks 164–5
bioinformatics 94–6, 125–41
BLAST-based analysis 95–6, 120
BRENDA database 120, 122
C-mannosylation 171, 182–3
CAZy database 91–118, 120
classifications 92–4, 97–101
co-occurrence scores 135
Composite Maps 127–34, 138–40
carbohydrate-active (Contd.)
data collection 168–70
data mining 136–7
data-driven prediction methods 164–8
EC classification 93–4, 97
evaluation strategies 165–8
existing predictors 173–80, 182–3, 185
ExPASy ENZYME database 120, 122
family comparisons 101–14
FASTA-based analysis 120
genomics 137–8
glycation 170, 183–5
GlycoEnzyme 120–1
GlycoGene database 119–20
glycosylation 143–62, 163–92
glycosyltransferases 91–2, 97–115, 134–6,
139–40
GlySeq 151–9
GPI anchors 171, 180–2
KEGG database 119–20
KEGG GLYCAN 125–41
linkage-specific glycosylation 170–83
Markov models 136–7, 164
microarray analysis 136
Microarray Data 120–1
NCBI databases 120, 122
Protein Databank 120, 123
proteoglycans 150, 178–80
reaction libraries 134–5
sequence logos 169–70, 172–3, 175–7,
179–85
sequence motifs 172, 174–5, 177, 179–80,
182, 184
sequence/structure classification 99–101
stereochemical outcome 98–9, 102–14
structure prediction 134–6
Swiss-Prot/TrEMBL 120–1
carbohydrate-binding molecules (CBMs) 93,
95, 101
carbohydrates
abstract/symbolic representations 49–50,
61–2
analytical complications 9–11
binding sites 422–3
bioinformatics 7–9, 195–201
biological roles 70–1, 72–3
biosynthetic pathways 5–7, 33, 76–8
composition 31–3
conformational analysis 337–57, 359–88,
389–412
databases 13–17, 33–4
descriptors and tools 61–4
digital representations 49–68, 80–2
disaccharide pairings 34
disease profile 13
drug and vaccine development 12–13
empirical structural classifications 34–44
evolution 78–9
experimental methods 195–201
extensible markup approaches 50–1,
58–61, 66
future developments 64–7, 80–2
glycolipids 38–9
glycomic mass spectrometry 257–68
high performance liquid chromatography
203–21
host defense mechanisms 74–6
host–pathogen interface 69–71, 74–8
lectins 415–31
life sciences research 3–4
linkage topologies 34
motifs 42–4
naturally occurring 28–30
nomenclature 24, 25–8
nuclear magnetic resonance 295–309, 311–12
pharmaceutical research 11–13
protein interactions 10
protein–carbohydrate interactions 415–31,
433–45
sequence formats 50–61
sialic acids 69–88
small molecule descriptors 62–4
species distribution 74
stereocodes 63–4
storage capabilities 50–1
structural heterogeneity 10
structure and diversity 23–47, 72–5
substituents 27–8
topological descriptors 51–2
see also glycoproteins; monosaccharides;
N-glycans; O-glycans;
oligosaccharides; polysaccharides
Cartoonist 245, 249
CASPERS program 301, 311–20, 344
CAT see Conformational Analysis Tools
Catalogue Library 246
CAZy database 91–118, 120
bioinformatics 94–6
BLAST-based analysis 95–6
classifications 92–4, 97–101
EC classification 93–4, 97
family comparisons 101–14
Index

glycosyltransferases 91–2, 97–115
sequence/structure classification 99–101
stereochemical outcome 98–9, 102–14
CBMs see carbohydrate-binding molecules
CCA see conformational clustering analysis
CCSD see Complex Carbohydrate Structure Database
CDGs see congenital disorders of glycosylation
CE see capillary electrophoresis
CEL-III 421
cell–ECM interactions 269–70
ceramide 38–9
CEs see carbohydrate esterases
CFG see Consortium for Functional Glycomics
channels in conformational space analyzed by driver approach (CICADA) 345, 373
CHARMM-type force fields 343–4, 375
ChemDraw 126
Chemical Function database 50–1, 57–9, 127
chemically induced dynamic nuclear polarization (CIDNP) 346
chondroitin polymerase 101
chondroitin sulfate 42, 178, 271, 278–9
CICADA 345, 373
CIDNP see chemically induced dynamic nuclear polarization
CNX see calnexin
cocurrence scores 135
coarse-grain force fields 382
Complex Carbohydrate Structure Database (CCSD) 14–16, 50–1, 52–4, 299
Composite Maps 127–34, 138–40
Composite Reaction Maps (CRM) 127–32, 138
Composite Structure Maps (CSM) 129–34, 138–40
compositional analysis tools 240–4
conformational analysis accessible conformational space 370–9
comparisons with theoretical data 401–7
databases 390–402
distance mapping 390, 406
exo-anomeric effects 342–3, 360, 363–5, 367
exocyclic groups 368–70, 393–5
glycoproteins 344–6, 379–82, 391
glycosidic linkages 339–40, 344, 363–8, 370, 378, 390, 395–400, 403
glycosylation 346, 379, 391–3
H–H distances 404–6
hydrogen bonding 368–70, 376–8
Karplus equations 390
Metropolis Monte Carlo simulations 372–4, 404
molecular dynamics 370, 372–3, 374–9, 404–5
monosaccharides 337, 339, 346, 361–3, 365, 395–7
oligosaccharides 337, 343–6, 360, 363, 368, 373, 377, 402–3
pioneering work 339–42
polysaccharides 337–8, 339–42, 358
predictive methods 359–88
torsion angles 403–4
Conformational Analysis Tools (CAT) 372
conformational clustering analysis (CCA) 373
conformational ensembles 361
congenital disorders of glycosylation (CDGs) 13, 140, 146–7
Consortium for Functional Glycomics (CFG) 11, 61–2, 120–1
carbohydrate-active enzymes 132
glycomic mass spectrometry 244
glycosaminoglycans 283
corporate identity 4
CRM see Composite Reaction Maps
cross-relaxation experiments 404–6
cross-validation 165–6
CRT see calreticulin
CSEARCH 297
CSM see Composite Structure Maps
cyclic graphs 49
cycloamylases 337
cyclodextrins 337
cytoplasmic proteins 177–8
data quality 200
data-driven prediction methods 164–8
deglycosylated glycopeptides 238–9
3-deoxy-D-arabino-heptulosonate-7-phosphate 79
dermatan sulfate 42, 178, 271
DictyOGlyc 177
digraphs 49
disaccharide pairings 34
distance mapping 390, 406
DKFZ see German Cancer Research Center
DNA sequences 23–4
EC see Enzyme Classification
electron capture dissociation (ECD) 238
electrospray ionization–mass spectrometry (ESI–MS) 228–9, 235–6, 250, 276–7
deglycosidases 81
endoplasmic reticulum (ER) 5, 7
 carbohydrates 35, 37
 glycosylation 145–50, 177, 180
 lectins 416
enzymatic digestion 199–200
enzymatic sequencing 230, 234
Enzyme Classification (EC) system 93–4, 97
ENZYME database 120, 122
Enzymes and Metabolic Pathways database 96
EPO see erythropoietin
ER see endoplasmic reticulum
ERGIC-53 420–1, 424
erythropoietin (EPO) 13
ESI–MS see electrospray ionization–mass spectrometry
eukaryotes 176–7, 415–16
EUROCarbDB 15–17, 283
 see also Glyco-Peakfinder; GlycoWorkbench
exo-anomeric effects 342–3, 360, 363–5, 367
exocyclic groups 368–70, 393–5
exoglycosidases 207–10, 230, 234, 321
ExPaSy ENZYME database 120, 122
extensible markup (XML) 50–1, 58–61, 66
FAB see fast atom bombardment
Factor H 77
false negatives/positives 166–8
fast atom bombardment (FAB) 224
FASTA-based analysis 120
FEP see free energy perturbation
fibroblast growth factors (FGFs) 417, 421
fluorescence HPLC
 experimental methods 198
 glycomic mass spectrometry 231–4
 glycoproteins 206–7, 209–10
 sialic acids 81
Fourier transform (FT) mass spectrometry 235, 238
free energy perturbation (FEP) simulations 345
FT see Fourier transform
fungal lectins 416, 418, 425
GAG–protein interactions 286–7
GAGs see glycosaminoglycans
galactoses 416–17, 420, 425
GalNAc
 carbohydrate-active enzymes 144, 149, 151, 157
glycomic mass spectrometry 224, 240
glycosaminoglycans 279
linkage-specific glycosylation 174–6
GalNAc transfersases 36–8, 45
gas chromatography–mass spectrometry (GC–MS) 224
GEGOP 345, 373
gel electrophoresis 204–5, 229, 235, 237–9, 274–6
geometry of glycoproteins (GEGOP) 345, 373
GEP see group epitope mapping
German Cancer Research Center (DKFZ) 15, 54
GHS see glycoside hydrolases
GlcNAc
 conformational analysis 396–9, 402
 glycomic mass spectrometry 224, 240
 high performance liquid chromatography 204, 208–9
 linkage-specific glycosylation 173, 176–8, 185
 nuclear magnetic resonance 306
 protein–carbohydrate interactions 423, 426, 437–8
GlcNAc
 carbohydrate-active enzymes 144–50
 conformational analysis 362, 366, 378
 global minima 360
 glucans 40–1
 glucose units (gu) 215
 GlycanWeb 379
 Glycan Data Exchange see GLYDE II
GLYCAN database
 carbohydrate-active enzymes 125–41
 conformational analysis 400
 glycomic mass spectrometry 241, 244
 glycosaminoglycans 283
GlycanBuilder 262–3
glycans see carbohydrates; glycosaminoglycans;
 N-glycans; O-glycans
glycation 170, 183–5
GLYCH 246
Glyco-Peakfinder 257–62, 265–6
GlycoComp 240
GlycoCT 50–1, 65–6
GlycoEnzyme 120–1
glycoenzymes 4–9
glycoforms 144, 196
glycofragment mass fingerprinting (GMF) 248–9
GlycoGene database 8, 119–20
glycogenes 4–9
glycoglycerolipids 39
glycoinformatics 24
glycolipids
 carbohydrate-active enzymes 138
 conformational analysis 346
 structure and diversity 38–9
GlycomeDB 24, 30–1, 33–4
glycomic mass spectrometry 223–56
 compositional analysis 258–62, 265–6
 compositional analysis tools 240–4
 data handling/analysis 239–51
 derivatization 229–34
 downstream analysis of glycan release 227–34
 fragment annotation 260–8
 GlycanBuilder 262–3
 Glyco-Peakfinder 257–62, 265–6
 glycopeptides 227, 237–9
 glycoproteomics 224, 234–5
 GlycoWorkbench 257–8, 260–8
 in silico fragmentation 263–4
 linkage analysis 249–51
 monosaccharides 228, 240–1, 249
 oligosaccharides 224, 226, 227–36, 240
 parallel approach 239
 peak annotation 265
 sample preparation 224–7
 semi-automatic interpretation 257–68
 sequence analysis 244–9
 validation 250–1
GlycoMod 240, 245
glycopeptides 227, 237–9
glycoproteins
 conformational analysis 344–6, 379–82, 391
 intracellular trafficking 415–16
 protein folding 145–8
 protein sequences 23–4
 protein–carbohydrate interactions 415–31
 structure and diversity 35–8
glycoproteomics 224, 234–5
glycosaminoglycans (GAGs) 11–12
analytical methods 274–8
bioinformatics 278–86
biological function 269–70
carbohydrate-active enzymes 149–50
chemical modification 272–3
composition/mass profiles 285
databases 283–6
depolymerization/modification 272–4
enzymatic characterization 273–4, 275
future developments 286–7
linkage-specific glycosylation 178–9
property-encoded nomenclature 276, 278–83
sequence motifs 285–6
sequencing 278–86
structural characterization 270–2
structure 40, 42, 270
structure–function relationships 269–94
GLYCOSCIENCES.de 15
 conformational analysis 371, 379–80, 396
 glycomic mass spectrometry 244–5, 260
 glycosylation 151–9
 nuclear magnetic resonance 301–6
 sequence formats 54–5, 66
SWEET/SWEET-II 345, 406
glycoside hydrolases (GHs) 92, 98–101, 113–14
glycosphingolipids 38–9
glycosylation 5–7
 amino acids 153–7, 169–70
 artificial neural networks 164–5
 biological relevance 143–4
 C-mannosylation 144, 171, 182–3
 carbohydrate-active enzymes 143–62, 163–92
 conformational analysis 346, 379, 391–3
 congenital disorders 140, 146–7
 data collection 168–70
 data-driven prediction methods 164–8
 evaluation strategies 165–8
 existing predictors 173–80, 182–3, 185
 functions of O-glycans 150
 glycation 170, 183–5
 glycomic mass spectrometry 223–4, 227, 236, 239
GlySeq 151–9
GPI anchors 171, 180–2
high performance liquid chromatography 203–4
linkage-specific 170–83, 185
Markov models 164
nuclear magnetic resonance 312–14,
 316–17, 321
prediction methods 163–92
protein folding 145–8
proteoglycans 150, 178–80
sequence dependence 151–9
sequence logos 169–70, 172–3, 175–7,
 179–85
sequence motifs 172, 174–5, 177, 179–80,
 182, 184
types 144
see also N-glycosylation; O-glycosylation
glycosylphosphatidylinositols (GPIs) 13, 39, 171, 180–2
glycosyltransferases (GTs)
biosynthetic pathways 5, 7–8
 carbohydrate-active enzymes 134–6, 139–40, 145, 170–1, 177
 carbohydrates 3
CAZy database 91–2, 97–115
 EC classification 97–9
 family comparisons 101–14
 glycomic mass spectrometry 228
 sequence/structure classification 99–101
 stereochemical outcome 98–9, 102–14
GlycoWorkbench 257–8, 260–8
GLYDE-II 16–17, 50–1, 59–60, 66–7
GlyProt 379–80
GlySeq 151–9
GlyVicinity 434–44
GMF see glycofragment mass fingerprinting
Golgi apparatus 5
 carbohydrates 35, 37
 glycosylation 145–50
 lectins 416
GPI see glycosylphosphatidylinositols
GPI-SOM 182
GROMOS 344, 375
group epitope mapping (GEP) 346
GTs see glycosyltransferases
gu see glucose units
HA see human influenza virus
 hard-sphere exo-anomic (HSEA) program 342–3, 345, 371
Hassel–Ottar effect 340–1, 361
HCA see hydrophobic cluster analysis
HCGP-39 see human cartilage glycoprotein-39
heparan sulfate
 glycosylation 149–50, 178
 structure 42
 structure–function relationships 270–1, 276, 278–82
heparosan synthase 101
hepatocyte growth factor/scatter factor (HGF/SF) 417, 420
hidden Markov models (HMMs) 136–7, 164
Hierarchical Organization of Spherical Environments (HOSE) 297–8
high performance liquid chromatography (HPLC)
 capillary electrophoresis 205–6, 210–11, 213
 carbohydrates 81, 203–21
data analysis 213–16
 display options 215–16
 experimental methods 196–7, 198–200, 204–10
 glucose units 215
 glycan labeling 205–6, 207
 glycan profiling 206
 glycan quantification 206–7
 glycan release 204–5, 227–8, 231–4
 glycan sequencing 207–10
 glycosaminoglycans 277
 glycosylation 203–4
 reversed phase 213
 separation techniques 211–13
 high-pH anion exchange with pulsed amperometric detection (HPAEC-PAD) 212–13
 high-temperature molecular dynamics (HTMD) 372
 HMMs see hidden Markov models
 HOSE see Hierarchical Organization of Spherical Environments
 host–pathogen interface 69–70
 HPAEC-PAD see high-pH anion exchange with pulsed amperometric detection
 HPLC see high performance liquid chromatography
 HSEA see hard-sphere exo-anomic
 HTMD see high-temperature molecular dynamics
 human influenza virus (HA) 10–11
 hyaluronan 42
 hyaluronan synthase 101
 hyaluronic acid 271
 hydrazinolysis 81
 hydrogen bonding 368–70, 376–8
 hydrophobic cluster analysis (HCA) 94
 I-type lectins 417, 422
 InChI 63
 independent linkage approximation 368, 370
 infrared multiphoton dissociation (IRMPD) 235, 238
 International Union of Biochemistry and Molecular Biology (IUBMB) 51–2, 122
 International Union of Pure and Applied Chemistry (IUPAC)
 carbohydrates 50, 51–3, 55–6, 59
 conformational analysis 396
Index

High performance liquid chromatography 215–16
nomenclature 24, 25–8
nuclear magnetic resonance 299, 317–18
invertebrate lectins 417
IPSA see isolated spin-pair approximation
IRMPD see infrared multiphoton dissociation
isolated spin-pair approximation (IPSA) 405
IUBMB see International Union of Biochemistry and Molecular Biology
IUPAC see International Union of Pure and Applied Chemistry
Karplus equations 390, 403–4
KCaM 125–7, 129
KCF database 50–1, 57–9, 127
Kdr 79, 80
Kdo 78–9
KegDraw 126–7
KEGG see Kyoto Encyclopedia of Genes and Genomes
keratan sulfate 42, 271
2-keto-3-deoxy-D-manno-octulosonic acid 78–9
KO database 120, 125
Kohonen networks 325–6
Kohonen self-organizing maps 164
Kyoto Encyclopedia of Genes and Genomes (KEGG) 15–16
carbohydrate-active enzymes 119–20, 125–41
Chemical Function database 50–1, 57–9, 127
co-occurrence scores 135
Composite Maps 127–34, 138–40
data mining 136–7
GENES 134
genomics 137–8
GLYCAN database 125–41, 241, 244, 283, 400
glycosyltransferases 134–6
KCaM 125–7, 129
KegDraw 126–7
Markov models 136–7
microarray analysis 136
Orthology database 120, 125
PATHWAY database 5–7
reaction libraries 134–5
structure prediction 134–6
laser-induced desorption (LID) 261
LC–MS see liquid chromatography–mass spectrometry
lectins
animal-specific 417, 418–22
carbohydrate recognition 422–7
conformational analysis 363
divergent/covergent evolution 420–2
eukaryotes 415–16
fold types 418–22
glycoprotein targetting 415–16
glycosylation 145
plant-specific 416, 418–22, 424–6
prokaryotes 418
protein–carbohydrate interactions 415–31
quaternary structure and avidity 423–6
sialic acids 76–8
viruses 418
legionaminic acid 79
LID see laser-induced desorption
linear interaction energy (LIE) 346
Linear Notation for Unique Description of Carbohydrate Sequences (LINUCS) 50–1, 54, 395–6
LinearCode 50–1, 56–8
linkage analysis 249–51
linkage descriptors 299
linkage topologies 34
linkage-specific glycosylation 170–83, 185
LINUCS 50–1, 54, 395–6
lipooligosaccharides (LOS) 76–7
lipopolysaccharides (LPS) host–pathogen interface 76, 79
nuclear magnetic resonance 314, 318
structure and diversity 41, 43
liquid chromatography–mass spectrometry (LC–MS) 227, 235, 238–9, 248–9, 274–6
liquid secondary ion–mass spectrometry (LSI–MS) 224
LOS see lipooligosaccharides
LPS see lipopolysaccharide
LSI–MS see liquid secondary ion–mass spectrometry
MALDI see matrix-assisted laser desorption/ionization
mammalian glycosylation 174–6
mammalian monosaccharides 29–30
mass spectrometry (MS) carbohydrates 3, 204, 207, 210
compositional analysis 240–4, 258–62, 265–6
data handling/analysis 239–51
derivatization 229–34
Index

mass spectrometry (Contd.)
downstream analysis of glycan release 227–34
experimental methods 196, 198–200, 204, 207, 210
fragment annotation 260–8
GlycanBuilder 262–3
Glyco-Peakfinder 257–62, 265–6
glycomics 223–56, 257–68
glycopeptides 227, 237–9
glycoproteomics 224, 234–5
glycosaminoglycans 276–7
GlycoWorkbench 257–8, 260–8
in silico fragmentation 263–4
linkage analysis 249–51
monosaccharides 228, 240–1, 249
oligosaccharides 224, 226, 227–36, 240
parallel approach 239
peak annotation 265
sample preparation 224–7
semi-automatic interpretation 257–68
sequence analysis 244–9
validation 250–1
matrix-assisted laser desorption/ionization (MALDI) 229, 231, 234–9, 250, 259, 276–7, 280–1
Matthews correlation coefficient 166, 173, 185
MC see Monte Carlo
MCMM see Monte Carlo Multi Minimum
MD see molecular dynamics
Medline 168
metabolic oligosaccharide engineering 13
Metropolis Monte Carlo (MMC) simulations 372–4, 404
microarray analysis 11, 136
Microarray Data 120–1
microbial oligosaccharides 77
milk oligosaccharides 75–6
MM2CARB method 343–4
MMC see Metropolis Monte Carlo
molecular dynamics (MD) 342, 344–7, 370, 372–9, 404–5
monoclonal antibodies 321
MonosaccharideDB 64–5
monosaccharides
carbohydrate-active enzymes 132, 137, 149
conformational analysis 337, 339, 346, 361–3, 365, 395–7
digital representations 56–7, 60, 62–6
glycomic mass spectrometry 228, 240–1, 249
high performance liquid chromatography 207–8, 215
naturally occurring 28–30
nomenclature 25–8
nuclear magnetic resonance 295–6, 306, 311–13, 321, 326, 328–9, 332
protein–carbohydrate interactions 422–3
small molecule descriptors 62–4
structure and diversity 23–4, 25–30
Monte Carlo (MC) simulations 345, 372–4, 404
Monte Carlo Multi Minimum (MCMM) 373
MS see mass spectrometry
MS/MS see tandem mass spectrometry
mucins 75–6, 174–6
N-acetylneuraminic acid (Neu5Ac) 72–3, 76–9, 80
N-glycans 4
conformational analysis 359, 362, 368, 395, 397–9
glycomic mass spectrometry 227–9, 240, 244, 249
nuclear magnetic resonance 302–8
protein–carbohydrate interactions 415–16
structure and diversity 35–6, 45
N-glycosylation 5–7
carbohydrate-active enzymes 128, 130–1, 138, 143–4, 145–8, 153–9
conformational analysis 391–2
linkage-specific 171, 172–4
National Center for Biotechnology Information (NCBI) 120, 122
negative hyperconjugation 365
NetCGlyc 183
NetGlycate 185
NetNGlyc 173–4
NetOGlyc 175
NetPGlyc 179–80
Neu5Ac see N-acetylneuraminic acid
neural networks see artificial neural networks
NeuroCarb 325–32
data preprocessing 326–9
performance 331
test phase 329–31
training and validation 329
work phase 330–1
workflows 325, 327
nitrous acid cleavage 272–3
NMR see nuclear magnetic resonance
NOEs see nuclear Overhauser effects
nuclear magnetic resonance (NMR)
advantages/disadvantages 295–6
artificial neural networks 321–34
automatic procedures 308, 311–20
bioinformatics 296–9
carbohydrates 295–309, 311–12
CASPER program 301, 311–20, 344
chemical shift estimation 301–8, 312–14, 328–9
comparisons with theoretical data 402–7
coupling constants 403–4
cross-relaxation experiments 404–6
data handling/analysis 315–16
databases 296, 298–9, 316–17
experimental methods 197–200
glycomic mass spectrometry 249
glycosaminoglycans 274, 277, 281–3
glycosylation 312–14, 316–17, 321
H–H distances 404–6
monosaccharides 295–6, 306, 311–13, 321, 326, 328–9, 332
NeuroCarb 325–32
performance measures 318
polysaccharides 296, 306, 312–14, 319
protein–carbohydrate interactions 433
spectral matching 308
spectral searches 301
stereochemistry 297–8
structure generation 314–15, 319
SugaBase 299–301
torsion angles 403–4
nuclear Overhauser effects (NOEs) 277, 338, 345–6, 374, 389–90, 403, 405–6
nuclear proteins 177–8
NXS sequons 157, 169, 172–3
NXT sequons 157, 169, 172–3
O-glycans
conformational analysis 359, 395, 397–9
glycomic mass spectrometry 227–9, 239–40, 244
nuclear magnetic resonance 308
structure and diversity 36–7
O-GLYCOBASE 152–3, 168
O-glycosylation 5–7, 36–8
carbohydrate-active enzymes 138, 144, 148–50, 153–9
data collection 168
linkage-specific 171–2, 174–8
O-mannosylglycans 149
Oligosaccharide Subtree Constraint Algorithm (OSCAR) 247, 250
oligosaccharides
assembly level 30–4
composition 31–3
conformational analysis 337, 343–6, 360, 363, 368, 373, 377, 402–3
database analysis 33–4
digital representations 52–6, 57–61
empirical structural classifications 34–44
experimental methods 195–6
glycomic mass spectrometry 224, 226, 227–36, 240
glycosylation 145, 148–9, 151
host–pathogen interface 69, 75–8, 81
nuclear magnetic resonance 306, 312–14, 316, 318–19, 321, 330–2
protein–carbohydrate interactions 422–4
structure and diversity 30–44
see also glycosaminoglycans
oligosaccharyl transferase (OST) 35–6, 144, 146
ordered tree Markov model (OTMM) 137
Orthology database 120, 125
OSCAR see Oligosaccharide Subtree Constraint Algorithm
OST see oligosaccharyl transferase
OTMM see ordered tree Markov model
Oxford GlycoSciences 249
PAD see pulsed amperometric detection
particle-mesh Ewald (PME) 381
PATHWAY database 5–7
PBC see periodic boundary conditions
PCR see polymerase chain reaction
PDB see Protein Data Bank
PDI see protein disulfide isomerase
PEN see property-encoded nomenclature
pentraxins 420, 425
peptidoglycans 40–1
peracetylation 229–31
periodate oxidation 230–1, 272–3
periodic boundary conditions (PBC) 381
permethylation 229–31
PES see potential energy surfaces
PFOS see potential function for oligosaccharides
PGs see proteoglycans
plant polysaccharides 41–2
plant-specific lectins 416, 418–22, 424–6
PLs see polysaccharide lyases
PME see particle-mesh Ewald
PNGase F/A 81, 227–8, 239
polymerase chain reaction (PCR) 7, 9, 296
polypeptides 145
polysaccharide lyases (PLs) 93
polysaccharides
 conformational analysis 337–8, 339–42, 358
digital representations 52–6, 57–61
host–pathogen interface 76
nuclear magnetic resonance 296, 306, 312–14, 319
structure and diversity 24, 33, 39–42
see also glycosaminoglycans
positive predictive value (PPV) 166
post-source decay (PSD) 231, 235
post-translational modification (PTM) 23
potential energy surfaces (PES) 373
potential function for oligosaccharides (PFOS) 371
PPV see positive predictive value
probabilistic sibling-dependent tree Markov model (PSTMM) 137
prokaryotic lectins 418
property-encoded nomenclature (PEN) 276, 278–83, 285
Protein Data Bank (PDB)
 algorithm 396–7
 amino acids 435–44
 atomic level interactions 439–44
 carbohydrate-active enzymes 120, 123, 152–3
carbohydrates 4, 63
carbohydrates 4, 63
carbohydrates 4, 63
carbohydrates 4, 63
comparisons with theoretical data 401–2
conformational analysis 338, 347, 379, 390–402
data handling/analysis 434–44
dataset generation 434
erroneous entries 399–400
glycosylation 152–3
GlyVicinity 434–44
informational resources 390–3
overview of detected structures 397–400
protein–carbohydrate interactions 433–45
searching 3D structures 393–7
protein disulfide isomerase (PDI) 147
Protein Mutant database 96
protein–carbohydrate interactions
 amino acids 435–44
 atomic level interactions 439–44
data handling/analysis 434–44
dataset generation 434
GlyVicinity 434–44
lectins 415–31
Protein Data Bank 433–45
statistical analysis 433–45
see also glycoproteins
proteoglycans (PGs) 40, 42, 150, 178–80
proteomic proteolytic digest mass spectrometry 228
PSD see post-source decay
pseudaminic acid 79
PSTMM see probabilistic sibling-dependent tree Markov model
PTM see post-translational modification
public WEB-Medline (PubMed) 14
pulsed amperometric detection (PAD) 205
quantum mechanics (QM) 360, 364–5, 372, 404
random array analysis method (RAAM) 210
Random Molecular Mechanics (RAMM) 344, 372–3
reaction libraries 134–5
receiver operating characteristic (ROC) curves 167, 173, 175
Red Queen Effect 78
reducing end derivatization 230–4
relaxed maps 342, 371
reproductive and respiratory syndrome virus (RRSR) 78
reversed phase HPLC 213
ricin 416, 419, 421
rigid energy maps 342
rigid tissue approximation 340
rigid-residue approach 371
ring puckering 361
RNA sequences 23–4
ROC see receiver operating characteristic rotational nuclear Overhauser effect spectroscopy (ROESY) 277
RRSR see reproductive and respiratory syndrome virus
Saccharide Topology Analysis Tool (STAT) 246, 250
saccharides see monosaccharides;
 oligosaccharides; polysaccharides
SAX see strong anion exchange
SD see stochastic dynamics
SDS-PAGE see sodium dodecyl sulfate
polyacrylamide gel electrophoresis
Secondary Red Queen Effect 78
Index

471

self-organizing maps (SOMs) 325
sensitivity testing 165–7
sequence analysis
 CAZy database 99–101
 glycomic mass spectrometry 244–9
 LINUCS 50–1, 54, 395–6
sequence formats 50–61
sequence logos 169–70, 172–3, 175–7, 179–85
sequence motifs 172, 174–5, 177, 179–80, 182, 184, 285–6
Sequence Retrieval System (SRS) 168
sialic acids 69–88
 biological roles 70–1, 72–3
 biosynthetic pathways 76–8
 digital representations 80–2
 esterification 230–1, 234
 evolution 78–9
 future directions 80–2
 host defense mechanisms 74–6
 pathogens 70–1
 species distribution 74
 structure and diversity 72–5
siglec 77–8, 417, 421
SignalP 182
simulated annealing 345
size exclusion chromatography 209
small molecule descriptors 62–4
SMILES 62–3
snowdrop lectin 419, 426–7
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 204–5, 229, 237–8, 276
SOMs see self-organizing maps
Spanish flu 10–11
specificity testing 165–7
spermadhesins 417–19, 426
sphingosine 39
SPR see surface plasmon resonance
SRS see Sequence Retrieval System
STAT see Saccharide Topology Analysis Tool
test names 26–7
stereocodes 63–4
stochastic dynamics (SD) 345, 372
StrOligo 247
strong anion exchange (SAX) 211

SugaBase 299–301
supervised learning 322–5
Support Vector machines 164
surface plasmon resonance (SPR) 346
SWEET/SWEET-II 345, 406
Swiss-Prot 4
 carbohydrate-active enzymes 152–3
 glycosylation 152–3, 168, 173, 175–6
 TrEMBL 120–1
tandem mass spectrometry (MS/MS) 226, 229, 234–5, 238, 244–50, 260, 263
TBA see thiobarbituric acid
teichoic acids 41
terminal sialic acid esterification 230–1, 234
thiobarbituric acid (TBA) assays 81
time-of-flight (TOF) analysis 231, 235
TOF see time-of-flight
transferred nuclear Overhauser enhancement (TR-NOE) 346
TrEMBL 120–1
trisaccharides 337
trypsin 237
UDP-Glc:glycoprotein glucosyltransferase (UGGT) 147–8, 174
unsupervised learning 322–6
uridine triphosphate (UTP) 5
 vaccines 12–13
 vertebrates 76–7, 417
 viruses 418
 weak anion exchange (WAX) 211
 wheat germ agglutinin (WGA) 425, 427
X-ray crystallography 337, 389, 407, 433
X-ray diffraction 337
XML see extensible markup
 YinOYang 177–8
 zanamivir 345

This index was prepared by Neil Manley