Contents

Preface XVII
List of Contributors XIX

Part I Central Metabolism 1

1 Metabolic Profiling of Plants by GC–MS 3
Camilla B. Hill and Ute Roessner

1.1 Introduction 3
1.2 Methods and Protocols 7
1.2.1 Sample Preparation 7
1.2.1.1 Sampling 7
1.2.1.2 Homogenization and Extraction 7
1.2.1.3 Procedure for Polar Extraction of Metabolites 8
1.2.2 Chemical Derivatization: Methoxymation and Silylation 9
1.2.2.1 Procedure for the Chemical Derivatization of Plant Extracts 9
1.2.3 GC–MS Analysis 10
1.2.3.1 Procedure to Acquire GC–MS Data 11
1.2.4 Data Preprocessing and Export 12
1.2.4.1 Procedure for Postacquisition Data Preprocessing 12
1.2.4.2 Data Analysis and Statistics 14
1.2.4.3 Procedure for Postacquisition Data Analysis 15
1.3 Applications of the Technology 15
1.4 Perspectives 17
References 18

2 Isotopologue Profiling – Toward a Better Understanding of Metabolic Pathways 25
Wolfgang Eisenreich, Claudia Huber, Erika Kutzner, Nihat Knispel, and Nicholas Schramek

2.1 Introduction 25
2.2 Methods and Protocols to Determine Isotopologues 31
2.2.1 Mass Spectrometry 31
2.2.2 Protocols for Isotopologue Profiling by GC–MS 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2.1</td>
<td>Protein-Bound Amino Acids</td>
<td>36</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Metabolic Intermediates and Polar Products</td>
<td>37</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Carbohydrates</td>
<td>37</td>
</tr>
<tr>
<td>2.2.3</td>
<td>NMR Spectroscopy</td>
<td>38</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Protocols for Isotopologue Profiling by NMR</td>
<td>41</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Deconvolution of Isotopologue Data</td>
<td>43</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Expanding the Metabolic Space by Retrobiosynthetic Analysis</td>
<td>45</td>
</tr>
<tr>
<td>2.3</td>
<td>Applications</td>
<td>46</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Experiments Using [U,(^{13})C(_6)]Glucose</td>
<td>46</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Experiments Using (^{13})CO(_2)</td>
<td>47</td>
</tr>
<tr>
<td>2.4</td>
<td>Perspectives</td>
<td>53</td>
</tr>
<tr>
<td>2.4</td>
<td>References</td>
<td>54</td>
</tr>
</tbody>
</table>

3 Nuclear Magnetic Resonance Spectroscopy for Plant Metabolite Profiling

Sonia van der Sar, Hye Kyong Kim, Axel Meissner, Robert Verpoorte, and Young Hae Choi

3.1 Introduction | 57 |
3.2 Methods and Protocols | 59 |
3.2.1 Sample Preparation | 59 |
3.2.1.1 Harvesting Plant Material | 60 |
3.2.1.2 Drying | 60 |
3.2.1.3 Extraction | 60 |
3.2.2 Data Acquisition | 60 |
3.2.3 Standard \(^1\)H-NMR Spectroscopy | 61 |
3.2.4 \(J\)-Resolved Spectroscopy | 61 |
3.2.5 Data Analysis | 61 |
3.3 Applications | 62 |
3.3.1 1D \(^1\)H-NMR Spectroscopy | 62 |
3.3.2 2D NMR Spectroscopy | 63 |
3.3.2.1 \(J\)-Resolved Spectroscopy | 65 |
3.3.2.2 COSY and TOCSY | 67 |
3.3.2.3 HMBC and HMQC/HSQC | 68 |
3.3.2.4 NOESY or ROESY (CAMELSPIN) | 69 |
3.3.2.5 DOSY | 69 |
3.3.3 Magic Angle Spinning | 70 |
3.4 Perspectives | 71 |
3.4 | References | 72 |

4 Comprehensive Two-Dimensional Gas Chromatography for Metabolomics

Katja Dettmer, Martin F. Almstetter, Christian J. Wachsmuth, and Peter J. Oefner

4.1 Introduction | 77 |
4.2 Methods and Protocols | 81 |
6.2.8 Data Mining 119
6.3 Applications of the Technology 119
6.4 Perspectives 121
References 123

Part II Secondary and Lipid Metabolism 125

7 Study of the Volatile Metabolome in Plant–Insect Interactions 127
Georg J.F. Weingart, Nora C. Lawo, Astrid Forneck, Rudolf Kraska, and Rainer Schuhmacher

7.1 Introduction 127
7.1.1 Plant–Insect Interactions 127
7.1.2 Significance of Volatile Plant Metabolites 128
7.1.3 Study of the Plant Volatile Metabolome in Plant–Insect Interactions 128
7.1.3.1 Setting Up of Biological Experiments 129
7.1.3.2 Sampling, Quenching, and Sample Preparation 130
7.1.3.3 Headspace Extraction and Measurement by GC–MS 131
7.1.3.4 Data Handling 134
7.1.3.5 Biological Interpretation 135
7.2 Methods and Protocols 135
7.2.1 Permanent Breed of Insects 135
7.2.2 Cultivation of Grapevine Plants and Inoculation with Phylloxera 136
7.2.2.1 Materials 136
7.2.2.2 Procedures 136
7.2.3 Sampling and Quenching of Plant Tissue (Roots and Leaves) 138
7.2.3.1 Sampling and Quenching of Root Tips 138
7.2.3.2 Sampling and Quenching of Grapevine Leaves 139
7.2.4 Milling and Weighing of Plant Tissue (Roots and Leaves) 140
7.2.4.1 Milling and Weighing of Root Samples 140
7.2.4.2 Milling and Weighing of Leaf Samples 141
7.2.5 Measurement – Automated HS-SPME Extraction and GC–MS Analysis 143
7.2.5.1 Materials 143
7.2.5.2 SPME Method 143
7.2.5.3 GC Method 144
7.2.5.4 MS Settings 144
7.2.6 Data Processing with AMDIS 145
7.2.6.1 An In-House Reference Library Has to be Established in Advance 145
7.2.6.2 Generation of RI Calibration File 146
7.2.6.3 Batch Job Analysis for the Simultaneous Processing of Multiple Sample Chromatograms 146
7.2.7 Statistics/Chemometrics 147
7.2.7.1 Univariate Statistics 147
7.2.7.2 Multivariate Statistics 148
7.3 Applications of the Technology 148
7.4 Perspectives 149
References 150

8 Metabolomics in Herbal Medicine Research 155
Lie-Fen Shyur, Chiu-Ping Liu, and Shih-Chang Chien
8.1 Introduction 155
8.2 Methods and Protocols 158
8.2.1 Materials 158
8.2.1.1 Reagents 158
8.2.1.2 Equipment 159
8.2.2 Procedures 160
8.2.2.1 Sample Handling for Medicinal Plants 160
8.2.2.2 Sample Preparation for LC–MS Analysis 160
8.2.2.3 LC–MS Analysis 161
8.2.2.4 HPLC–Photodiode Array (PDA) MS Setup and Analysis 161
8.2.2.5 GC–MS Analysis 162
8.2.2.6 Plant Extract Preparation for GC–MS Analysis 163
8.2.2.7 GC–MS Parameters and Analysis 164
8.2.2.8 LC–MS and GC–MS Data Analysis 165
8.2.2.9 LC–SPE–NMR Analysis 166
8.2.2.10 Sample Preparation and LC–SPE–NMR Analysis 167
8.2.2.11 HPLC–SPE–NMR Data Analysis 168
8.3 Applications 168
8.4 Perspectives 169
References 170

9 Integrative Analysis of Secondary Metabolism and Transcript Regulation in Arabidopsis thaliana 175
Fumio Matsuda and Kazuki Saito
9.1 Introduction 175
9.2 Methods and Protocols 177
9.2.1 Metabolome Analysis of Plant Secondary Metabolites 177
9.2.1.1 Sample Preparation 177
9.2.1.2 Data Acquisition 178
9.2.1.3 Preparation of Metabolite Accumulation Data from the Raw Chromatogram Data 179
9.2.2 Preparation of Combined Data Matrix 180
9.2.2.1 Preparation of Gene Expression Data 180
9.2.2.2 Combination of Data Matrices 180
9.2.3 Data Mining 180
9.2.3.1 BL-SOM Analysis 180
9.2.3.2 Correlation Analysis 181
9.2.3.3 Principal Component Analysis and Application of Other Data Mining Techniques 183
Contents

9.3 Applications of the Technology 183
9.4 Perspectives 187
References 190

10 Liquid Chromatographic–Mass Spectrometric Analysis of Flavonoids 197
Maciej Stobiecki and Piotr Kachlicki

10.1 Introduction 197
10.1.1 Role of Flavonoids and Their Derivatives in Biological Systems 197
10.1.2 Preparation of Biological Material for Metabolomic Analysis and/or Metabolite Profiling 199
10.1.3 Instrumental Considerations 201
10.2 Methods and Protocols: Liquid Chromatography–Mass Spectrometry of Flavonoids 206
10.2.1 General Remarks 206
10.2.2 Plant Cultivation Conditions 208
10.2.3 Preparation of Biological Material with Biotechnological Methods (Callus, Cell, or Hairy Root Cultures) 208
10.2.4 Extraction of Plant Tissue or Biotechnologically Prepared Material 208
10.2.4.1 Extraction Procedure 209
10.2.5 Solid-Phase Extraction of Culture Medium or Apoplastic Fluids 209
10.2.6 Preparation of Samples for LC–MS Analyses 210
10.2.7 Chromatographic Protocols for Separation of Flavonoid Glyconjugates 210
10.2.8 Control of Ionization Parameters During Mass Spectrometric Analysis and Identification of Compounds During LC–MS Metabolite Profiling 211
10.3 Applications of the Technology 211
10.4 Perspectives 211
References 212

11 Introduction to Lipid (FAME) Analysis in Algae Using Gas Chromatography–Mass Spectrometry 215
Takeshi Furuhashi and Wolfram Weckwerth

11.1 Introduction 215
11.2 Methods and Experimental Protocol 216
11.2.1 Extraction 216
11.2.2 Bound and Free Fatty Acids 217
11.2.3 Pigments 217
11.2.4 Contaminants 219
11.2.5 Derivatization 219
11.2.6 GC–MS System 220
11.2.7 Identification 220
11.2.8 Protocols 221
11.2.8.1 Protocol I 221
11.2.8.2 Protocol II 221
11.2.9 GC–MS Instrument and Conditions 223
11.3 Application and Perspective 223
References 224

12 Multi-Gene Transformation for Pathway Engineering of Secondary Metabolites 227
Hideyuki Suzuki, Eiji Takita, Kiyoshi Ohyama, Satoru Sawai, Hikaru Seki, Nozomu Sakurai, Toshiya Muranaka, Masao Ishimoto, Hiroshi Sudo, Kazuki Saito, and Daïsuke Shibata

12.1 Introduction 227
12.2 Methods and Protocols 233
12.2.1 Chemicals 233
12.2.2 Plasmid Construction of Multi-Gene Transformation 233
12.2.3 Preparation of Dual Terminator (DT) Fragment by PCR-Based Overlap Extension Method 233
12.2.4 Plasmid Construction of pUHR KS CSPS Thsp 236
12.2.5 Construction of pHSG299 CSPS 35S-CYP88-DT (Figure 12.2a) 236
12.2.6 Construction of pHSG299 CSPS 35S-CYP72-DT2 (Figure 12.2a) 237
12.2.7 Construction of pHSG299-CYP93(RNAi)-DT (Figure 12.2a) 238
12.2.8 Construction of pUHR KS CSPS Thsp-CYP88-CYP72-CYP93 (RNAi) 239
12.2.9 Transformation of Soybean by Particle Bombardment 239
12.2.9.1 Preparation of Embryogenic Suspension Tissue Culture 239
12.2.9.2 Preparation of Plasmid DNA for Particle Bombardment 240
12.2.9.3 Conditions of Particle Bombardment 240
12.2.9.4 Selection and Generation of Transgenic Soybean Plants 240
12.2.10 GC-MS Analysis for Triterpene Glycone 241
12.2.10.1 Extraction of Metabolite 241
12.2.10.2 Acid Treatment of Extracted Metabolites 241
12.2.10.3 Derivatization of Metabolites 242
12.2.11 GC-MS Conditions 242
12.3 Application of Technology 242
12.4 Perspectives 243
References 243

Part III Metabolomics and Genomics 245

13 Metabolomics-Assisted Plant Breeding 247
Alexander Herrmann and Nicolas Schauer

13.1 Introduction 247
13.2 Method 249
13.3 Applications of the Technology 251
13.4 Perspective 253
References 254
14 Conducting Genome-Wide Association Mapping of Metabolites

Susanna Atwell and Daniel J. Kliebenstein

14.1 Introduction 255
14.2 Methods and Protocols 256
14.2.1 Biological Question to Be Addressed 256
14.2.2 Chemistry to Study 256
14.2.2.1 Chemical Class 256
14.2.2.2 Extraction and Detection Platform 257
14.2.3 Species Choice 258
14.2.3.1 Genotypic Choices 258
14.2.3.2 GWA Populations Available 259
14.2.3.3 Domestication Status 260
14.2.3.4 Ability to Conduct Appropriate Follow-Up Experiments 260
14.2.4 Should I Utilize an Additional Perturbation? 260
14.2.5 Conducting the Phenotype Measurements 261
14.2.6 Computational Platform to Use for Analysis 261
14.2.6.1 Single Marker Analysis 262
14.2.6.2 Population Structure Modification 262
14.2.6.3 Resulting GWA Plots 262
14.2.6.4 Gene-Based Approaches 263
14.2.6.5 What Should I Use and How Do I Use It? 263
14.2.7 Candidate Gene Selection 265
14.2.8 Candidate Gene Validation 266
14.2.8.1 Validate That the Gene Influences the Phenotype? 267
14.2.8.2 Validate That Natural Variation in the Gene Influences the Phenotype 267
14.3 Applications 267
14.4 Perspectives 268
References 268

Part IV Metabolomics and Bioinformatics 273

15 Metabolite Clustering and Visualization of Mass Spectrometry Data Using One-Dimensional Self-Organizing Maps 275

Alexander Kaever, Manuel Landesfeind, Kirstin Feussner, Ivo Feussner, and Peter Meinicke

15.1 Introduction 275
15.2 Methods and Protocols 276
15.2.1 Data Import 277
15.2.2 Clustering 277
15.2.3 Cluster Analysis 280
15.3 Applications of the Technology 281
15.4 Perspectives 286
References 286
16 Metabolite Identification and Computational Mass Spectrometry 289
 Steffen Neumann, Florian Rasche, Sebastian Wolf, and Sebastian Böcker
16.1 Introduction 289
16.2 Annotation and Identification of Metabolites 290
 16.2.1 Exact Mass Search in Compound Libraries 291
 16.2.2 Deriving the Elemental Composition from MS1 292
 16.2.3 Elemental Composition from MS2 and MSn 293
 16.2.4 \textit{In Silico} Library Search with MetFrag 294
 16.2.5 Reference Spectral Library Lookup 299
16.3 Perspectives 302
References 303

17 Using COVAIN to Analyze Metabolomics Data 305
 Xiaoliang Sun and Wolfram Weckwerth
17.1 Introduction 305
17.2 Methods 308
 17.2.1 Data Preprocessing 308
 17.2.1.1 Imputation of Missing Values 308
 17.2.1.2 Transformations to Satisfy Prerequisites of Statistical Methods 310
 17.2.1.3 Adjusting Outliers 310
 17.2.1.4 Scaling 310
 17.2.1.5 Filtering by Statistical Features 310
 17.2.2 Uni- and Bivariate Statistical Methods for Individual
 Metabolite-Level Analysis 311
 17.2.2.1 ANOVA Compares Single Metabolite Levels 311
 17.2.2.2 Correlation Coefficients Interpret the Relationships Between
 Pairwise Two Metabolites 311
 17.2.2.3 Granger Causality Analysis Identifies the Causation Between
 Pairwise Two Metabolites in Time-Series Data 311
 17.2.3 Multivariate Statistical Methods for Group-Level Analysis 312
 17.2.3.1 PCA Distinguishes Phenotypes and Finds Most Influencing
 Metabolites 312
 17.2.3.2 Independent Component Analysis Distinguishes Phenotypes
 and Finds the Latent Sources of Metabolites in Time-Series Data 312
 17.2.3.3 Clustering Classifies Data Into Groups 312
17.2.4 Network-Level Analysis 313
 17.2.4.1 Network Mapping 313
 17.2.4.2 Network Inference 313
 17.2.5 Influences of Data Preprocessing on Statistical Analysis Results 313
 17.2.5.1 On the Mean Values: ANOVA, Correlation Coefficient, Granger
 Analysis, and Clustering 313
 17.2.5.2 On the Variance and Covariance: ANOVA, PCA, and ICA 314
17.3 Application 314
17.4 Perspective 320
References 320
<table>
<thead>
<tr>
<th>18</th>
<th>Mass Spectral Search and Analysis Using the Golm Metabolome Database</th>
<th>321</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan Hummel, Nadine Strehmel, Christian Bölling, Stefanie Schmidt,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dirk Walther, and Joachim Kopka</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>321</td>
</tr>
<tr>
<td>18.2</td>
<td>Methods and Protocols: the GMD and Supported Data Analysis Workflows</td>
<td>322</td>
</tr>
<tr>
<td>18.2.1</td>
<td>The GMD Data Entities</td>
<td>322</td>
</tr>
<tr>
<td>18.2.2</td>
<td>The Text Search Queries</td>
<td>325</td>
</tr>
<tr>
<td>18.2.3</td>
<td>The Mass Spectrum Query Submission and Analysis Options</td>
<td>325</td>
</tr>
<tr>
<td>18.2.3.1</td>
<td>Mass Spectral Matching</td>
<td>326</td>
</tr>
<tr>
<td>18.2.3.2</td>
<td>Decision Tree (DT)-Supported Substructure Prediction</td>
<td>329</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Interpreting the Mass Spectral Analysis Results</td>
<td>329</td>
</tr>
<tr>
<td>18.2.4.1</td>
<td>The Mass Spectral Matching Results</td>
<td>329</td>
</tr>
<tr>
<td>18.2.4.2</td>
<td>The Substructure Prediction Results</td>
<td>332</td>
</tr>
<tr>
<td>18.2.4.3</td>
<td>Interpreting Decision Trees</td>
<td>333</td>
</tr>
<tr>
<td>18.2.5</td>
<td>The Web Services at GMD</td>
<td>336</td>
</tr>
<tr>
<td>18.2.5.1</td>
<td>General Considerations</td>
<td>336</td>
</tr>
<tr>
<td>18.2.5.2</td>
<td>The GMD Web Service Modules</td>
<td>337</td>
</tr>
<tr>
<td>18.2.6</td>
<td>The GMD Download Options</td>
<td>338</td>
</tr>
<tr>
<td>18.3</td>
<td>Applications and Perspectives</td>
<td>341</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>342</td>
</tr>
</tbody>
</table>

Glossary 345

Index 415