Contents

List of Contributors xv
Preface xvii

1 The Development of Spin-Crossover Research 1
Keith S. Murray
1.1 Introduction 1
1.2 Discrete Clusters of SCO Compounds 4
1.2.1 Dinuclear FeII - FeII SCO Clusters 6
1.2.2 Tri-, Tetra-, Penta- and Hexa-nuclear FeII SCO Clusters 18
1.3 1D Chains of FeII SCO Materials 22
1.4 1D Chains of FeIII SCO Materials 28
1.5 2D Sheets of FeII SCO Materials 29
1.6 3D Porous SCO Materials 30
1.7 Some Recent Developments in Mononuclear SCO FeII, FeIII and CoII Compounds 33
1.7.1 Iron(II) and Iron(III) 33
1.7.2 Cobalt(II) 35
1.8 Multifunctional/Hybrid SCO Materials 37
1.8.1 SCO and Porosity 38
1.8.2 SCO and Electrical Conductivity 38
1.8.3 SCO and (i) Short-Range Exchange Coupling or (ii) Long-Range Magnetic Order 38
1.8.4 SCO and Liquid Crystals 39
1.8.5 SCO and Gels 39
1.8.6 SCO and NLO 39
1.9 Developments in Instrumental Methods in Spin-Crossover Measurements 40
1.10 Applications of Molecular Spin-Crossover Compounds 41
1.11 Summary 42
Acknowledgements 42
References 43

2 Novel Mononuclear Spin-Crossover Complexes 55
Birgit Weber
2.1 Introduction and General Considerations 55
2.2 Novel Coordination Numbers (CN), Coordination Geometries and Metal Centres 57
2.2.1 Coordination Number 7 57
2.2.2 Coordination Number 6 58
2.2.3 Coordination Number 5 60
2.2.4 Coordination Number 4+1 62
2.2.5 Coordination Number 4 63
vi Contents

2.3 Iron Complexes with Novel Ligand Donor Atoms and New Ligand Systems 65
 2.3.1 N_6 Coordination Sphere 65
 2.3.2 N_4O_2 Coordination Sphere 66
2.4 Other Examples 70
2.5 Conclusion and Outlook 72
References 72

3 Spin-Crossover in Discrete Polynuclear Complexes 77
Juan Olguín and Sally Brooker
3.1 Introduction 77
3.2 Dinuclear Iron(II) Complexes 79
 3.2.1 Supramolecular Approach 79
 3.2.2 ‘Controlled/Designer-Ligand’ Approach 84
 3.2.3 Ligands with Two Isolated Binding Pockets 84
 3.2.4 Ligands with Potential for Communication between Binding Pockets 91
3.3 Higher Nuclearity Iron(II) Compounds 98
 3.3.1 Trinuclear Iron(II) Complexes 98
 3.3.2 Tetranuclear Iron(II) Complexes 100
 3.3.3 Higher Nuclearity Mixed Metal/Valent Iron(II) Complexes 103
3.4 Iron(III) 104
 3.4.1 Dinuclear Iron(III) Complexes 104
 3.4.2 Mixed Metal Iron(III) Complexes 108
 3.4.3 Mixed Valence Iron(II)/(III) Complexes 108
3.5 Cobalt(II) 109
 3.5.1 Dinuclear Cobalt(II) Complexes 109
 3.5.2 Trinuclear Cobalt(II) Complexes 110
3.6 Dinuclear Chromium(II) Complex 111
3.7 Concluding Remarks 112
References 113

4 Polymeric Spin-Crossover Materials 121
M. Carmen Muñoz and José Antonio Real
4.1 Introduction 121
4.2 One-Dimensional SCO-CPs 121
 4.2.1 Triazole Based Bridges 121
 4.2.2 Tetrazole Based Bridges 124
 4.2.3 Bis-Monodentate Pyridine-Like Bridges 124
 4.2.4 Polydentate Chelate Bridges 126
 4.2.5 Anionic Bridging Ligands 127
4.3 Two Dimensional SCO-CPs 128
 4.3.1 Neutral Organic Bridging Ligands 128
 4.3.2 Dicyanometalate $[M^1(CN)_2]$ Bridging Ligands ($M^1 = Cu, Ag, Au$) 130
 4.3.3 Tetracyanometalate $[M^{II}(CN)_4]^2-$ Bridging Ligands ($M^{II} = Ni, Pd, Pt$) 132
4.4 Three-Dimensional SCO-CPs 133
 4.4.1 Neutral Organic Bridging Ligands 133
 4.4.2 Dicyanometalate $[M^1(CN)_2]^-$ Bridging Ligands 134
5 Structure:Function Relationships in Molecular Spin-Crossover Materials

Malcolm A. Halcrow

5.1 Introduction 147
5.2 Molecular Shape 150
5.2.1 Molecular Shape Inducing Cooperativity 153
5.2.2 Molecular Shape Inhibiting Spin-Crossover 154
5.3 Crystal Packing 155
5.3.1 Short Intermolecular Contacts 156
5.3.2 Inhibition of Spin-Crossover by Steric Congestion 157
5.4 Cooperativity Mediated by Disorder 158
5.5 Compounds Showing Wide Thermal Hysteresis 158
5.5.1 Compounds with Symmetric Hysteresis Loops 159
5.5.2 Compounds with Structured Hysteresis Loops 161
5.6 Other Noteworthy Compounds 162
5.6.1 Iron(II) Triazole Coordination Polymers 162
5.6.2 Cooperative Complexes of Other Metal Ions 163
5.7 Conclusions 164
References 164

6 Charge Transfer-Induced Spin-Transitions in Cyanometallate Materials

Kim R. Dunbar, Catalina Achim and Michael Shatruk

6.1 Introduction 171
6.2 Characterization of CTIST Compounds 173
6.3 CTIST in Coordination Polymers 174
6.3.1 Co-Fe Prussian Blue Analogs 174
6.3.2 Other Prussian Blue Analogs 183
6.3.3 Coordination Polymers Based on Octacyanometallates 185
6.4 CTIST in Nanoscale Materials 189
6.4.1 Thin Films 189
6.4.2 Nanoparticles 192
6.5 CTIST in Polynuclear Transition Metal Complexes 195
6.6 Summary and Outlook 198
Acknowledgement 199
References 199

7 Valence Tautomeric Transitions in Cobalt-dioxolene Complexes

Colette Boskovic

7.1 Introduction 203
7.2 Induction of Valence Tautomeric Transitions 205
7.2.1 Thermally Induced Valence Tautomerism 205
7.2.2 Pressure Induced Valence Tautomerism 205
Contents

7.2.3 Light Induced Valence Tautomerism 207
7.2.4 Magnetic Field Induced Valence Tautomerism 208
7.2.5 X-Ray Induced Valence Tautomerism 209
7.3 Other Factors that Contribute to the Valence Tautomeric Transition 210
 7.3.1 Ancillary Ligand Effects 210
 7.3.2 Counterion and Solvation Effects 210
 7.3.3 Cooperativity 212
 7.3.4 Valence Tautomerism in Solution 214
7.4 Polynuclear Valence Tautomeric Complexes 214
 7.4.1 Dinuclear Valence Tautomeric Complexes 214
 7.4.2 Polymeric Valence Tautomeric Complexes 217
7.5 Bifunctional Valence Tautomeric Complexes 218
7.6 Concluding Remarks 220
Acknowledgements 221
References 221

8 Reversible Spin Pairing in Crystalline Organic Radicals 225
Jeremy M. Rawson and John J. Hayward
8.1 Introduction 225
8.2 Radical Pairs: Solution and Gas Phase Studies 226
 8.2.1 Radical Dimerisation in Solution 226
 8.2.2 Computational Studies on Dimerisation 226
8.3 Dimerisation in the Solid State 229
 8.3.1 Structural Studies 229
 8.3.2 Electronic Structure and Bonding 229
 8.3.3 Thermally Accessible Triplet States 230
 8.3.4 Spin-Transition Radical Dimers 230
 8.3.5 Trithiatriazinyl, TTTA: A Case Study 233
8.4 Summary and Future Perspectives 234
Acknowledgements 235
References 235

9 Breathing Crystals from Copper Nitroxyl Complexes 239
Victor Ovcharenko and Elena Bagryanskaya
9.1 Introduction 239
9.2 Structural and Magnetic Anomalies 241
9.3 Relationship between the Chemical Step and the Physical Property 245
9.4 Relationship between the Thermally Induced Reorientation of Aromatic Solvate Molecules and the Character of the Magnetic Anomaly 251
9.5 EPR Study of Breathing Crystals 255
 9.5.1 General Trends of EPR of Strongly Exchange-coupled Spin Triads 256
 9.5.2 Predominant Population of the Ground Multiplet 257
 9.5.3 Dynamic Spin Exchange Processes 259
9.6 Classification of Spin-Transitions in Breathing Crystals and Correlations with Magnetic Susceptibility 261
9.7 The Detailed Magnetic Structure of Breathing Crystals 266
 9.7.1 EPR Measurements of Temperature Dependence of Intra-cluster Exchange Interaction 266
 9.7.2 EPR Measurement of Dipole–Dipole Interaction and Inter-cluster Exchange Interaction 268
9.8 EPR-detected LIEMS on Breathing Crystals 272
9.9 Conclusion 275
References 276

10 Spin-State Switching in Solution 281
 Matthew P. Shores, Christina M. Klug and Stephanie R. Fiedler
10.1 Introduction and Scope 281
10.2 Spin-Crossover: Solid State Versus Solution 282
10.3 Practical Considerations 283
 10.3.1 NMR Characterization 283
 10.3.2 SQUID Magnetometry 285
 10.3.3 Electronic Absorption Spectroscopy 285
10.4 Spin-Crossover in Solution 285
 10.4.1 Solution Characterization 285
 10.4.2 Solvent Effects 287
 10.4.3 Substituent Effects 288
10.5 Ligation Changes Driving Spin-State Switching in Solution 288
 10.5.1 Solvent Exchange/Loss 288
 10.5.2 Anion Exchange/Loss 289
 10.5.3 (Photo)Isomerization 290
 10.5.4 Encapsulation 291
10.6 Second Coordination Sphere Triggers for Spin-State Switching 291
 10.6.1 External Anion-Dependent Spin Switching 293
 10.6.2 Using Ligand Fields to Tune Anion Triggered Spin-State Switching in Solution 293
10.7 Challenges and Opportunities 294
 10.7.1 New Opportunities for Anion Reporting in Solution 294
 10.7.2 MRI Contrast 295
References 295

11 Multifunctional Materials Combining Spin-Crossover with Conductivity and Magnetic Ordering 303
 Osamu Sato, Zhao-Yang Li, Zi-Shuo Yao, Soonchul Kang and Shinji Kanegawa
11.1 Introduction 303
11.2 Spin-Crossover and Conductivity: Spin-Crossover Conductors 303
 11.2.1 Conclusions 308
11.3 Spin-Crossover and Magnetic Interaction: Spin-Crossover Magnets 308
 11.3.1 Hybrid Spin-Crossover Cation and Anionic Magnetic Framework 308
Contents

11.3.2 Incorporation of Spin-Crossover Sites in a Magnetic Framework 310
11.3.3 Conclusion 316
References 316

12 Amphiphilic and Liquid Crystalline Spin-Crossover Complexes

Shinya Hayami

12.1 Introduction 321
12.2 Unique Magnetic Properties of SCO Cobalt(II) Compounds with Long Alkyl Chains 322
12.2.1 Reverse Spin-Transition for Cobalt(II) Compounds 322
12.2.2 Re-Entrant Spin-Transition for Cobalt(II) Compounds 324
12.3 Liquid Crystalline SCO Compounds 325
12.3.1 Metallomesogens with SCO Property 326
12.3.2 Synchronization of SCO and Liquid Crystal Transition 327
12.4 Langmuir–Blodgett Films and Amphiphilic SCO Compounds 331
12.4.1 SCO Langmuir–Blodgett Films 332
12.4.2 Amphiphilic SCO Compounds 333
12.5 Conclusion and Outlook 339
References 340

13 Luminescent Spin-Crossover Materials

Helena J. Shepherd, Carlos M. Quintero, Gábor Molnár, Lionel Salmon and Azzedine Bousseksou

13.1 General Introduction 347
13.2 Introduction to Luminescent Materials and Luminescence Energy Transfer 348
13.2.1 Photoexcitation of Luminescent Materials 349
13.2.2 Return to the Ground State 351
13.3 Electronic Transitions and Optical Properties of Spin-Crossover Complexes 358
13.4 Materials with Combined Spin-Crossover and Luminescent Functionalities 361
13.4.1 General Considerations 361
13.4.2 Examples of Luminescent Spin-Crossover Compounds (Ligands, Counterions) 362
13.4.3 Luminescent Doping 366
13.5 Concluding Remarks 371
Acknowledgements 372
References 372

14 Nanoparticles, Thin Films and Surface Patterns from Spin-Crossover Materials and Electrical Spin State Control

Paulo Nuno Martinho, Cyril Rajnak and Mario Ruben

14.1 Introduction 375
14.2 Nanoparticles and Nanocrystals 376
14.2.1 Reverse Micelle (Microemulsion) Technique 376
14.2.2 Sol-Gel Techniques 386
14.3 Thin Films 387
14.3.1 Langmuir–Blodgett Deposition 387
14.3.2 Surface-Assisted Molecular Self-assembly 390
14.3.3 Diverse Techniques 390
14.4 Surface Patterns 393
 14.4.1 Surface Patterns of Spin-Crossover 393
14.5 Electrical Spin State Control 396
14.6 Conclusion 399
References 400

15 Ultrafast Studies of the Light-Induced Spin Change in Fe(II)-Polypyridine Complexes 405
Majed Chergui
15.1 Introduction 405
15.2 Properties of Fe(II) Complexes 406
 15.2.1 Electronic Structure 406
 15.2.2 Molecular Structure 407
 15.2.3 Vibrational Modes 407
 15.2.4 Kinetics of Ground State Recovery 408
15.3 From the Singlet to the Quintet State 408
 15.3.1 Departing from the MCLT Manifold 409
 15.3.2 Arrival into the HS State 412
 15.3.3 Vibrational relaxation of the HS State 414
15.4 Ultrafast X-Ray Studies 415
15.5 Summary and Outlook 417
Acknowledgements 419
References 420

16 Real-Time Observation of Spin-Transitions by Optical Microscopy 425
François Varret, Christian Chong, Ahmed Slimani, Damien Garrot, Yann Garcia and Anil D. Naik
16.1 Introduction 425
16.2 Experimental Aspects 426
 16.2.1 Single Crystals 426
 16.2.2 The Sample Cell 426
 16.2.3 Cryostat, Objective, Camera 427
 16.2.4 Setting of the Cryostat 427
 16.2.5 Observation Modes 428
16.3 Selected Investigations 429
 16.3.1 The Interplay between Structure and Spin Transformations: [Fe(bbr)3](ClO4)2 429
 16.3.2 Colorimetric Investigation of [Fe(ptz)6](BF4)2 430
 16.3.3 The Transformation Front in [Fe(bbr)2(NCS)2]-H2O Crystals 433
 16.3.4 The Evolution of the Frontline in [Fe(bbr)3](ClO4)2 Crystals 436
 16.3.5 An Example of a Robust Crystal: [Fe(btr)3](ClO4)2 437
16.4 Conclusions and Prospects 439
Acknowledgements 439
References 440

17 Theoretical Prediction of Spin-Crossover at the Molecular Level 443
Robert J. Deeth, Christopher M. Handley and Benjamin J. Houghton
17.1 Introduction 443
17.2 Beginnings: Valence Bond and Ligand Field Theories 443
17.3 Quantum Chemistry 446
17.4 Empirical Methods 449
17.4.1 Semi-Empirical MO Theory 449
17.4.2 Ligand Field Molecular Mechanics 449
17.5 Conclusions 452
References 452

18 Theoretical Descriptions of Spin-Transitions in Bulk Lattices 455
Cristian Enachescu, Masamichi Nishino and Seiji Miyashita
18.1 Introduction 455
18.2 Elastic Interaction Models for Spin-Crossover Systems 457
18.2.1 Thermal Expansion of Volume and Pressure-Induced Transitions 459
18.2.2 Long-Range Interactions and Nucleation Features 461
18.3 Mechano-Elastic Model 465
18.4 Conclusions 471
References 471

19 Optimizing the Stability of Trapped Metastable Spin States 475
Jean-François Létard, Guillaume Chastanet, Philippe Guionneau and Cedric Desplanches
19.1 Introduction 475
19.2 Light-Induced Excited Spin-State Trapping (LIESST) Effect 476
19.2.1 LIESST Effect 476
19.2.2 Variable Temperature Fourier Transform Infrared Spectroscopy (VTFTIR) 477
19.2.3 The Low-Energy Gap 478
19.3 The T(LIESST) Approach: The Case of Mononuclear Compounds 479
19.3.1 Principle of the T(LIESST) Measurement 479
19.3.2 The T(LIESST) Database 482
19.3.3 Parameters Affecting the T_0 Factor 484
19.3.4 The T(LIESST) Approach to Fe(III) Metal Complexes 486
19.4 The T(LIESST) Approach: An Extension to Polynuclear Iron(II) Complexes 488
19.4.1 Binuclear Compounds 488
19.4.2 Trinuclear/Tetranuclear Complexes 492
19.4.3 Hexanuclear Complexes 493
19.4.4 Polymeric Complexes 493
19.4.5 Nanoparticles 494
19.5 Simulation and Extrapolation of a T(LIESST) Experiment 495
19.5.1 Simulation of T(LIESST) Curve 495
19.5.2 Simulation and Extrapolation 497
19.6 Conclusions 500
Acknowledgements 500
References 500

20 Piezo- and Photo-Crystallography Applied to Spin-Crossover Materials 507
Philippe Guionneau and Eric Collet
20.1 Introduction 507
20.2 Spin-Crossover and Piezo-Crystallography 507
20.2.1 Pressure-Induced SCO: Expectation Versus Observation 508
20.2.2 Piezo-Crystallography and SCO: Investigations 509
20.2.3 Piezo-Crystallography and SCO: Challenges 512
20.3 Crystallography of Photoexcited SCO Materials 512
 20.3.1 Photo-Crystallography of SCO: Probing the Change of Molecular Structure 513
 20.3.2 Light-Induced Broken Symmetry: Reaching New States by Laser Excitation 514
 20.3.3 Photoswitching between Different Excited States 515
 20.3.4 Slow Phase Nucleation Dynamical Process and Hysteretic Behaviour 516
 20.3.5 Ultrafast Time-Resolved Crystallography of SCO Photoswitching Dynamics 517
Acknowledgements 519
List of Abbreviations 519
References 520

21 Spin-Transitions in Metal Oxides 527
Jean-Pascal Rueff

21.1 Introduction 527
 21.1.1 CEF Approach to Spin State Stability 528
 21.1.2 Stoner Criterion for Itinerant Magnetism 528
 21.1.3 Probes of the Spin-Transitions 529
21.2 RIXS: A Probe of the 3d Electronic Properties 530
 21.2.1 Overview of the RIXS Process 530
 21.2.2 X-Ray Emission as a Probe for the Spin State 530
 21.2.3 Direct View of the 3d: Pre-Edge Features at the Metal K-Edge by RIXS and PFY-XAS 531
21.3 Experimental Results 533
 21.3.1 High Pressure Magnetic Collapse 534
 21.3.2 Application to Geophysics 536
 21.3.3 Occurrence of Intermediate Spin State in Cobaltates 537
 21.3.4 Photoexcited Spin-Transition in Crossover Compounds and ps Dynamics 538
21.4 Conclusions and Perspectives 538
References 540

Index 543