Contents

Foreword xi
Acknowledgements xiii

1 General introduction 1
 1.1 Introduction 1
 1.2 Decision problems 3
 1.3 MCDA methods 4
 1.4 MCDA software 5
 1.5 Selection of MCDA methods 5
 1.6 Outline of the book 8
 References 9

Part I FULL AGGREGATION APPROACH 11

2 Analytic hierarchy process 13
 2.1 Introduction 13
 2.2 Essential concepts of AHP 13
 2.2.1 Problem structuring 14
 2.2.2 Priority calculation 16
 2.2.3 Consistency check 18
 2.2.4 Sensitivity analysis 19
 2.3 AHP software: MakeItRational 20
 2.3.1 Problem structuring 20
 2.3.2 Preferences and priority calculation 21
 2.3.3 Consistency check 22
 2.3.4 Results 24
 2.3.5 Sensitivity analysis 25
 2.4 In the black box of AHP 27
 2.4.1 Problem structuring 27
 2.4.2 Judgement scales 28
 2.4.3 Consistency 31
 2.4.4 Priorities derivation 33
 2.4.5 Aggregation 39
vi CONTENTS

2.5 Extensions of AHP 40
 2.5.1 Analytic hierarchy process ordering 41
 2.5.2 Group analytic hierarchy process 44
 2.5.3 Clusters and pivots for a large number of alternatives 48
 2.5.4 AHPSort 50

References 54

3 Analytic network process 59
 3.1 Introduction 59
 3.2 Essential concepts of ANP 59
 3.2.1 Inner dependency in the criteria cluster 60
 3.2.2 Inner dependency in the alternative cluster 63
 3.2.3 Outer dependency 64
 3.2.4 Influence matrix 67
 3.3 ANP software: Super Decisions 68
 3.3.1 Problem structuring 69
 3.3.2 Assessment of pairwise comparison 70
 3.3.3 Results 73
 3.3.4 Sensitivity analysis 74
 3.4 In the black box of ANP 76
 3.4.1 Markov chain 76
 3.4.2 Supermatrix 78

References 80

4 Multi-attribute utility theory 81
 4.1 Introduction 81
 4.2 Essential concepts of MAUT 81
 4.2.1 The additive model 83
 4.3 RightChoice 89
 4.3.1 Data input and utility functions 89
 4.3.2 Results 93
 4.3.3 Sensitivity analysis 94
 4.3.4 Group decision and multi-scenario analysis 95
 4.4 In the black box of MAUT 97
 4.5 Extensions of the MAUT method 98
 4.5.1 The UTA method 98
 4.5.2 UTAUMS 105
 4.5.3 GRIP 111

References 112

5 MACBETH 114
 5.1 Introduction 114
 5.2 Essential concepts of MACBETH 114
 5.2.1 Problem structuring: Value tree 115
CONTENTS

5.2.2 Score calculation 117
5.2.3 Incompatibility check 118
5.3 Software description: M-MACBETH 122
 5.3.1 Problem structuring: Value tree 122
 5.3.2 Evaluations and scores 122
 5.3.3 Incompatibility check 125
 5.3.4 Results 127
 5.3.5 Sensitivity analysis 127
 5.3.6 Robustness analysis 127
5.4 In the black box of MACBETH 131
 5.4.1 LP-MACBETH 131
 5.4.2 Discussion 133
References 133

Part II OUTRANKING APPROACH 135

6 PROMETHEE 137
 6.1 Introduction 137
 6.2 Essential concepts of the PROMETHEE method 137
 6.2.1 Unicriterion preference degrees 138
 6.2.2 Unicriterion positive, negative and net flows 142
 6.2.3 Global flows 143
 6.2.4 The Gaia plane 146
 6.2.5 Sensitivity analysis 148
 6.3 The Smart Picker Pro software 149
 6.3.1 Data entry 149
 6.3.2 Entering preference parameters 151
 6.3.3 Weights 153
 6.3.4 PROMETHEE II ranking 155
 6.3.5 Gaia plane 157
 6.3.6 Sensitivity analysis 158
 6.4 In the black box of PROMETHEE 160
 6.4.1 Unicriterion preference degrees 162
 6.4.2 Global preference degree 163
 6.4.3 Global flows 164
 6.4.4 PROMETHEE I and PROMETHEE II ranking 166
 6.4.5 The Gaia plane 167
 6.4.6 Influence of pairwise comparisons 168
 6.5 Extensions of PROMETHEE 170
 6.5.1 PROMETHEE GDSS 170
 6.5.2 FlowSort: A sorting or supervised classification method 172
References 177

7 ELECTRE 180
 7.1 Introduction 180
CONTENTS

7.2 Essentials of the ELECTRE methods

7.2.1 ELECTRE III

7.3 The Electre III-IV software

7.3.1 Data entry

7.3.2 Entering preference parameters

7.3.3 Results

7.4 In the black box of ELECTRE III

7.4.1 Outranking relations

7.4.2 Partial concordance degree

7.4.3 Global concordance degree

7.4.4 Partial discordance degree

7.4.5 Outranking degree

7.4.6 Partial ranking: Exploitation of the outranking relations

7.4.7 Some properties

7.5 ELECTRE-Tri

7.5.1 Introduction

7.5.2 Preference relations

7.5.3 Assignment rules

7.5.4 Properties

References

Part III GOAL, ASPIRATION OR REFERENCE-LEVEL APPROACH

8 TOPSIS

8.1 Introduction

8.2 Essentials of TOPSIS

References

9 Goal programming

9.1 Introduction

9.2 Essential concepts of goal programming

9.3 Software description

9.3.1 Microsoft Excel Solver

9.4 Extensions of the goal programming

9.4.1 Weighted goal programming

9.4.2 Lexicographic goal programming

9.4.3 Chebyshev goal programming

References

10 Data Envelopment Analysis

Jean-Marc Huguenin

10.1 Introduction

10.2 Essential concepts of DEA

10.2.1 An efficiency measurement method
CONTENTS

10.2.2 A DEA case study 237
10.2.3 Multiple outputs and inputs 247
10.2.4 Types of efficiency 248
10.2.5 Managerial implications 249
10.3 The DEA software 252
10.3.1 Building a spreadsheet in Win4DEAP 254
10.3.2 Running a DEA model 255
10.3.3 Interpreting results 257
10.4 In the black box of DEA 262
10.4.1 Constant returns to scale 263
10.4.2 Variable returns to scale 266
10.5 Extensions of DEA 268
10.5.1 Adjusting for the environment 268
10.5.2 Preferences 268
10.5.3 Sensitivity analysis 269
10.5.4 Time series data 270
References 270

Part IV INTEGRATED SYSTEMS 275

11 Multi-method platforms 277
11.1 Introduction 277
11.2 Decision Deck 278
11.3 DECERNS 278
 11.3.1 The GIS module 279
 11.3.2 The MCDA module 281
 11.3.3 The GDSS module 284
 11.3.4 Integration 286
References 287

Appendix: Linear optimization 288
A.1 Problem modelling 288
A.2 Graphical solution 289
A.3 Solution with Microsoft Excel 289

Index 293