Contents

Preface \textit{xiv}
List of Contributors \textit{xxi}
About the Editors \textit{xxv}

1 Basic Considerations for the Analyst for Veterinary Drug Residue Analysis in Animal Tissues 1
\textit{James D. MacNeil and Jack F. Kay}

1.1 Introduction 1
1.2 Pharmacokinetics 1
1.3 Metabolism and Distribution 3
1.4 Choice of Analytical Method 5
1.5 Importance of Regulatory Limits 7
 1.5.1 Derivation of the Acceptable Daily Intake 7
 1.5.2 Derivation of the Acute Reference Dose 9
 1.5.3 Derivation of Maximum Residue Limits 10
 1.5.4 Derivation of Tolerances 12
1.6 International Obligations for Regulatory Analytical Laboratories 13
 1.6.1 Laboratory Accreditation 13
 1.6.2 Validation of Analytical Methods 14
 1.6.3 Consistent Use of Terminology 15
 1.6.4 Sample Handling and Retention 16
 1.6.5 Confirmatory Analysis 17
 1.6.6 Quality Assurance Measures 19
1.7 Conclusions 19
References 21
2 Emerging Techniques in Sample Extraction and Rapid Analysis 27
Wendy C. Andersen, Sherri B. Turnipseed, and Jack J. Lohne

2.1 Introduction 27

2.2 Sample Extraction 28
2.2.1 Solvent Extraction and Protein Precipitation 29
2.2.2 Phase Separation by Salt-Induced Partitioning 30
2.2.3 Phase Separation by Low-Temperature Partitioning 30
2.2.4 Physical Separation by ultra-filtration 31

2.2.5 Sample Extraction with Green Chemistry Techniques 32
2.2.5.1 Pressurized Liquid Extraction 32
2.2.5.2 Room Temperature Ionic Liquids 32
2.2.5.3 Ultrasound-Assisted Extraction 33
2.2.5.4 Microwave-Assisted Extraction 34

2.3 Extract Clean-up with Solid-Phase Sorbents 34
2.3.1 Solid-Phase Extraction Formats 35
2.3.1.1 Cartridge SPE 35
2.3.1.2 Online Cartridge SPE 35
2.3.1.3 Turbulent Flow Clean-up 35
2.3.1.4 Dispersive SPE 36
2.3.1.5 Matrix Solid-Phase Dispersion 37
2.3.1.6 Supported Liquid Extraction 38
2.3.2 Solid-Phase Sorbent Chemistry 38
2.3.2.1 Sorbents for SPE and dSPE 38
2.3.2.2 Molecular Recognition Based on Molecularly Imprinted Polymers 39
2.3.2.3 Molecular Recognition Based on Aptamers 40
2.3.2.4 Restricted Access Materials 41
2.3.2.5 Nanomaterials 43

2.4 Micro-extraction Techniques for Solvent and Sorbent Extraction 47
2.4.1 Solvent Micro-extraction 47
2.4.1.1 Single Drop Micro-extraction 47
2.4.1.2 Dispersive Liquid–Liquid Micro-extraction 48
2.4.1.3 Hollow Fiber Micro-extraction 50
2.4.2 Sorbent Micro-extraction 51
2.4.2.1 Solid-Phase Micro-extraction 52
2.4.2.2 Stir Bar Sorptive Extraction 52
2.4.2.3 Fabric Phase Sorptive Extraction 53

2.5 Emerging Techniques in Liquid Chromatography 54
2.5.1 Ultrahigh Performance Liquid Chromatography 54
2.5.2 Core–Shell Columns 54
2.5.3 Hydrophilic Interaction Liquid Chromatography 55
2.5.4 Other Emerging LC Techniques 56

2.6 Direct Mass Spectrometry Analysis of Sample Extracts 57
2.6.1 Flow Injection Mass Spectrometry 57
2.6.2 Direct Desorption/Ionization Mass Spectrometry 58
2.6.2.1 APCI-Based Techniques 59
2.6.2.2 ESI-Based Techniques 63
2.6.3 Direct MS Considerations for Regulatory Analysis 65
2.7 Ion Mobility Spectrometry 66
2.8 Conclusions 67
References 68

3 Capabilities and Limitations of High-Resolution Mass Spectrometry (HRMS): time-of-flight and Orbitrap™ 93
Anton Kaufmann and Phil Teale
3.1 Available Technology 93
3.1.1 TOF 94
3.1.2 Orbitrap™ 99
3.2 Capabilities and Limitations of the Technology as Compared to LC-MS/MS (Tandem Quadrupole Mass Spectrometer) 104
3.2.1 Selectivity 105
3.2.2 Quantification 108
3.2.3 Sensitivity 108
3.2.4 Validation of HRMS-Based Methods 110
3.2.5 Method Diagnosis Tools 112
3.3 Analytical Methods for Veterinary Drug Residues 112
3.3.1 Initial Applications (Non-antimicrobial Veterinary Drugs) 112
3.3.2 Methods Limited to a Single-Drug Group 113
3.3.3 Methods Covering Multiple-Drug Groups 114
3.3.4 Method Components 115
3.3.4.1 Extraction and Clean-up 115
3.3.4.2 Separation 117
3.3.5 Residue Testing of Anabolic Steroids and Growth Promoters 119
3.4 Doping Control 121
3.4.1 GC-HRMS 121
3.4.2 Accurate Mass LC-MS and LC-MS/MS in Doping Control 122
3.4.3 “Dilute and Shoot” with Accurate Mass LC-MS 123
3.5 Accurate Mass MS in Research and Metabolism Studies 124
3.6 Designer Drugs and Generic Detection Strategies 125
3.6.1 Metabolomics in Food/Residue Analysis 127
3.7 The Future of Accurate Mass Spectrometry in Residue Analysis 129
References 131

4 Hormones and β-Agonists 141
Leendert A. van Ginkel, Toine Bovee, Marco H. Blokland, Saskia S. Sterk, Nathalie G.E. Smits, Jelka Pleadin and Ana Vulić
4.1 Introduction 141
4.2 Advances in Classical Analysis of Exogenous Synthetic Hormones 143
 4.2.1 Multi-methods: Multi-residue Methods (MRMs) and Multi-class, Multi-residue Methods (MCMRs) 143
 4.2.2 Alternatives in Sample Preparation and Clean-up 144
 4.2.2.1 Generic 144
 4.2.2.2 QuEChERS 144
 4.2.2.3 Molecularly Imprinted Polymers (MIPs) 154
 4.2.2.4 Hollow-Fiber Micro-extractions and Similar Techniques 154
 4.2.2.5 Dilute and Shoot 155
 4.2.3 Advances in Separation 155
 4.2.3.1 Miniaturized Separation Techniques 155
 4.2.3.2 Turbulent Flow LC 156
 4.2.3.3 Ion Mobility Spectrometry 156
 4.2.3.4 Techniques to Facilitate IRMS: High-Temperature LC, Two-Dimensional Chromatography, and Others 156
 4.2.4 Advances in Detection 157
 4.2.4.1 Isotope-Ratio Mass Spectrometry (IRMS) 158
 4.2.4.2 Ambient Ionization Mass Spectrometry (AMS) 158
 4.2.4.3 Other Techniques 159
 4.2.5 Classic and New Analytical Matrices 160
 4.2.6 Conclusions on Analysis of Exogenous Synthetic Hormones 161
4.3 Bio-Based Screening Methods for Steroid Hormones, β-Agonists, and Growth Hormones 161
 4.3.1 Estrogens 162
 4.3.1.1 Binding Assays for Estrogens 162
 4.3.1.2 Bioassays for Estrogens 164
 4.3.2 Androgens 166
 4.3.2.1 Binding Assays for Androgens 166
 4.3.2.2 Bioassays for Androgens 168
 4.3.3 Metabolic Profiling Assay to Detect Abuse of Estrogens and Androgens 171
 4.3.4 Progestagens and Glucocorticoids 171
 4.3.4.1 Binding Assays for Progestagens and Glucocorticoids 171
 4.3.4.2 Bioassays for Progestagens and Glucocorticoids 172
 4.3.5 Thyreostatics 173
 4.3.6 β-Agonists 175
 4.3.6.1 Binding Assays for β-Agonists 175
 4.3.6.2 Bioassays for β-Agonists 176
 4.3.7 Growth Hormones 177
 4.3.7.1 Recombinant Growth Hormone in Cattle 177
 4.3.7.2 Growth Hormone in Fish 178
 4.3.7.3 Growth Hormone in Horse 179
4.3.8 Conclusions and Future Developments in Bio-Based Screening Methods 179
4.4 Natural Hormones 180
4.4.1 Natural Compounds Formed During the Digestion Process 182
4.4.1.1 Prednisolone 182
4.4.2 Feed-Related Compounds 183
4.4.2.1 Thiouracil 183
4.4.2.2 Zeranol 184
4.4.3 The Natural Hormones 17β-Estradiol, 17β-Testosterone, and Progesterone 186
4.4.4 Nortestosterone 189
4.4.5 Boldenone 192
4.4.6 Protein Hormones 195
4.4.6.1 Insulin 195
4.4.6.2 Insulin-Like Growth Factor-1 (IGF-1) 196
4.4.6.3 Growth Hormone 196
4.4.6.4 Growth Hormone Secretagogues 197
4.4.7 Future Perspectives (Natural Hormones) 199
4.5 Control for Synthetic β-Agonists: Screening and Confirmatory Methods 199
4.5.1 Basic Information on Nature and Regulatory Controls 199
4.5.2 Mechanism of Action 201
4.5.3 Therapeutic Use and Abuse 202
4.5.4 Absorption and Elimination 203
4.5.5 Bioavailability and Residues 203
4.5.6 Determination in Biological Materials 204
4.5.6.1 Sample Preparation Techniques 204
4.5.6.2 Screening Methods 206
4.5.6.3 Current Approaches in Analysis of β-Agonists 206
4.5.7 Future Perspective (β-Agonists) 208
References 210

5 Analysis of Anthelmintic and Anticoccidial Drug Residues in Animal-Derived Foods 245
Sarah Tuck, Ambrose Furey and Martin Danaher
5.1 Introduction 245
5.2 Chemistry and Mode of Action 246
5.2.1 Benzimidazoles 246
5.2.2 Imidazothiazoles 249
5.2.3 Tetrahydropyrimidines 249
5.2.4 Organophosphates 250
5.2.5 Flukicides 251
5.2.6 Macrocyclic Lactones 251
5.2.7 Other Anthelmintic Drugs 252
Contents

5.2.8 Ionophores 255
5.2.9 Chemical Anticoccidials 258
5.3 Legislation 258
5.4 Sample Preparation Protocols for Anti-parasitic Agents in Food Matrices 264
5.4.1 Selective Sample Preparation Procedures for HPLC-UV/FL Methods 264
5.4.2 Selective Sample Preparation Procedures for LC-MS and LC-MS/MS 267
5.4.2.1 Anthelmintic Drug Residues 267
5.4.2.2 Anticoccidials 270
5.4.3 Multi-class Sample Preparation Procedures 273
5.5 LC-MS and GC-MS Detection of Anti-parasitic Agents in Food 275
5.5.1 Benzimidazole and Levamisole 275
5.5.2 Macrocyclic Lactones 277
5.5.3 Flukicides 278
5.5.4 Other Anthelmintics 278
5.5.5 Multi-residue Methods That Combine Different Anthelmintic or Drug Groups 279
5.5.6 Ionophore Anticoccidial Agents 279
5.5.7 Chemical Anticoccidials 282
5.5.8 Applications of GC-MS 285
5.5.9 Multi-residue Anticoccidial Methods 286
5.5.10 Multi-class Methods 290
5.6 Conclusions 292
5.6 References 293

6 Sedatives and Tranquilizers 311
Vesna Cerkvenik Flajs and James D. MacNeil
6.1 Introduction 311
6.2 Classification and Representative Compounds 312
6.3 Use of Sedatives and Tranquilizers to Prevent Stress Syndrome during the Transport of Pigs to Slaughter 312
6.4 Sedatives and Tranquilizers with an Approved Veterinary Use in Food-Producing Animals 314
6.4.1 Azaperone 315
6.4.1.1 Indication, Dosing, and Withdrawal Period 315
6.4.1.2 Absorption, Distribution, Biotransformation, and Excretion 315
6.4.1.3 Subacute and Acute Toxicity, Mutagenicity, and Carcinogenicity 317
6.4.1.4 Embryotoxicity and Teratogenicity 318
6.4.1.5 Acceptable Daily Intake (ADI) 318
6.4.1.6 Marker Residue and Target Tissues 318
6.4.2 Carazolol 318
6.4.2.1 Indication, Dosing, and Withdrawal Period 318

References
6.4.2.2 Absorption, Distribution, Biotransformation, and Excretion 319
6.4.2.3 Subacute and Acute Toxicity, Mutagenicity, and Carcinogenicity 320
6.4.2.4 Embryotoxicity and Teratogenicity 321
6.4.2.5 Acceptable Daily Intake (ADI) 321
6.4.2.6 Acute Reference Dose (ARfD) and Residues at the Injection Site 321
6.4.2.7 Marker Residue and Target Tissues 322
6.4.3 Xylazine 322
6.4.3.1 Indication, Dosing, and Withdrawal Period 322
6.4.3.2 Absorption, Distribution, Biotransformation, and Excretion 322
6.4.3.3 Subacute and Acute Toxicity, Mutagenicity, Embryotoxicity, Teratogenicity, and Carcinogenicity 323
6.4.3.4 Acceptable Daily Intake (ADI) 324
6.4.3.5 Marker Residue and Target Tissues 324
6.5 Sedatives and Tranquilizers without an Approved Veterinary Use in Food-Producing Animals 325
6.5.1 Chlorpromazine 325
6.5.1.1 Subacute and Acute Toxicity, Mutagenicity, Carcinogenicity, and Genotoxicity 325
6.5.1.2 Reproductive Effects 326
6.5.1.3 Absorption, Distribution, Biotransformation, and Excretion 326
6.5.1.4 Marker Residue and Target Tissues 327
6.5.2 Propionylpromazine (Propiopromazine) 327
6.5.2.1 Marker Residue and Target Tissues 328
6.5.3 Acepromazine (Acetylpromazine) 328
6.5.3.1 Marker Residue and Target Tissues 329
6.5.4 Diazepam 329
6.5.4.1 Absorption, Distribution, Biotransformation, and Excretion 329
6.5.4.2 Marker Residue and Target Tissues 330
6.5.5 Haloperidol 331
6.5.5.1 Absorption, Distribution, Biotransformation, and Excretion 331
6.5.5.2 Marker Residue and Target Tissues 332
6.5.6 Ketamine 333
6.5.6.1 Absorption, Distribution, Biotransformation, and Excretion 333
6.5.6.2 Marker Residue and Target Tissues 334
6.6 Cocktails 335
6.7 Issues of Environmental Contamination 335
6.8 Maximum Residue Limits (MRLs) 336
6.9 Systematic Veterinary Control over Residues and Surveillance Studies 336
6.10 Analyte Stability 339
6.11 Analytical Methods for Determination of Residues 340
6.11.1 Matrices 341
6.11.2 Extraction from the Matrix 341
6.11.3 Clean-up of Sample Extracts 350
6.11.4 Measurement Techniques 351
6.11.4.1 High-Performance Liquid Chromatography (HPLC) 351
6.11.4.2 Thin-Layer Chromatography (TLC) 353
6.11.4.3 Gas Chromatography (GC) 353
6.11.4.4 Immunochemical Methods 354
6.11.4.5 Mass Spectrometry 355
6.11.5 Contemporary Sample Preparation Techniques 357
6.11.5.1 Extraction 358
6.11.5.2 One-Step Sample Clean-up 358
6.11.5.3 Multi-step Clean-up Techniques 359
6.12 Performance and Validation of the Analytical Methods 361

References 362

7 The Use of Pyrethroids, Carbamates, Organophosphates, and Other Pesticides in Veterinary Medicine 383
Christine Akre

7.1 Introduction 383
7.1.1 History of Pesticide Use in Veterinary Medicine 384
7.1.2 Development of Chemical Pesticides 385
7.2 Veterinary Drug Properties, Structures, and Regulation 386
7.2.1 Organochlorines 386
7.2.2 Pyrethrins and Synthetic Pyrethroids 387
7.2.3 Organophosphates and Carbamates 391
7.2.4 Formamidines 394
7.2.5 Insect Growth Regulators 395
7.2.6 Phenylpyrazoles and Neonicotinoids 396
7.2.7 Synergists 396
7.2.8 Regulation and Maximum Residue Limits 397
7.3 Toxicology, Pharmacokinetics, and Metabolism 399
7.3.1 Pyrethroids 400
7.3.2 Organophosphates and Carbamates 401
7.3.3 Formamidines 402
7.3.4 Insect Growth Regulators 403
7.3.5 Phenylpyrazoles and Neonicotinoids 403
7.4 Analytical Methods 403
7.4.1 Detection Methods 404
7.4.2 Extraction Methods 408
7.4.2.1 Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) 408
7.4.2.2 Matrix Solid-Phase Dispersion (MSPD) 409
7.4.2.3 Solid-Phase Micro-extraction (SPME) 410
7.4.2.4 Pressurized Liquid Extraction/Accelerated Solvent Extraction (PLE/ASE) 411
7.4.2.5 Contaminated Feed 412
7.4.2.6 Miscellaneous Methods 413
7.4.2.7 Honey 413
7.5 Conclusion 414
References 415

8 Non-steroidal Anti-inflammatory Drugs 427
Joe O. Boison, Fernando J. Ramos and Alan Chicoine
8.1 Introduction: What Are Pain Killers (Analgesics) and NSAIDs? 427
8.1.1 The Salicylates 439
8.1.2 Arylacetic Acid Derivatives: Pyrrole Acetic Acid Derivatives 439
8.1.3 2-Arylpropionic Acid Derivatives (Profens) 439
8.1.4 Arylalkanoic Acid Derivatives (Indene/Indole Acetic Acid Derivatives) 440
8.1.5 N-Anthranilic Acid Derivatives (Fenamic Acid Derivatives or Fenamates) 440
8.1.6 Coxibs or Cox-2-Selective Inhibitors 440
8.1.7 Oxicams or Enolic Acid Derivatives (Prodrugs) 441
8.1.8 The Anilides 441
8.1.9 Phenylpyrazolones 441
8.2 Veterinary Drug Properties, Structures, and Regulation 441
8.3 Pharmacokinetics/Metabolism 442
8.4 Acceptable Daily Intake (ADI) 444
8.5 Maximum Residue Limits/Tolerances 445
8.6 Analysis of NSAID Residues in Food 448
8.6.1 Single Analyte Methods 449
8.6.1.1 Carprofen 449
8.6.1.2 Diclofenac 453
8.6.1.3 Flunixin and Its Metabolites 453
8.6.1.4 Ibuprofen 454
8.6.1.5 Meloxicam 455
8.6.1.6 Mefenamic and Flufenamic Acids 456
8.6.1.7 Metamizole 456
8.6.1.8 Ketoprofen and Its Metabolites 457
8.6.1.9 Phenylbutazone and Its Metabolites 458
8.6.1.10 Salicylic acid and Its Metabolites 458
8.6.1.11 Tolfenamic Acid 459
8.6.2 Multi-analyte Methods 460
8.6.2.1 LC-MS/MS Methods 460
8.6.2.2 GC-MS/MS Methods 471
8.6.2.3 LC-MS Methods 472
8.6.2.4 GC-MS Methods 472
8.6.2.5 HPLC Methods 473
8.7 Literature Reviews of Analytical Methods for NSAIDs in Biological Samples 474
8.8 New Developments in NSAIDs 475
8.9 Conclusion 476
References 477

9 Certain Dyes as Pharmacologically Active Substances in Fish Farming and Other Aquaculture Products 497
Eric Verdon and Wendy C. Andersen

9.1 Introduction 497
9.2 Therapeutic Applications and Chemistry of Certain Dyes Used in Fish Farming 500
9.2.1 Triarylmethanes 501
9.2.2 Phenothiazines 504
9.2.3 Xanthenes 505
9.2.4 Acridines 505
9.2.5 Azo Dyes 506
9.3 Toxicological Issues 506
9.3.1 Triarylmethanes 506
9.3.2 Phenothiazines 507
9.3.3 Xanthenes 508
9.3.4 Acridines 508
9.3.5 Azo Dyes 509
9.4 Regulatory Issues 509
9.5 Analytical Methods for Residue Control 511
9.5.1 Procedures to Extract and Analyze Triphenylmethane Dye Residues in Fish and Shellfish Muscle 517
9.5.2 Analytical Methods for Other Dyes in Seafood 520
9.5.2.1 Phenothiazines 521
9.5.2.2 Xanthenes 521
9.5.2.3 Acridines 522
9.5.2.4 Azo Dyes 522
9.5.3 Multi-class Dye Residue Analysis Methods 523
9.5.4 Bioanalytical Screening Methods 524
9.5.5 Other Notable Analytical Procedures 525
9.6 Recent Trading Issues with Dye Alerts 526
9.7 Conclusions 531
References 531

10 Method Validation and Quality Assurance/Quality Control Approaches for Multi-residue Methods 549
Andrew Cannavan, Jack F. Kay and Zora Jandrić

10.1 Introduction 549
10.2 Sources of Guidance on Method Validation 550
10.2.1 CAC Guidelines 552
10.2.1.1 Scope of the Codex Guidelines 553
10.2.2 European Commission Decision 2002/657/EC 554
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.2.1 Performance Characteristics</td>
<td>554</td>
</tr>
<tr>
<td>10.2.2.2 Minimum Required Performance Limits</td>
<td>555</td>
</tr>
<tr>
<td>10.2.2.3 Interpretation of Decision 2002/657/EC</td>
<td>556</td>
</tr>
<tr>
<td>10.3 Practical Considerations</td>
<td>557</td>
</tr>
<tr>
<td>10.3.1 Scope of the MRM</td>
<td>557</td>
</tr>
<tr>
<td>10.3.2 Dynamic Range</td>
<td>558</td>
</tr>
<tr>
<td>10.3.3 Internal Standards</td>
<td>559</td>
</tr>
<tr>
<td>10.4 Examples of Validation Protocols for MRMs</td>
<td>561</td>
</tr>
<tr>
<td>10.4.1 Validation of MRMs Using LC-MS/MS</td>
<td>561</td>
</tr>
<tr>
<td>10.4.2 Validation of MRMs Using Higher Resolution Mass Spectrometry</td>
<td>563</td>
</tr>
<tr>
<td>10.5 Quality Assurance/Quality Control</td>
<td>565</td>
</tr>
<tr>
<td>10.5.1 QC of Analytical Methods</td>
<td>565</td>
</tr>
<tr>
<td>10.5.1.1 Selectivity/Specificity</td>
<td>565</td>
</tr>
<tr>
<td>10.5.1.2 Cross-Talk</td>
<td>566</td>
</tr>
<tr>
<td>10.5.1.3 Analytical Standards</td>
<td>567</td>
</tr>
<tr>
<td>10.5.1.4 Control Charts</td>
<td>567</td>
</tr>
<tr>
<td>10.5.1.5 Proficiency Testing</td>
<td>567</td>
</tr>
<tr>
<td>10.6 Conclusion</td>
<td>569</td>
</tr>
<tr>
<td>References</td>
<td>569</td>
</tr>
<tr>
<td>Index</td>
<td>575</td>
</tr>
</tbody>
</table>