Contents

Preface xi

1 General Introduction 1
 1.1 Historical Perspectives 1
 1.2 Biomimetic Materials Science and Engineering 2
 1.2.1 Biomimetic Materials from Biology to Engineering 2
 1.2.2 Two Aspects of Biomimetic Materials Science and Engineering 3
 1.2.3 Why Use Biomimetic Design of Advanced Engineering Materials? 4
 1.2.4 Classification of Biomimetic Materials 7
 1.3 Strategies, Methods, and Approaches for the Biomimetic Design of Engineering Materials 7
 1.3.1 General Approaches for Biomimetic Engineering Materials 9
 1.3.2 Special Approaches for Biomimetic Engineering Materials 10
 References 11

Part I Biomimetic Structural Materials and Processing 13

2 Strong, Tough, and Lightweight Materials 15
 2.1 Introduction 15
 2.2 Strengthening and Toughening Principles in Soft Tissues 16
 2.2.1 Overview of Spider Silk 16
 2.2.2 Microstructure of Spider Silk 17
 2.2.3 Mechanical Properties of Spider Silk 19
 2.2.4 Strengthening and Toughening Mechanisms of Spider Silk 20
 2.3 Strong and Tough Engineering Materials and Processes Mimicking Spider Silk 23
 2.3.1 Biomimetic Design Principles for Strong and Tough Materials 23
 2.3.2 Bioinspired Carbon Nanotube Yarns Mimicking Spider Silk Structure 24
2.4 Strengthening and Toughening Mechanisms in Hard Tissues

2.4.1 Nacre Microstructure
2.4.2 Deformation and Fracture Behavior of Nacre
2.4.3 Strengthening Mechanism in Nacre
2.4.4 Toughening Mechanisms in Nacre
2.4.5 Strengthening/Toughening Mechanisms in Other Hard Tissues

2.5 Biomimetic Design and Processes for Strong and Tough Ceramic Composites

2.5.1 Biomimetic Design Principles for Strong and Tough Materials
2.5.2 Layered Ceramic/Polymer Composites
2.5.3 Layered Ceramic/Metal Composites
2.5.4 Ceramic/Ceramic Laminate Composites

References

3 Wear-resistant and Impact-resistant Materials

3.1 Introduction
3.2 Hard Tissues with High Wear Resistance
3.2.1 Teeth: A Masterpiece of Biological Wear-resistant Materials
3.2.2 Microstructures of Enamel, Dentin, and Dentin-enamel Junction
3.2.3 Mechanical Properties of Dental Structures
3.2.4 Anti-wear Mechanisms of Enamel
3.2.5 Toughening Mechanisms of the DEJ
3.3 Biomimetic Designs and Processes of Materials for Wear-resistant Materials
3.3.1 Bioinspired Design Strategies for Wear-resistant Materials
3.3.2 Enamel-mimicking Wear-resistant Restorative Materials
3.3.3 Biomimetic Cutting Tools Based on the Sharpening Mechanism of Rat Teeth
3.3.4 DEJ-mimicking Functionally Graded Materials
3.4 Biological Composites with High Impact and Energy Absorbance
3.4.1 Mineral-based Biocomposites: Dactyl Club
3.4.2 Protein-based Biocomposites: Horns and Hooves
3.4.3 Bioinspired Design Strategies for Highly Impact-resistant Materials
3.5 Biomimetic Impact-resistant Materials and Processes
3.5.1 Dactyl Club-Biomimicking Highly Impact-resistant Composites
3.5.2 Damage-tolerant CNT-reinforced Nanocomposites Mimicking Hooves

References

4 Adaptive and Self-shaping Materials

4.1 Introduction
4.2 The Biological Models for Adapting and Morphing Materials
4.2.1 Reversible Stiffness Change of Sea Cucumber via Switchable Fiber Interactions
4.2.2 Gradient Stiffness of Squid Beak via Gradient Fiber Interactions
4.2.3 Shape Change in Plant Growth via Controlled Reinforcement Redistribution

References
4.2.4 Self‐shaping by Pre‐programed Reinforcement Architectures 86
4.2.5 Biomimetic Design Strategies for Morphing and Adapting 88
4.3 Biomimetic Synthetic Adaptive Materials and Processes 90
4.3.1 Adaptive Nanocomposites with Reversible Stiffness Change Capability 90
4.3.2 Squid‐beak‐inspired Mechanical Gradient Nanocomposites and Fabrication 93
4.3.3 Biomimetic Helical Fibers and Fabrication 94
4.3.4 Water‐activated Self‐shaping Materials and Fabrication 95

References 99

5 Materials with Controllable Friction and Reversible Adhesion 101
5.1 Introduction 101
5.2 Dry Adhesion: Biological Reversible Adhesive Systems Based on Fibrillar Structures 102
5.2.1 Gecko and Insect Adhesive Systems 102
5.2.2 Hierarchical Fibrillar Structure of Gecko Toe Pads 103
5.2.3 Adhesive Properties of Gecko Toe Pads 104
5.2.4 Mechanics of Fibrillar Adhesion 107
5.2.5 Bioinspired Strategies for Reversible Dry Adhesion 112
5.3 Gecko‐mimicking Design of Fibrillar Dry Adhesives and Processes 112
5.3.1 Biomimetic Design Based on Geometric Replications of the Gecko Adhesive System 115
5.3.2 Biomimetic Design of Hybrid/Smart Fibrillar Adhesives 118
5.4 Wet Adhesion: Biological Reversible Adhesive Systems Based on Soft Film 121
5.4.1 Tree Frog Adhesive System 121
5.4.2 Adhesive Mechanism of Tree Frog Toe Pads 122
5.5 Artificial Adhesive Systems Inspired by Tree Frogs 123
5.6 Slippery Surfaces and Friction/Drag Reduction 125
5.6.1 Pitcher Plant: A Biological Model of a Slippery Surface 125
5.6.2 Shark Skin: A Biological Model for Drag Reduction 126
5.7 Biomimetic Designs and Processes of Slippery Surfaces 128
5.7.1 Pitcher‐inspired Design of a Slippery Surface 128
5.7.2 Shark Skin‐inspired Design for Drag Reduction 130

References 132

6 Self‐healing Materials 135
6.1 Introduction 135
6.2 Wound Healing in Biological Systems 136
6.2.1 Self‐healing via Microvascular Networks 136
6.2.2 Self‐healing with Microencapsulation/Micropipe Systems in Plants 138
6.2.3 Skeleton/Bone Healing Mechanism 140
6.2.4 Tree Bark Healing Mechanism 141
6.2.5 Bioinspired Self‐healing Strategies 142
6.3 Bioinspired Self-healing Materials 144
 6.3.1 Self-healing Materials with Vascular Networks 144
 6.3.2 Biomimetic Self-healing with Microencapsulation Systems 146
 6.3.3 Biomimetic Self-healing with Hollow Fiber Systems 148
 6.3.4 Self-healing Brittle Materials Mimicking Bone and Tree Bark Healing 149
 6.3.5 Bacteria-mediated Self-healing Concretes 151

References 152

Part II Biomimetic Functional Materials and Processing 155

7 Self-cleaning Materials and Surfaces 157
 7.1 Introduction 157
 7.2 Fundamentals of Wettability and Self-cleaning 158
 7.3 Self-cleaning in Nature 160
 7.3.1 Lotus Effect: Superhydrophobicity-induced Self-cleaning 160
 7.3.2 Slippery Surfaces: Superhydrophilicity-induced Self-cleaning 162
 7.3.3 Self-cleaning in Fibrillar Adhesive Systems 164
 7.3.4 Self-cleaning in Soft Film Adhesive Systems 168
 7.3.5 Underwater Organisms: Self-cleaning Surfaces 169
 7.3.6 Biomimetic Strategies for Self-cleaning 171
 7.4 Engineering Self-cleaning Materials and Processes via Bioinspiration 173
 7.4.1 Lotus Effect–inspired Self-cleaning Surfaces and Fabrication 174
 7.4.2 Superhydrophilically-based Self-cleaning Surfaces and Fabrication 178
 7.4.3 Gecko-inspired Self-cleaning Dry Adhesives and Fabrication 180
 7.4.4 Underwater Organisms–inspired Self-cleaning Surfaces and Fabrication 183

References 185

8 Stimuli-responsive Materials 188
 8.1 Introduction 188
 8.2 The Biological Models for Stimuli-responsive Materials 189
 8.2.1 Actuation Mechanism in Muscles 189
 8.2.2 Mechanically Stimulated Morphing Structures of Venus Flytraps 191
 8.2.3 Sun Tracking: Heliotropic Plant Movements Induced by Photo Stimuli 194
 8.2.4 Biomimetic Design Strategies for Stimuli-responsive Materials 196
 8.3 Biomimetic Synthetic Stimuli-responsive Materials and Processes 198
 8.3.1 Motor Molecules as Artificial Muscle: Bottom-up Approach 198
 8.3.2 Electroactive Polymers as Artificial Muscle: Top-down Approach 199
 8.3.3 Venus Flytrap Mimicking Nastic Materials 202
 8.3.4 Biomimetic Light-tracking Materials 203

References 207
9 Photonic Materials

9.1 Introduction 210

9.2 Structural Colors in Nature 211
9.2.1 One-dimensional Diffraction Gratings 213
9.2.2 Multilayer Reflectors 214
9.2.3 Two-dimensional Photonic Materials 215
9.2.4 Three-dimensional Photonic Crystals 217
9.2.5 Tunable Structural Color in Organisms 218

9.3 Natural Antireflective Structures and Microlenses 220
9.3.1 Moth-eye Antireflective Structures 220
9.3.2 Brittlestar Microlens with Double-facet Lens 222
9.3.3 Biomimetic Strategies for Structural Colors and Antireflection 224

9.4 Bioinspired Structural Coloring Materials and Processes 224
9.4.1 Grating Nanostructures: Lamellar Ridge Arrays 227
9.4.2 Multilayer Photonic Nanostructures and Fabrication Approaches 229
9.4.3 Three-dimensional Photonic Crystals and Fabrication 230
9.4.4 Tunable Structural Colors of Bioinspired Photonic Materials 232
9.4.5 Electrically and Mechanically Tunable Opals 233

9.5 Bioinspired Antireflective Surfaces and Microlenses 233

References 236

10 Catalysts for Renewable Energy 240

10.1 Introduction 240

10.2 Catalysts for Energy Conversion in Biological Systems 242
10.2.1 Biological Catalysists in Biological “Fuel Cells” 242
10.2.2 Oxygen Evolution Catalyzed by Water-oxidizing Complex 242
10.2.3 Biological Hydrogen Production with Hydrogenase Enzymes 245
10.2.4 Natural Photosynthesis and Enzymes 245
10.2.5 Biomimetic Design Principles for Efficient Catalytic Materials 247

10.3 Bioinspired Catalytic Materials and Processes 248
10.3.1 Bioinspired Catalyst for Hydrogen Fuel Cells 249
10.3.2 WOC-biomimetic Catalysts for Oxygen Evalutation Reactions in Water Splitting 255
10.3.3 Hydrogenase-biomimetic Catalysts for Hydrogen Generation 259
10.3.4 Artificial Photosynthesis 261

References 266

Part III Biomimetic Processing 271

11 Biomineralization and Biomimetic Materials Processing 273

11.1 Introduction 273

11.2 Materials Processing in Biological Systems 274
11.2.1 Biomineralization 274
11.2.2 Surface-directed Biomineralization 277
11.2.3 Enzymatic Biomineralization 278
11.2.4 Organic Matrix-templated Biomineralization .. 279
11.2.5 Homeostasis and Storage of Metallic Nanoparticles 282
11.2.6 Bioinspired Strategies for Synthesizing Processes 282
11.3 Biomimetic Materials Processes .. 284
 11.3.1 Synthesis of Mineralized Collagen Fibrils with Macromolecular Templates .. 284
 11.3.2 Synthesis of Nanoparticles and Films Catalyzed with Silicatein 286
 11.3.3 Synthesis of Magnetite using Natural and Synthetic Proteins 288
 11.3.4 Nanofabrication of Barium Titanate using Artificial Proteins 290
 11.3.5 Protein-assisted Nanofabrication of Metal Nanoparticles 292
References .. 294

Index ... 298