Contents

List of Contributors xi
Preface xiii
List of Abbreviations xv

1 Electrification of Vehicles: Policy Drivers and Impacts in Two Scenarios 1
 Martin Albrecht, Måns Nilsson and Jonas Åkerman
 1.1 Introduction 1
 1.2 Policy Drivers, Policies and Targets 2
 1.2.1 Finland 6
 1.2.2 Sweden 7
 1.2.3 Denmark 8
 1.2.4 Norway 10
 1.2.5 Nordic Comparison 10
 1.3 Scenarios and Environmental Impact Assessment 11
 1.4 Future Policy Drivers for a BEV and PHEV Breakthrough 16
 1.4.1 Entrepreneurial Activities 18
 1.4.2 Knowledge Development and Knowledge Diffusion 19
 1.4.3 Positive External Effects 19
 1.4.4 Resource Mobilization 19
 1.4.5 Guidance 20
 1.4.6 Market Creation 20
 1.4.7 Creation of Legitimacy 23
 1.4.8 Materialization 23
 1.5 Results and Conclusion 24

Acknowledgements 25
References 25

2 EVs and the Current Nordic Electricity Market 32
 Christian Bang, Camilla Hay, Mikael Togeby and Charlotte Søndergren
 2.1 Introduction 32
 2.2 Electricity Consumption by EVs 33
 2.2.1 Typical Consumption of an EV 33
 2.2.2 Potential Challenges for Electrical Grids 33
2.3 Market Actors 37
 2.3.1 Electricity Consumer: Individual Vehicle Owner 37
 2.3.2 DSO/Grid Company 38
 2.3.3 Retailer 38
 2.3.4 Generator 38
 2.3.5 Fleet Operators 38
 2.3.6 TSO 39
 2.3.7 Nord Pool 39
2.4 Nordic Electricity Markets 39
 2.4.1 The Spot Market and the Financial Market 40
 2.4.2 Elbas Market (Intraday) 41
 2.4.3 Regulating Power Market 42
 2.4.4 Future Development of the Nordic Regulating Power Market 44
2.5 Electricity Price 44
 2.5.1 Composition of End-User Price 44
 2.5.2 Fixed Tariffs for Losses 45
 2.5.3 Transport and Local Congestions 45
 2.5.4 Taxes 46
 2.5.5 Future Tariff Possibilities 46
2.6 Electricity Sales Products for Demand Response 46
 2.6.1 Fixed Price 46
 2.6.2 Time-of-Use Products 46
 2.6.3 Critical Peak Pricing 47
 2.6.4 Spot Price 47
 2.6.5 Future Contract Possibilities Including Regulating Power Market 48
2.7 EVs in Different Markets 48
 2.7.1 Contract Structure 1: The Current Spot Market 49
 2.7.2 Contract Structure 2: The Spot Market and Regulating Power Market 50
 2.7.3 Contract Structure 3: EVs Controlled by a Fleet Operator 52
 2.7.4 Summary 52
References 53

3 Electric Vehicles in Future Market Models 54
Charlotte Søndergren, Christian Bang, Camilla Hay and Mikael Togeby
3.1 Introduction 54
3.2 Overview 54
 3.2.1 Spot Market 55
 3.2.2 Regulating Power Market 55
 3.2.3 Automatic Reserves 55
 3.2.4 Congestions in the Distribution Grid 55
 3.2.5 Role of the Distribution System Operator 56
3.3 Alternative Markets for Regulating Power and Reserves for EV Integration 56
 3.3.1 The Regulating Power Market 56
3.3.2 Market for Automatic Reserves 58
3.3.3 Proposal from the Danish TSO on Self-Regulation 58
3.3.4 FlexPower 60
3.3.5 Other Potential Alterations to Regulating Power Market 63
3.3.6 Demand as Frequency-Controlled Reserves 64
3.3.7 Frequency Regulation Via V2G 64

3.4 Alternative Market Models for EV Integration 66
3.4.1 Locational Prices (Nodal Pricing in the Transmission Grid) 66
3.4.2 Complex Bidding 67

3.5 Management of Congestions in the Distribution Grid 69
3.5.1 Section Overview 70
3.5.2 The Role of the DSO 71
3.5.3 Overall Approach: The Order of System Balance and Grid Congestions 72
3.5.4 Payment for the Right to Use Capacity 74
3.5.5 Variable Tariffs (Time of Use) 75
3.5.6 Progressive Power Tariffs 75
3.5.7 Direct Control: Regulatory Management 76
3.5.8 Bid System 76
3.5.9 Dynamic Distribution Grid Tariffs 77
3.5.10 Comparison 79
3.5.11 Operation of a VPP for EVs 80

References 81

4 Investments and Operation in an Integrated Power and Transport System 82
Nina Juul and Trine Krogh Boomsma

4.1 Introduction 82
4.2 The Road Transport System 83
4.2.1 Expectations of Future Road Transport System and its Integration with the Power System 84
4.3 The Energy Systems Analysis Model, Balmorl 84
4.4 The Modelling of Electric Drive Vehicles 85
4.4.1 Assumptions 86
4.4.2 Costs 87
4.4.3 Transport Demand 88
4.4.4 Power Flows 88
4.4.5 Variable Load Factor 94
4.4.6 BEVs 94
4.4.7 EDVs Contributing to Capacity Credit Equation 94
4.5 Case Study 96
4.5.1 Vehicle Technologies 96
4.5.2 Driving Patterns/Plug-in Patterns 98
4.6 Scenarios 101
4.7 Results 101
4.7.1 Costs 102
4.7.2 Investments and Production 102
Contents

4.7.3 Introducing EDVs 106
4.7.4 Charging the PHEVs 107
4.8 Results from EDVs Contribution to Capacity Credit 108
4.9 Discussion and Conclusion 110
4.10 Summary 111
References 111

5 Optimal Charging of Electric Drive Vehicles: A Dynamic Programming Approach 113
Stefanos Delikaraoglou, Karsten Capion, Nina Jual and Trine Krogh Boomsma

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>5.2 Hybrid Electric Vehicles</td>
<td>115</td>
</tr>
<tr>
<td>5.3 Optimal Charging on Market Conditions</td>
<td>115</td>
</tr>
<tr>
<td>5.4 Dynamic Programming</td>
<td>117</td>
</tr>
<tr>
<td>5.5 Fleet Operation</td>
<td>118</td>
</tr>
</tbody>
</table>
| 5.6 Electricity Prices | 119
 5.6.1 A Markov Chain for Electricity Prices | 119
 5.6.2 The Price–Load Dependency | 119 |
| 5.7 Driving Patterns | 120
 5.7.1 Vehicle Aggregation | 120 |
| 5.8 A Danish Case Study | 121 |
| 5.9 Optimal Charging Patterns | 122
 5.9.1 Single Vehicle Operation | 122
 5.9.2 Vehicle Fleet Operation | 125 |
| 5.10 Discussion and Conclusion | 127
 Acknowledgments | 128 |
| References | 128 |

6 EV Portfolio Management 129
Lars Henrik Hansen, Jakob Munch Jensen and Andreas Bjerre

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>129</td>
</tr>
</tbody>
</table>
| 6.2 EV Fleet Modelling and Charging Strategies | 130
 6.2.1 System Set-up | 130
 6.2.2 Battery Modelling | 132
 6.2.3 Charging Strategies | 132 |
| 6.3 Case Studies of EV Fleet Management | 140
 6.3.1 System Description | 140
 6.3.2 Scenario Description | 145
 6.3.3 Conclusions on the Case Studies of the Charging Methods | 151
 6.3.4 Future Implications | 152 |
| References | 152 |

7 Analysis of Regulating Power from EVs 153
Qiuwei Wu, Arne Hejde Nielsen, Jacob Østergaard and Yi Ding

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>153</td>
</tr>
<tr>
<td>7.2 Driving Pattern Analysis for EV Grid Integration</td>
<td>154</td>
</tr>
</tbody>
</table>
Contents

7.2.1 Driving Distance Analysis

7.2.2 EV Availability Analysis

7.3 Spot-Price-Based EV Charging Schedule

- 7.3.1 EV Charging Schedule Based on Spot Price
- 7.3.2 Intelligent Charging Schedule Based on Spot Price

7.4 Analysis of Regulating Power from EVs

- 7.4.1 Regulating Power Requirement and Price Analysis
- 7.4.2 Analysis of Regulating Power Capacity from EV Grid Integration
- 7.4.3 Economic Return from Regulating Power Provision by EVs

7.5 Summary

References

8 Frequency-Control Reserves and Voltage Support from Electric Vehicles

Jayakrishnan R. Pillai and Birgitte Bak-Jensen

8.1 Introduction

8.2 Power System Ancillary Services

8.3 Electric Vehicles to Support Wind Power Integration

8.4 Electric Vehicles as Frequency-Control Reserves

- 8.4.1 Primary Reserves
- 8.4.2 Secondary Reserves
- 8.4.3 Tertiary Reserves

8.5 Voltage Support and Electric Vehicle Integration Trends in Power Systems

8.6 Summary

Acknowledgements

References

9 Operation and Degradation Aspects of EV Batteries

Claus Nygaard Rasmussen, Søren Højgaard Jensen and Guang Ya Yang

9.1 Introduction

9.2 Battery Modelling and Validation Techniques

- 9.2.1 Background
- 9.2.2 Experimental Testing Techniques
- 9.2.3 Degradation of Battery Modules
- 9.2.4 Test Set-Up and Results

9.3 Thermal Effects and Degradation of EV Batteries

- 9.3.1 Introduction to Battery Degradation
- 9.3.2 Theoretical Background
- 9.3.3 Modelling Degradation Effects
- 9.3.4 Simulation of EV Use

9.4 Electric EC Model

- 9.4.1 Battery Modelling: Dynamic Performance
- 9.4.2 Battery Cell Models Described in the Literature
- 9.4.3 Battery Model Implementation in MATLAB®
9.4.4 Model Parameterization and Validation
References

10 Day-Ahead Grid Tariffs for Congestion Management from EVs
Niamh O’Connell, Qiuwei Wu and Jacob Østergaard

10.1 Introduction
10.1.1 Power System Congestion
10.1.2 Coordinated EV Charging

10.2 Dynamic Tariff Concept
10.2.1 DT Framework
10.2.2 DT Calculation
10.2.3 Optimal EV Charging Management

10.3 Case Studies
10.3.1 Vehicle Driving Data
10.3.2 EV Cohort Characteristics
10.3.3 Price Profiles
10.3.4 Electrical Network
10.3.5 Software and Case Study Parameters
10.3.6 Case Study Results

10.4 Conclusions
References

11 Impact Study of EV Integration on Distribution Networks
Qiuwei Wu, Arne Hejde Nielsen, Jacob Østergaard and Yi Ding

11.1 Introduction

11.2 Impact Study Methodology and Scenarios
11.2.1 Grid Model for EV Grid Impact Study
11.2.2 Demand Data
11.2.3 EV Demand Data
11.2.4 EV Distribution Over the Grid
11.2.5 Loading Limits
11.2.6 Limitations

11.3 Bornholm Power System
11.3.1 Overview of Bornholm Power System
11.3.2 Bornholm Power System Model in PowerFactory

11.4 Conventional Demand Profile Modeling
11.5 Impact Study on 0.4 kV Grid
11.6 Impact Study on 10 kV Grid
11.7 Impact Study on 60 kV Grid

11.8 Conclusions
References

Index