CONTENTS

Preface xi
Acknowledgments, xii

1 Basic Concepts in Probability 1

1.1 Introduction, 1
1.2 Random Variables, 1
 1.2.1 Distribution Functions, 2
 1.2.2 Discrete Random Variables, 3
 1.2.3 Continuous Random Variables, 3
 1.2.4 Expectations, 4
 1.2.5 Moments of Random Variables and the Variance, 4
1.3 Transform Methods, 5
 1.3.1 The s-Transform, 5
 1.3.2 Moment-Generating Property of the s-Transform, 5
 1.3.3 The z-Transform, 6
 1.3.4 Moment-Generating Property of the z-Transform, 7
1.4 Covariance and Correlation Coefficient, 8
1.5 Sums of Independent Random Variables, 8
1.6 Random Sum of Random Variables, 9
1.7 Some Probability Distributions, 11
 1.7.1 The Bernoulli Distribution, 11
 1.7.2 The Binomial Distribution, 12
 1.7.3 The Geometric Distribution, 13
 1.7.4 The Pascal Distribution, 13
 1.7.5 The Poisson Distribution, 14
 1.7.6 The Exponential Distribution, 14
 1.7.7 The Erlang Distribution, 15
 1.7.8 The Uniform Distribution, 15
 1.7.9 The Hyperexponential Distribution, 16
 1.7.10 The Coxian Distribution, 17
1.7.11 The General Phase-Type Distribution, 19
1.7.12 Normal Distribution, 19
1.8 Limit Theorems, 21
1.8.1 Markov Inequality, 21
1.8.2 Chebyshev Inequality, 22
1.8.3 Law of Large Numbers, 22
1.8.4 The Central Limit Theorem, 23

2 Overview of Stochastic Processes
2.1 Introduction, 26
2.2 Classification of Stochastic Processes, 27
2.3 Stationary Random Processes, 27
2.3.1 Strict-Sense Stationary Processes, 27
2.3.2 WSS Processes, 28
2.4 Counting Processes, 28
2.5 Independent Increment Processes, 29
2.6 Stationary Increment Process, 29
2.7 Poisson Processes, 30
2.8 Renewal Processes, 32
2.8.1 The Renewal Equation, 33
2.8.2 The Elementary Renewal Theorem, 34
2.8.3 Random Incidence and Residual Time, 35
2.9 Markov Processes, 37
2.9.1 Discrete-Time Markov Chains, 38
2.9.1.1 State Transition Probability Matrix, 39
2.9.1.2 The n-Step State Transition Probability, 39
2.9.1.3 State Transition Diagrams, 41
2.9.1.4 Classification of States, 42
2.9.1.5 Limiting State Probabilities, 44
2.9.1.6 Doubly Stochastic Matrix, 47
2.9.2 Continuous-Time Markov Chains, 48
2.9.2.1 Birth and Death Processes, 51
2.9.2.2 Local Balance Equations, 54
2.10 Gaussian Processes, 56

3 Elementary Queueing Theory
3.1 Introduction, 61
3.2 Description of a Queueing System, 61
3.3 The Kendall Notation, 64
3.4 The Little’s Formula, 65
3.5 The M/M/1 Queueing System, 66
3.5.1 Stochastic Balance, 69
3.5.2 Total Time and Waiting Time Distributions of the M/M/1 Queueing System, 70
3.6 Examples of Other M/M Queueing Systems, 71
3.6.1 The M/M/c Queue: The c-Server System, 72
3.6.2 The M/M/1/K Queue: The Single-Server Finite-Capacity System, 74
3.6.3 The M/M/c/c Queue: The c-Server Loss System, 76
3.6.4 The M/M/1//K Queue: The Single Server Finite Customer Population System, 77

3.7 M/G/1 Queue, 79
3.7.1 Waiting Time Distribution of the M/G/1 Queue, 81
3.7.2 The M/E_k/1 Queue, 84
3.7.3 The M/D/1 Queue, 85
3.7.4 The M/M/1 Queue, 86
3.7.5 The M/H_k/1 Queue, 86

4 Advanced Queueing Theory 93
4.1 Introduction, 93
4.2 M/G/1 Queue with Priority, 93
4.2.1 Nonpreemptive Priority, 94
4.2.2 Preemptive-Resume Priority, 96
4.2.3 Preemptive-Repeat Priority, 97
4.3 G/M/1 Queue, 99
4.3.1 The E_k/M/1 Queue, 103
4.3.2 The D/M/1 Queue, 104
4.3.3 The H_k/M/1 Queue, 104
4.4 The G/G/1 Queue, 105
4.4.1 Lindley’s Integral Equation, 106
4.4.2 Laplace Transform of F_w(w), 107
4.4.3 Bounds of Mean Waiting Time, 109
4.5 Special Queueing Systems, 109
4.5.1 M/M/1 Vacation Queueing Systems with Exceptional First Vacation, 109
4.5.2 M/M/1 Threshold Queueing Systems, 115

5 Queueing Networks 124
5.1 Introduction, 124
5.2 Burke’s Output Theorem and Tandem Queues, 126
5.3 Jackson or Open Queueing Networks, 128
5.4 Closed Queueing Networks, 130
5.5 BCMP Networks, 132
5.5.1 Routing Behavior, 132
5.5.2 Service Time Distributions, 133
5.5.3 Service Disciplines, 134
5.5.4 The BCMP Theorem, 134
5.6 Algorithms for Product-Form Queueing Networks, 138
 5.6.1 The Convolution Algorithm, 138
 5.6.2 The MVA, 142
5.7 Networks with Positive and Negative Customers, 144
 5.7.1 G-Networks with Signals, 145
 5.7.2 Extensions of the G-Network, 146

6 Approximations of Queueing Systems and Networks 150
 6.1 Introduction, 150
 6.2 Fluid Approximation, 151
 6.2.1 Fluid Approximation of a G/G/1 Queue, 151
 6.2.2 Fluid Approximation of a Queueing Network, 155
 6.3 Diffusion Approximations, 155
 6.3.1 Diffusion Approximation of a G/G/1 Queue, 156
 6.3.2 Brownian Approximation for a G/G/1 Queue, 159
 6.3.2.1 Brownian Motion with Drift, 161
 6.3.2.2 Reflected Brownian Motion, 161
 6.3.2.3 Scaled Brownian Motion, 162
 6.3.2.4 Functional Central Limit Theorem, 163
 6.3.2.5 Brownian Motion Approximation of the G/G/1 Queue, 163
 6.3.3 Diffusion Approximation of Open Queueing Networks, 165
 6.3.4 Diffusion Approximation of Closed Queueing Networks, 168

7 Elements of Graph Theory 172
 7.1 Introduction, 172
 7.2 Basic Concepts, 172
 7.2.1 Subgraphs and Cliques, 174
 7.2.2 Adjacency Matrix, 175
 7.2.3 Directed Graphs, 175
 7.2.4 Weighted Graphs, 176
 7.3 Connected Graphs, 177
 7.4 Cut Sets, Bridges, and Cut Vertices, 177
 7.5 Euler Graphs, 178
 7.6 Hamiltonian Graphs, 178
 7.7 Trees and Forests, 179
 7.8 Minimum Weight Spanning Trees, 181
 7.9 Bipartite Graphs and Matchings, 182
 7.9.1 The Hungarian Algorithm, 184
 7.10 Independent Set, Domination, and Covering, 186
 7.11 Complement of a Graph, 188
 7.12 Isomorphic Graphs, 188
7.13 Planar Graphs, 189
 7.13.1 Euler’s Formula for Planar Graphs, 190
7.14 Graph Coloring, 191
 7.14.1 Edge Coloring, 191
 7.14.2 The Four-Color Problem, 192
7.15 Random Graphs, 192
 7.15.1 Bernoulli Random Graphs, 192
 7.15.1.1 Phase Transition, 193
 7.15.2 Geometric Random Graphs, 193
 7.15.3 Markov Random Graph, 194
7.16 Matrix Algebra of Graphs, 195
 7.16.1 Adjacency Matrix, 196
 7.16.2 Connection Matrix, 197
 7.16.3 Path Matrix, 197
 7.16.4 Laplacian Matrix, 198
7.17 Spectral Properties of Graphs, 198
 7.17.1 Spectral Radius, 200
 7.17.2 Spectral Gap, 200
7.18 Graph Entropy, 201
7.19 Directed Acyclic Graphs, 201
7.20 Moral Graphs, 202
7.21 Triangulated Graphs, 202
7.22 Chain Graphs, 203
7.23 Factor Graphs, 204

8 Bayesian Networks
 8.1 Introduction, 209
8.2 Bayesian Networks, 210
8.3 Classification of BNs, 214
8.4 General Conditional Independence and d-Separation, 215
8.5 Probabilistic Inference in BNs, 215
 8.5.1 The Sum-Product Algorithm, 217
 8.5.2 The Junction Tree Algorithm, 221
 8.5.2.1 Belief Propagation in a Junction Tree, 225
8.6 Learning BNs, 227
 8.6.1 Parameter Learning, 227
 8.6.1.1 Maximum Likelihood Estimation 228
 8.6.1.2 Maximum A Posteriori Estimation, 230
 8.6.2 Structure Learning, 231
8.7 Dynamic Bayesian Networks, 231

9 Boolean Networks
 9.1 Introduction, 235
 9.2 Introduction to GRNs, 236
9.3 Boolean Network Basics, 236
9.4 Random Boolean Networks, 238
9.5 State Transition Diagram, 239
9.6 Behavior of Boolean Networks, 240
9.7 Petri Net Analysis of Boolean Networks, 242
 9.7.1 Introduction to PNs, 242
 9.7.2 Behavioral Properties of PNs, 245
 9.7.3 PN Model of Boolean Networks, 246
9.8 Probabilistic Boolean Networks, 250
9.9 Dynamics of a PBN, 251
9.10 Advantages and Disadvantages of Boolean Networks, 252

10 Random Networks 255

10.1 Introduction, 255
10.2 Characterization of Complex Networks, 256
 10.2.1 Degree Distribution, 256
 10.2.2 Geodesic Distances, 257
 10.2.3 Centrality Measures, 257
 10.2.4 Clustering, 258
 10.2.5 Network Entropy, 259
 10.2.6 Percolation and the Emergence of Giant Component, 259
10.3 Models of Complex Networks, 261
 10.3.1 The Small-World Network, 261
 10.3.2 Scale-Free Networks, 263
10.4 Random Networks, 265
 10.4.1 Degree Distribution, 265
 10.4.2 Emergence of Giant Component, 266
 10.4.3 Connectedness and Diameter, 266
 10.4.4 Clustering Coefficient, 267
 10.4.5 Scale-Free Properties, 267
10.5 Random Regular Networks, 267
10.6 Consensus over Random Networks, 268
 10.6.1 Consensus over Fixed Networks, 270
 10.6.1.1 Time to Convergence in a Fixed Network, 272
 10.6.2 Consensus over Random Networks, 273
10.7 Summary, 274

References 276

Index 280