CONTENTS

Preface xxii
Acknowledgments xxvii
List of Figures xxix

PART I BASIC ELECTROMAGNETIC THEORY

1 Maxwell's Equations 5

1.1 Mathematical notation 5
1.2 Free-space fields and forces 6
 Integral form of Maxwell's Equations 6
 Units and fundamental constants 8
 Linearity and superposition 8
 Differential form of Maxwell's Equations 9
1.3 Vector and scalar potentials 10
 Lorenz gauge 11
 Coulomb gauge 11
1.4 Inhomogeneous wave equations for E and H 12
1.5 Static fields 12
 Integration of Poisson's Equation 13
 Electrostatics 14
 Magnetostatics 14
1.6 Integration of the inhomogeneous wave equation 15
 Current element (Hertzian electric dipole) 16
CONTENTS

Current loop (Hertzian magnetic dipole) 17

1.7 Polarizable, magnetizable, and conducting media 18
Polarization and Amperian electric currents 19
Chu formulation 22
Electrically conducting materials 23
Perfect conductors 23
Dielectric and magnetic materials 23

1.8 Boundary conditions 24
Electric surface charges 24
Electric surface currents 24
Conservation of charge 25

1.9 The complex Maxwell Equations 26

2 Quasistatic Approximations 29

2.1 Quasistatic expansions of a standing wave 30

2.2 Electroquasistatic (EQS) fields 31
Zero-order fields 31
Boundary conditions 32
First-order fields 32

2.3 Magnetoquasistatic (MQS) fields 33
Zero-order fields 33
Boundary conditions 34
First-order fields 34

2.4 Conduction problems 35
EQS regime 35
MQS regime 36

2.5 Laplacian approximations 37

3 Electromagnetic Power, Energy, Stress, and Momentum 39

3.1 Introduction 39
Power conversion and force densities 39
Electromagnetic torque density 40
Uniqueness of S, W, T, and G 41

3.2 The Maxwell–Poynting representation 41
Maxwell stress tensor 41
Poynting Theorem 42

3.3 Quasistatic power and energy 43
Standard form of quasistatic power theorems 43
Modified form of quasistatic power theorems 44

3.4 Alternative representations 45
Introduction 45
An alternate Poynting theorem 46
An alternate stress-momentum theorem 48
Alternate (circuit-theory) representation 49
Electromagnetic force on a moving charge 51
Alternate accounting of power and momentum 51
Electromagnetic beauty 52
Alternate power and energy in the quasistatic limit 53
3.5 Differences between representations 54
Uniform plane wave 55
Hertzian electric dipole (steady-state) 57

4 Electromagnetic Waves in Free-Space 61
4.1 Homogeneous waves 61
4.2 One-dimensional waves 62
Solutions of the two-dimensional Laplace’s Equation 63
4.3 Harmonic uniform plane waves 63
4.4 Waves of high symmetry 64
Spherically symmetric waves 64
Cylindrically symmetric waves 65
4.5 Inhomogeneous scalar wave equations 66
Three-dimensional superposition integrals 66

5 Electromagnetic Waves in Linear Materials 67
5.1 Introduction 67
5.2 Electrically conducting media 67
Charge-density decay (dielectric relaxation time) 68
Magnetic diffusion length and skin depth 69
5.3 Linear dielectric and magnetic media 70
Uniform plane waves (linearly polarized) 71
Particle representation of harmonic plane waves 71

6 Electromagnetic Theorems and Principles 77
6.1 Introduction 77
6.2 Complex power and energy theorems 78
Circuit power 78
Circuit energy 79
Complex Poynting Theorem 79
Complex Alternate-power theorem 80
Maxwell–Poynting energy theorem 81
Alternate-energy theorem 82
6.3 Complex stress theorems 84
Maxwell–Poynting stress theorem 85
Alternate-stress theorem 86
6.4 Complex momentum theorems 86
Maxwell–Poynting momentum theorem 86
Alternate-momentum theorem 87
6.5 Duality 88
Dual electric and magnetic fields 88
Dual sources 89
Dual materials 90
Boundary conditions 91
PART II FOUR-DIMENSIONAL ELECTROMAGNETISM

7 Four-Dimensional Vectors and Tensors

- **7.1** Space–time coordinates
- **7.2** Four-vector electric-current density
- **7.3** Four-vector potential (Lorenz gauge)
- **7.4** Four-Laplacian (wave equation)
- **7.5** Maxwell’s Equations and field tensors
- **7.6** The four-dimensional curl operator
- **7.7** Four-dimensional “statics”
- **7.8** Four-dimensional force density
- **7.9** Six-vectors and dual field tensors
- **7.10** Four-vector electric and magnetic fields
 - Lorentz force on an electric charge
 - Lorentz force on a magnetic charge
 - Lorentz invariance of four-vectors
- **7.11** The field tensors and Maxwell’s Equations revisited
- **7.12** Linear conductors revisited
 - Modified Lorenz gauge
 - Boundary conditions

8 Energy-Momentum Tensors

- **8.1** Introduction
 - Force and power conversion densities
 - Electromagnetic torque density
- **8.2** Maxwell–Poynting energy-momentum tensor
- **8.3** Alternate energy-momentum tensors
- **8.4** Boundary conditions and gauge considerations
- **8.5** Electromagnetic beauty revisited
CONTENTS

9 Dielectric and Magnetic Materials 129

9.1 Introduction 129
9.2 Maxwell’s Equations with polarization and magnetization 130
9.3 Amperian energy-momentum tensors 131
 Modified energy-momentum tensors 132
 Linear dielectric and magnetic materials 134
 Complex Alternate-power theorems 137
 Quasistatic approximations 138

10 Amperian, Minkowski, and Chu Formulations 141

10.1 Introduction 141
10.2 Maxwell’s Equations in the Amperian formulation 141
10.3 Maxwell’s Equations in the Minkowski formulation 142
10.4 Maxwell’s Equations in the Chu formulation 143
10.5 Energy-momentum tensors and four-force densities 145
 Amperian energy momentum and four-force 145
 Minkowski energy momentum and four-force 146
 Chu energy momentum and four-force 147
10.6 Discussion of force densities 148
10.7 The principle of virtual power 150

PART III ELECTROMAGNETIC EXAMPLES

11 Static and Quasistatic Fields 157

11.1 Spherical charge distribution 157
11.2 Electric field in a rectangular slot 158
11.3 Current in a cylindrical conductor 160
 Static current 160
 Sinusoidal steady-state current 162
11.4 Sphere with uniform conductivity 163
 Quasistatic electric-field probe 163
 Power and energy 166
 Quasistatic magnetic-field probe 168
 Power and energy 169
11.5 Quasistatic analysis of a physical resistor 170
 Introduction 170
 Fields and potentials 171
 Equivalent circuits 178
11.6 Magnetic diffusion 179

12 Uniformly Moving Electric Charges 183

12.1 Point charge 183
 Uniform motion in free-space 183
 Motion in a dielectric (Čerenkov radiation) 185
12.2 Surface charges separating at constant velocity 185
 Introduction 185
CONTENTS

Lorenz gauge 187
Coulomb gauge 188

12.3 Expanding cylindrical surface charge 190
12.4 Expanding spherical surface charge 192

13 Accelerating Charges 195
13.1 Hertzian electric dipole 195
Sinusoidal steady-state 195
Sinusoidal pulse 196
13.2 Hertzian magnetic dipole 200
Sinusoidal pulse 200
13.3 Radiation from an accelerated then decelerated charge 202
Maxwell–Poynting representation 204
Alternate power and energy representation 205

14 Uniform Surface Current 207
14.1 Pulse excitations 207
Step function 207
Exponentially decaying step 209
Step of duration T followed by an exponential decay 210
Pulses of duration T with n rise 212
14.2 Resistive-sheet detector 214
14.3 Additional pulse waveforms 217
Gaussian current pulse 217
Zero-average waveforms 218

15 Uniform Line Currents 223
15.1 Axial current step (integral laws) 223
The steady-state solution 229
An assumed zone of field generation 231
The velocity of light 232
The impedance of free-space 233
A modified trial solution 233
The modified trial solution revisited 233
A complete series solution 235
15.2 Axial current step (differential laws) 237
Maxwell–Poynting representation 238
Alternate power and energy representation 239
15.3 Superposition of axial line currents 240
Uniform J_z within a finite radius, r_o 240
Uniform K_z at constant radius, R 242
Uniform K_z on a strip of constant width 245
15.4 Axial current with multiple pulses 246
Trapezoidal wave forms 246
Sine-wave approximation 249
15.5 Fields of a sinusoidal axial current 251
Waves and boundary conditions 251
Convolution integral 252

16 Plane Waves 255
16.1 Uniform TEM plane waves 255
 Propagation in free-space 255
 Propagation in uniform linear materials 256
16.2 Doppler-shifted TEM plane waves 257
16.3 Nonuniform plane waves 258
 TE waves 259
 TM waves 259
 Energy velocities 260
16.4 Skin-depth-limited current in a conductor 261

17 Waves Incident at a Material Interface 263
17.1 Reflected and transmitted plane waves 263
17.2 TE polarization 264
 Law of reflection and Snell’s Law 265
 Critical angle 265
 Reflection and transmission coefficients 265
 Magnetic Brewster Angle 266
 Alternate-power flux 267
17.3 TM polarization 267
 Reflection and transmission coefficients 267
 Brewster Angle 268
 Dual Alternate-power flux 268
17.4 Elliptically polarized incident waves 269

18 TEM Transmission Lines 271
18.1 General time-dependent solutions 271
 Source equivalence 272
 Power energy and stress momentum 273
18.2 Parallel-plate TEM line in the sinusoidal steady state 274
 Infinite line 274
 Short-circuit termination at $z = 0$ 277
18.3 TEM tapered-plate “horn” transformer 280
18.4 TEM line with parallel plates of high conductivity 282
 Perfectly conducting plates 284
 High conductivity revisited (the complete potentials) 285
 Application of the complex power theorems 287
18.5 Parallel-plate TEM line loaded with linear material 289

19 Rectangular Waveguide Modes 293
19.1 Introduction 293
19.2 Periodic potentials and fields 294
19.3 Waveguide dispersion 295
19.4 \(TE_{nm} \) modes 296
\(TE \) power fluxes 297
19.5 \(TM_{nm} \) modes 298
\(TM \) power fluxes 298
19.6 Null Alternate-power and Alternate-energy distributions 299
19.7 Uniqueness resolved 300

20 Circular Waveguide Modes 305
20.1 Introduction 305
Waveguide dispersion 306
20.2 \(TM_{nm} \) modes 307
\(TM \) power fluxes 309
20.3 \(TE_{nm} \) modes 310
\(TE \) power fluxes 314
20.4 Null Alternate power and energy distributions 323
20.5 Alternate energy momentum and photons 323
\(TE_{0m} \) “circularly polarized” modes 324
\(TM_{0m} \) “circularly polarized” modes 329
Modes of a square waveguide 332

21 Dielectric Waveguides 335
21.1 Introduction 335
21.2 Symmetric \(TE \) modes 336
21.3 Antisymmetric \(TE \) modes 336
21.4 Dispersion relations 337
Symmetric modes 338
Antisymmetric modes 338

22 Antennas and Diffraction 341
22.1 Introduction 341
22.2 Half-wave dipoles 342
Wire antenna 342
Thin slot in a ground plane 344
22.3 Self-complementary planar antennas 345
22.4 Traveling-wave wire antennas 345
Super-gain and end-fire antennas 347
22.5 The theory of simple arrays 349
Uniform linear arrays 350
Directivity as a function of \(N, kd \), and angle 352
22.6 Diffraction by a rectangular slit 356
Maxwell–Poynting analysis 356
Alternate-representation analysis 359
22.7 Diffraction by a large circular aperture 360
On-axis fields and power 362
Fresnel zones 365
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8 Diffraction by a small circular aperture</td>
<td>369</td>
</tr>
<tr>
<td>22.9 Diffraction by the complementary screen</td>
<td>371</td>
</tr>
<tr>
<td>22.10 Paraxial wave equation</td>
<td>372</td>
</tr>
<tr>
<td>Introduction</td>
<td>372</td>
</tr>
<tr>
<td>Gaussian-beam solutions</td>
<td>373</td>
</tr>
<tr>
<td>Higher-order solutions</td>
<td>374</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Waves and Resonances in Ferrites</td>
<td>377</td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>377</td>
</tr>
<tr>
<td>23.2 Ferrites</td>
<td>378</td>
</tr>
<tr>
<td>Angular momentum and magnetic moments</td>
<td>378</td>
</tr>
<tr>
<td>Constitutive relations</td>
<td>379</td>
</tr>
<tr>
<td>Magnetic resonance</td>
<td>379</td>
</tr>
<tr>
<td>23.3 Large-signal equations</td>
<td>380</td>
</tr>
<tr>
<td>23.4 Linearized (small-signal) equations</td>
<td>381</td>
</tr>
<tr>
<td>Time-dependent equations</td>
<td>381</td>
</tr>
<tr>
<td>Complex Polder susceptibility and permeability tensors</td>
<td>382</td>
</tr>
<tr>
<td>23.5 Uniform precession in a small ellipsoid</td>
<td>383</td>
</tr>
<tr>
<td>23.6 Plane wave solutions</td>
<td>384</td>
</tr>
<tr>
<td>Electromagnetic waves</td>
<td>386</td>
</tr>
<tr>
<td>Magnetostatic waves</td>
<td>387</td>
</tr>
<tr>
<td>23.7 Small-signal power and energy</td>
<td>388</td>
</tr>
<tr>
<td>Maxwell–Poynting representation</td>
<td>388</td>
</tr>
<tr>
<td>Dual Alternate representation</td>
<td>390</td>
</tr>
<tr>
<td>23.8 Small-signal stress and momentum</td>
<td>391</td>
</tr>
<tr>
<td>Maxwell–Poynting representation</td>
<td>391</td>
</tr>
<tr>
<td>23.9 Quasiparticle interpretation (magnons)</td>
<td>393</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Equivalent Circuits</td>
<td>395</td>
</tr>
<tr>
<td>24.1 Receiving circuit of a dipole</td>
<td>395</td>
</tr>
<tr>
<td>24.2 TEM transmission lines</td>
<td>398</td>
</tr>
<tr>
<td>Basic equations</td>
<td>398</td>
</tr>
<tr>
<td>Power and energy</td>
<td>400</td>
</tr>
<tr>
<td>Lossless, low-loss, and distortionless lines</td>
<td>400</td>
</tr>
<tr>
<td>Reflection coefficient and line impedance</td>
<td>401</td>
</tr>
<tr>
<td>Smith Chart</td>
<td>403</td>
</tr>
<tr>
<td>Impedance matching</td>
<td>404</td>
</tr>
<tr>
<td>24.3 Lossless tapered lines</td>
<td>406</td>
</tr>
<tr>
<td>24.4 Transients on transmission lines</td>
<td>408</td>
</tr>
<tr>
<td>24.5 Plane waves (oblique incidence)</td>
<td>411</td>
</tr>
<tr>
<td>TE waves</td>
<td>411</td>
</tr>
<tr>
<td>TM waves</td>
<td>412</td>
</tr>
<tr>
<td>Summary of parameters</td>
<td>413</td>
</tr>
<tr>
<td>24.6 Waveguides</td>
<td>413</td>
</tr>
<tr>
<td>TM modes</td>
<td>415</td>
</tr>
</tbody>
</table>
CONTENTS

TE modes 417
24.7 The scattering matrix 418
Single-port 418
N-port junction 419
Lossless junctions 420
24.8 Directional couplers 421
24.9 Resonators 421
Introduction 421
Quality factors 422
Transmission-line resonator 423
Transmission resonator 426
Waveguide resonators 427
Dielectric resonators 429
YIG sphere filter 429

Practice Problems 435

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1</td>
<td>Statics</td>
<td>435</td>
</tr>
<tr>
<td>25.2</td>
<td>Quasistatics</td>
<td>448</td>
</tr>
<tr>
<td>25.3</td>
<td>Plane waves</td>
<td>458</td>
</tr>
<tr>
<td>25.4</td>
<td>Radiation and diffraction</td>
<td>462</td>
</tr>
<tr>
<td>25.5</td>
<td>Transmission lines</td>
<td>472</td>
</tr>
<tr>
<td>25.6</td>
<td>Waveguides</td>
<td>481</td>
</tr>
<tr>
<td>25.7</td>
<td>Junctions and couplers</td>
<td>485</td>
</tr>
<tr>
<td>25.8</td>
<td>Resonators</td>
<td>490</td>
</tr>
<tr>
<td>25.9</td>
<td>Ferrites</td>
<td>491</td>
</tr>
<tr>
<td>25.10</td>
<td>Four-dimensional electromagnetics</td>
<td>496</td>
</tr>
</tbody>
</table>

PART IV BACKMATTER

Summary 505

Electromagnetic Luminaries 511

About the Author 519

Appendix A 521

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Theory of Special Relativity</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>Expanding spherical electromagnetic wave</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>Galilean transformation</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>Lorentz transformation</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td>Speed limit of a moving charge</td>
<td>524</td>
</tr>
<tr>
<td></td>
<td>Lorentz contraction</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>Four-vector length</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>Particle density</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>Simultaneity and time dilation</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>Addition of velocities</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>Velocity dependence of mass</td>
<td>529</td>
</tr>
</tbody>
</table>
CONTENTS

Force, power, and energy 529
A.2 Transformations between fixed and moving coordinates 530
Electromagnetic fields and scalars 530
Sinusoidal steady-state plane waves 533
Energy-momentum tensors 533

Appendix B 537
B.1 The unit step and $u_k(t)$ functions 537
B.2 Three-dimensional vector identities and theorems 538
Definitions 538
Basic operations 539
Curvilinear orthogonal coordinates 539
Three-space identities 541
Vector theorems 542
The Divergence Theorem 542
Stokes’ Theorem 542
B.3 Four-dimensional vector and tensor identities 543
Definitions 543
Basic operations 544
B.4 Four-space identities 544

Appendix C 547
C.1 Stationary spatially symmetric sources 547
Spherical symmetry 547
Cylindrical symmetry with no axial variation 548
Plane symmetry without planar variation 549
Superposition of high-symmetry fields 550
C.2 Multipole expansions of static fields 550
Electrostatics 550
Magnetostatics 552
C.3 Averaging property of Laplace’s Equation 553
C.4 Solutions of Laplace’s Equation 554
Cartesian coordinates 554
Polar coordinates 555
Cylindrical coordinates 556
Spherical coordinates 557
C.5 Laplace’s Equation in N dimensions 558
C.6 Ellipsoids in uniform fields 559
Prolate spheroid ($c > a$) 560
Oblate spheroid ($c < a$) 560
Sphere ($c = a$) 561

Appendix D 563
D.1 Alternate power, energy, stress, and momentum 563
Cartesian coordinates 564
Cylindrical coordinates 565
Spherical coordinates 566
D.2 Minkowski representations 568
Maxwell–Poynting–Minkowski representation 568
CONTENTS

Alternate–Minkowski representation 569
Dual Alternate–Minkowski representation 570
D.3 Stress-momentum representations of torque 571
Linear isotropic dielectric/magnetic conducting materials 574
Torque contribution from the Alternate-stress integral 575

Appendix E 577
E.1 Fields of specified charges and currents 577
E.2 Fields of a moving point charge 578
Retarded potentials when the velocity is constant 578
Contour integration 579
Lorentz transformation 580
Liénard–Wiechert Potentials 581
Fields of an accelerated charge 581
E.3 Method of images 583
Infinite ground plane 583
Infinite-length conducting cylinder 584
Conducting sphere 584
Image configurations for magnetic conductors 585
E.4 Characteristic impedances of TEM transmission lines 586
Coaxial line 586
Lecher line 587
Elliptic-function-based transformations 588
Strip with cylindrical shield 588
Coplanar strip line 588
Symmetric strip line 589
Parallel-plate line 590
Microstrip transmission line 592

Appendix F 593
F.1 Bessel functions 593
Integral definitions of zero-order functions 595
Series solutions and asymptotic approximations 595
Complex Hankel functions 596
Recurrence relations 596
Orthogonality and normalization integrals 596
Wronskian 598
F.2 Chebyshev polynomials 598
Polynomials of the first kind 598
Polynomials of the second kind 599
F.3 Hermite polynomials 600

Appendix G 601
G.1 Macsyma and Maxima 601
G.2 Macsyma program descriptions 602
Four-Dimensional Vectors and Operators 602
Four-Dimensional Electrodynamics (Free-Space) 603
Four-Dimensional Electrodynamics Workpad 603
G.3 Macsyma notebooks 605