Index

NOTE: A “b” following a page number indicates boxed material, an “f” indicates figure(s) and a “t” indicates table(s).

ABC (ATP-binding cassette) transporter, 45
Acid extraction, 211–212
Actinomyces, 95
Adzuki (Vigna angularis)
antinutritional constituents in, 362t
appearance of, 58f
description and culinary uses of, 58
soaking and cooking times, 329t
world distribution of, 262t
Aeration, 81
Aflatoxins, 95
Africa, dry beans and pulses utilization in,
261–278
constraints and consumption patterns,
264–266
future research needs, 278
marketing and distribution, 263–264
processing and products, 266–274, 266f
agglomeration, 272–273
canning, 273–274
dry milling, 268–269
fermentation, 272
frying, 271
germination, 272
puffing, 271–272
roasting, 270–271
steaming, 272
wet and dry integrated process, 269–270
wet milling, 267–268
production/utilization, 262–263, 263t–265t
traditional bean products, 274–277, 274t,
275f
Agglomeration, 272–273
Agitating cookers, 150–151
Air classification
chickpeas, 289
cowpea, 247–248
in extraction protocols for protein, 209, 210f
Akara, 249–251, 274, 276
Albumins
in bean flours, 206
cowpea, 240
emulsifying activity, 218
Alkaline extraction, 211
Alkaloids
as antinutritional factors, 363t
beneficial effects of, 363t
α-amylase, 96, 368
α-amylase inhibitors
as antinutritional factors, 362t–363t
beneficial effects of, 363t, 368–369
dehulling effect on composition of, 114,
115t
dry bean/pulses containing, 362t
extrusion cooking effect on, 118
α-galactosidase, 117, 298, 328
Alubia beans, physical characteristics and
cultivars of, 59t
Amino acids
in chickpeas, 288t
content of processed bean and pulses, 105,
106t
in cowpeas, 238–240, 239t
legume composition, 284
lentil composition, 288t
in mung beans, 288t
in pigeon peas, 288t, 300
protein digest corrected amino acid score
(PDCAAS), 253
Amylopectin. See Starch
Amylose. See Starch
Anazaki, soaking and cooking times for, 329t
Angle of repose, 80
Anko, 325
Anthocyanins, 16, 67–68, 178
Anthracnose, 26, 39

Edited by Muhammad Siddiq and Mark A. Uebersax.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
Antinutritional factors, 104, 359–372
beneficial effects, 361, 363t, 364
in black gram, 298
blanching effect on, 138–141
in canned beans, 178–179
cooking effects on, 117
in cowpeas, 241–245, 244f
dehulling effect on composition of, 114, 115t
effects on proteins, 105–106
extrusion cooking effect on, 116t, 118
inactivation during thermal processing, 178–179
in Indian vetch, 304
in legumes, 284–285
in lentils, 292
in mung beans, 294–295
in pigeon peas, 301
processing procedure effects on content of, 116t
soaking effect on, 114, 116t, 138–141
Antioxidants
antioxidant activity in beans, 14, 16, 68
composition of processed beans and pulses, 112
in lentils, 292
Appalachian cuisine, 317–318
Arcelin, 32, 96, 105
Arginine, 284
Ascorbic acid, 111t
Ash
composition of bean flour, 207t
composition of processed beans and pulses, 110
Asian cuisines, 324–325
Aspergillus spp., 95
ATP-binding cassette (ABC) transporter, 45
Awash, 207t
Azuki bean. See Adzuki (Vigna angularis)
Backcross breeding methods, 36
congruity backcross, 36
inbred backcross, 32, 36
Bacterial blight, 26
Baked beans, 162–163
Baked beans, 162–163
Baked beans, 162–163
Baked foods, bean flours/fractions in, 225–227, 226t
Baking soda, 328–329
Bambura groundnut (Vigna subterranea), 262t, 266, 275, 277
BeanCAP, 46
Bean common mosaic virus (BCMV), 39
Bean ladders, 78, 80
Bean lectin, 105
Bean rust, 39
Beans with frankfurters/weiners, 162
Bean weevil, 95–96, 96f
Bebedgou, 275
Beshbesh, 207t
Betana, 275
Bioavailability
improvement with extrusion processing, 110
of proteins, 105–106
of vitamins, 110
Biological nitrogen fixation (BNF) capacity of beans, 45–46
Black beans
appearance of, 4f, 58f
cooking times, 329t
description and culinary uses of, 58, 60
extrusion processing, 193–194
flour composition, 207t
nutrient composition of, 15t, 104t
cooked, 331t
physical characteristics and cultivars, 59t
phytate content of, 366t
pigmentation, 68–69
seed size, 66t
soaking, 159, 329t
starch composition of, 107t
US consumption, 156–157
USDA grading standards, 70t
US production, 9, 10f
vitamin content of, 111t
yield, 31
Blackeye pea. See Cowpea
Black gram (Vigna mungo), 296–298
antinutritional constituents in, 362t
appearance of, 286f
composition and nutritional value, 297–298
cultivation and production, 297
processing, 298
saponin concentration in, 371t
seed shape, weight, and dimensions, 285t
starch composition of, 107t
world distribution of, 262t
Blanching, 135–141
canned beans, 160–161
effect on nutrients and antinutrients, 138–141
B-vitamins, 140
lectins, 138–139
minerals, 140–141
oligosaccharides, 138, 139f
phytate, 140
phytohemagglutinin, 138–139
tannins, 139–140
trypsin inhibitors, 139, 140f
nutritional quality of beans and, 117–118
post-blanch cooling, inspection and moisture testing, 138
processes, 135–137, 136f, 137t
for Great Northern beans, 136f
high-temperature short-time (HTST), 136
long-blanch, 136
systems, 160–161
BNF (biological nitrogen fixation) capacity of beans, 45–46
Boiling
chickpeas, 270
cowpeas, 244
Bonepotjie, 277
Brabender viscoamylograph (BVA), 221, 222f
Breast cancer, 347–349
Breeding
methods, 34–35
backcross, 36
congruity backcross, 36
inbred backcross, 32, 36
pedigree, 34
recurrent selection, 37–38
single seed descent (SSD) method, 36–37
practices
breeding procedures, 33–34
seed multiplication, 35–36
procedures, 33–34
programs, 24, 26–28, 27t
for specific traits, 38–46
direct harvest systems, 40
disease resistance, 39–40
micronutrient content, 44–45
niche markets, 45–46
processing quality, 40–44, 42f
yield, 38–39, 39f
Breeding pyramid, 39f
Brine, beans in, 161–162
Broad bean (Vicia faba)
in Africa, 263t–264t
saponin concentration in, 371t
world distribution of, 262t
Bruchids, 95–96
Butter bean, world distribution of, 262t
BVA (Brabender viscoamylograph), 221, 222f
B-vitamins
in bean varieties, 111t
soaking/blanching effect on, 140

Cajanus cajan. See Pigeon pea
Cajun cuisine, 316
Calcium
content in raw versus cooked beans, 110t
loss with soaking/blanching, 141
in soak water, 159
Calcium chloride
additive to soak water, 134
splitting of beans and, 121
Calculated protein efficiency ratio (CPER), 245
California small white bean. See Small white bean
Cancer, 345–350
breast cancer, 347–349
colorectal cancer, 345–347
prostate cancer, 349–350
Can/jar sizes, 165, 165t
Canned beans
breeding for processing quality, 40–44, 42f
can/jar sizes, 165, 165t
closing containers, 164
filling containers, 164
new products, 180
packaging innovations, 180–181
pack styles, 161–164
baked beans, 162–163
beans in brine or sauce, 161–162
bean soups, 163
beans with frankfurters/weiners, 162
chili with beans/chili con carne with beans, 163
pork and beans, 162
refried beans, 163
three-bean salad, 163–164
preparation methods, 330
processing procedures, 157–161
blanching, 160–161
cleaning/grading, 157
destoning, 160
flow diagram, 158f
soaking, 158–159
quality changes during thermal processing, 176–179
antinutritional factor inactivation, 178–179
lips, 179
oligosaccharides, 176–177
pectic substances, 177
phytochemicals, 178
proteins, 179
starch, 176
vitamins and minerals, 177–178
quality of products, 169–176
chemical/nutritional measurements, 174–175
flavor volatiles, 175
mono- and oligosaccharides, 174
proximate chemical composition, 175
salt content, 175
starch, 174
total dietary fiber, 174
quality evaluation, 170–174
chemical/nutritional measurements, 174–175
form, 171t
physical measurements, 170–173, 173b
visual examination, 173–174
sensory attributes, 175–176
standards of quality, 169–170, 169t
soaking and blanching treatments for navy beans, 137
texture, 42–43
thermal processing, 165–168, 166t–168t
quality changes during, 176–179
Canned beans (continued)
washed, drained weight, 43
Cannellini, soaking and cooking times for, 329t
Canning in Africa, 273–274
Carbohydrates. See also Starch
in chickpeas, 287, 288t
composition of processed beans and pulses, 107–110
fiber, 109–110, 109t
starch, 107–108, 107t–108t
in cowpeas, 240–241
extrusion processing effect on, 192–194, 192t, 193f
in Indian vetch, 303
in lentils, 291, 291t
in mung beans, 295t
in pigeon peas, 300t
Cardiovascular disease, 342–345
Caribbean cuisines, 323–324
Carotene, 111t
Case hardening, 81
Cassoulet, 323
Chakki, 269–270
Cherokee Indians, 317
Chickpea (Cicer arietinum), 285–290, 285t, 286f, 288t
in Africa, 263t–265t
antinutritional constituents in, 362t
appearance of, 4f, 58f, 286f
cultivation, 287
extrusion processing, 194
fatty acid composition of, 113t
global production of, 8t
harvesting, storage and handling, 287
market classes, 60
nutrient composition of, 15t
cooked, 331t
nutritional and chemical composition, 287–289, 288t
processing, 289–290
saponin concentration in, 371t
seed shape, weight, and dimensions, 285t
soaking and cooking times, 329t
types, 286
USDA grading standards, 71
US production, 9, 10f
vitamin content of, 111t
world distribution of, 262t
Chili, 319
Chili with beans/chili con carne with beans, 163
Chimichanga, 319
Chin Chin, 276
Cholesterol, 343–345
Chronic disease, 14, 336–338, 337f
Chymotrypsin inhibitors
as antinutritional factor, 105–106, 360t, 362t
beneficial effects of, 370
in cowpeas, 242–243
dehulling effect on composition of, 114, 115t
dry bean/pulses containing, 362t
extrusion cooking effect on, 118
CIAT, 27, 30, 44
Cicer arietinum. See Chickpea
Cladosporium, 95
Classes. See Market classes
Classification, 55–57, 56f
Cleaning, 76, 78–79, 80f, 157
Clostridium botulinum, 141–144
Cold pasteurization, 325
Collaborative Research Support Program
(CRSP), 18, 28
Color
discholoration of seed, 94
evaluation of beans, 175–176
seed coat, 64, 67–69
Colorectal cancer, 345–347
Color sorting, 79
Combine use, 25, 26, 40, 41f
Commercial market classes. See Market classes
Common bacterial blight (CBB), 40
Common bean (Phaseolus vulgaris)
fatty acid composition of, 113t
fiber composition of, 109t
introduction into Africa, 261
nutrient composition of, 104t
starch composition of, 109t
as “woman’s crop,” 262
Composition
of bean fractions, 208t
of black gram, 297–298
of chickpeas, 287–289, 288t
of cooked beans and pulses, 331t
of cowpeas, 237–243
of lentils, 290–292, 291t
of mung beans, 294–295, 295t
of pigeon peas, 300–301, 300t
of processed beans and pulses, 103–122
hard-to-cook (HTC) phenomena and,
119–120
overview, 104–112
antioxidants, 112
ash, 110
beans varieties and, 104t
carbohydrate, 107–110
fiber, 109–110, 109t
lipids, 110, 112, 113t
minerals, 110, 110t
protein, 105–107, 106t
starch, 107–108, 107t, 108t
vitamins, 110, 111t
processing and nutritional quality of beans, 112–118, 116t
blanching and cooking (heat treatments), 117–118
dehulling, 114, 115t, 116t
eXtrusion cooking, 116t, 118
fermentation, 116–117
germination, 116, 116t
soaking, 114, 116, 116t
proximate chemical composition, 175
Computational fluid dynamics (CFD), 144
Conduction, 144, 146f
Congruity backcross, 36
Consumption
in Africa, 264–266
dry beans as diverse food resource, 11–13, 13f
eyearly evidence of, 314–315
pigeon pea, 299
by region and ethnicity, 157b
traditional utilization, 12
trends of dry beans, 10–11, 11f, 156–157, 157b
value-added processing and products, 12–13, 13f
Conveyance of harvested beans, 78
Conveyor belts, 78
Convicilin, 369
Cooking
of black gram, 298
effect on fiber content, 223
effect on protein solubility, 217
eXtrusion cooking, 116t, 118, 185–201
of mung beans, 296
nutritional quality of beans and, 117–118
of pigeon peas, 301–302
Cooling, 168
Copper
content in raw versus cooked beans, 110t
loss with soaking/blanching, 141
Coronary heart disease, 342–343
Cotyledons, structure of, 62, 62f, 64–65, 64f–65f
Countries growing dry beans, 6
Cowpea (Vigna unguiculata), 235–254
in Africa, 262–263, 263t– 265t, 275
antinutritional constituents in, 362t
appearance of, 4f, 58f, 235, 236f
classification of, 235
composition of, 237–243, 238t
carbohydrates, 240–241
functional bioactive compounds and antinutrients, 241–243
lipids, 241
minerals, 241
proteins and amino acids, 238–240, 239t
vitamins, 241
countries producing, 236, 237f
cowpea-based ingredients, 246–249
extruded, 249
flours, whole and decorticated, 246–247, 247f–248f
fractions, milled/air-classified, 247–248
protein concentrates and isolates, 248–249
foods made from, 249–254
akara, 249–251
baking composite flours, 252–253
cowpea stew (Red-Red), 252, 252f
moin-moin, 251–252
weaning foods, 253–254
hard-to-cook (HTC) phenomena and, 243–244
nutrient composition of, 15t
cooked, 331t
origin and history of, 236
physical characteristics and cultivars, 59t
phytate content of, 366t
saponin concentration in, 371t
soaking and cooking times, 329t
storage, 237
USDA grading standards, 70t
US production, 10, 10f
whole seed processing, 243–246
germination and fermentation, 245–246
soaking, boiling and steaming, 244–245, 244f, 245t
world distribution of, 262t
world production of, 6, 7f, 8, 8t
Cowpea stew (Red-Red), 252, 252f
CPER (calculated protein efficiency ratio), 245
Cranberry bean
appearance of, 4f, 58f
description and culinary uses of, 60
flour composition, 207t
physical characteristics and cultivars, 59t
seed size, 66t
soaking and cooking times, 329t
USDA grading standards, 70t
C-reactive plasma, 344
Creole cuisine, 316
Crock-pot beans, 330
Cross-pollination, 33, 33f
CRSP (Collaborative Research Support Program), 18, 28
Cuisine. See Culinology
Culinology, 313–333
current foodservice and restaurant trends, 332–333
descriptions and culinary uses of common beans, 58, 60
Culinology (continued)

early evidence of consumption, 314–315
negative social connotations of legumes, 313–314
nutrient composition of cooked, 331t
preparation methods, 325–332
canned beans, 330
cooking times, 329–330, 329t
crock-pot beans, 330
for fava beans, 325–327
fresh beans, 327
frozen beans, 327
microwave beans, 332
neo-scratch foods, 330
roasted beans, 332
soaking dried legumes, 327–330, 329t
sprouting of beans, 325, 326f
washing dried beans, 327
regional bean cuisines of the United States, 315–322
midwestern United States, 320–321
northeastern United States, 321
northwestern United States, 321–322
southern United States, 315–318
Appalachian cuisine, 317–318
Creole and Cajun, 316
low country cuisine, 316–317
southwestern United States, 318–320
worldwide cuisines, 322–325
Asia, 324–325
Latin American and Caribbean, 323–324
Mediterranean, 322–323

Cultivars
of common dry beans, 59t
market classes, 61

Cultivation, 24–25
black gram, 297
chickpea, 287
lentils, 290
mung bean, 294
pigeon pea, 299

Cuticle, 63

Cyanides
as antinutritional factors, 362t
dry bean/pulses containing, 362t

Cysteine, 284

Cytokines, 341

Daenjang chigae, 324

Dark red kidney bean. See Red kidney bean

Decortication, 268. See also Dehulling

Dehulling
chickpeas, 289
cowpeas, 244f, 245t
in extraction protocols for protein, 209, 210f
lentils, 292

mung beans, 295
nutritional quality of beans and, 114, 115t–116t
pigeon peas, 301
processing in Africa, 268

Density separation, 77

Destoning, 160

Dhal, 270, 289, 295, 297, 299

Diabetes mellitus, 340–342

Diet. See also Consumption; Culinology;
Nutrition
constraints on utilization of beans and pulses, 17–18
culinology, 313–333
early evidence of legume consumption, 314–315
regional bean cuisines of the United States, 315–322
weaning foods, 16–17, 253–254
Dietary fiber. See Fiber

Digestibility
cooking effects on, 117–118
dehulling effect on, 115t
processing procedure effects on, 116t
protein, 105, 106, 116, 116t, 117–118, 179, 242, 245
protein digest corrected amino acid score (PDCAAS), 253
soaking effect on, 114, 116t
starch, 107–109, 108t, 116t, 117

Dikgobe, 274t, 277

Direct harvest systems, breeding for, 40
Discoloration of seed, 94
Disease resistance, breeding for, 39–40
Diseases
lowered risk with beans in diet, 14, 16
Sclerotinia, 25
seed-borne, 26

Distribution of dry bean production
global, 6–9, 7f, 8t–9t, 262t
US, 9–10, 9t, 10f

Dry beans. See also specific bean type
in Africa, 264t–265t
antinutritional factors, 359–372
canned beans and bean products, 155–181
constraints on utilization of, 17–18
consumption trends, 10–11, 11f
as diverse food resource, 11–13, 13f
extrusion processing, 185–201
food security and, 18–19
nutrient composition of, 15t
nutritional profile, 13–14, 14t
US production of, 9–10, 9t, 10f
utilization in Africa, 261–278
world production of, 6, 7f, 8, 8t–9t

Drying and aeration, 81
Dry processing
chickpeas, 289
dry milling in Africa, 268–269
protein extraction for bean fractions, 209–210, 210f
starch extraction for bean fractions, 210f, 213
Dwarf lethal DL1 gene, 31
Dwarf lethal DL2 gene, 31
East Asian cuisine, 324
Eastern Mediterranean cuisine, 323
EDTA (ethylene-diamine-tetraacetic acid), additive to soak water, 133
in brines and sauces, 161–162
Elevator
conveyance to, 78
storage in, 76, 77f
Embryo, 65–66
Emulsifying properties of bean protein, 217–218
Enola (yellow bean variety), 30
Enzyme inhibitors, 368–371
Epicotyl, 62, 62f
Essential amino acids, 300, 360
Ethnicity, dry bean consumption by, 157b
Expansion index of extruded products, 227–228
Extraction protocols for bean fractions, 209–216
for fiber, 215–216
for protein, 209–213

dry processing, 209–210, 210f

wet processing, 211–213
for starch, 213–215, 215f

dry processing, 210f, 213

wet processing, 213–215, 215f
Extrusion, 185–201
applications of, 187b
bean flours/fractions, effects of, 227–228
nutritional properties, 228
physical/functional properties, 227–228
benefits of, 186, 199–200
fiber content improvement, 199
lectin bioactivity inactivation, 199
nutrient bioavailability increase, 200
phenolic compound effects, 200
resistant starch development, 199–200
conditions, 227
cowpea-based ingredients, 249
equipment, 188–190, 189f, 191f
cooking zone, 190
feed/mixing zone, 190
high pressure/forming zone, 190
extension index, 227–228
hard-to-cook (HTC) phenomena and, 190
in lentils, 292
nutritional quality of beans and, 116t, 118, 199–200
overview, 190–195
products, 188t, 195–196, 196f
bean flours/fractions in, 227–228
quality of products, 197–200
foaming and emulsifying properties, 199
functional properties, 197–199, 198t
nutritional and health benefits, 199–200
oil/fat adsorption capacity, 199
water absorption index, 197, 198t
water solubility index, 197, 198t
system classification, 188
technology, 186–187
Faba bean. See Fava beans (Vicia faba)
Fabaceae
characteristics of, 55
species and common names, 56f
Fat. See also Lipids
bean flour composition, 207t
Fat absorption capacity (FAC), 217
Fat binding capacity (FBC), 217, 224
Fat retention capacity. See Fat binding capacity (FBC)
Fatty acids
composition of processed beans and pulses, 110, 112, 113t
in cowpeas, 241
Fava beans (Vicia faba)
in Africa, 263t–265t
allegory to, 314
antinutritional constituents in, 362t
historical references to, 314
phytate content of, 366t
preparation methods, 325–327
seed size, 66t
soaking and cooking times, 329t
world production of, 6, 7f
Favism, 200, 314
Feijoada, 324
Fiber, 63
in bean flours, 207t, 209
in black gram, 297
in canned beans, 174
in chickpeas, 287, 288t

Fiber (continued)
composition of processed beans and pulses, 109–110, 109t
in cowpeas, 241
extraction protocols for bean fractions, 215–216
extrusion processing effect on, 192, 199
health benefits of, 16
in Indian vetch, 303
in lentils, 290–291, 291t
in mung beans, 294, 295t
physiochemical properties of bean fractions, 222–224
fat/oil retention capacity, 224
hydration and, 223–224
solubility, 222–223
viscosity, 224
in pigeon peas, 300t
Field beans, saponin concentration in, 371t
Filling and closing containers, 164
Flatulence, 117, 174, 192, 298, 327–328, 360
Flavonoids, 67–68, 67f, 112
as antinutritional factors, 362t–363t
beneficial effects of, 363t
dry bean/pulses containing, 362t
health benefits of, 364
in lentils, 292
Flavor volatiles, 175
Flour
applications
baked foods, 225–227, 226t
extruded products, 227–228
meat products, 224
composition of, 206, 207t, 209
cowpea
baking-composite flours, 252–253
whole and decorticated, 246–247, 247f–248f
lentil, 293
pigeon pea, 302
Flower, pollination of, 33–34, 33f
Foaming properties of bean protein, 218–219
Folacin content in bean varieties, 111t
Food aid programs, 18–19, 19f
Food allergies, 368–369
Food products. See specific products
Food safety, bean handling and, 96–97
Food security, 18–19
Foodservice and restaurant trends, 332–333
Fossolia, 277
Four-way cross, 34
Fractions
applications
baked foods, 225
extruded products, 227–228
meat products, 224
composition of, 208t
cowpea, 247–248
extraction protocols, 209–216
for fiber, 215–216
for protein, 209–213
dry processing, 209–210, 210f
wet processing, 211–213
for starch, 213–215, 215f
dry processing, 210f, 213
wet processing, 213–215, 215f
physiochemical properties of, 216–224
dietary fiber, 222–224
fat/oil retention capacity, 224
hydration and, 223–224
solubility, 222–223
viscosity, 224
protein, 216–219
emulsifying properties, 217–218
fat absorption capacity (FAC), 217
foaming property, 218–219
gelation, 219
solubility, 216–217
water absorption capacity (WAC), 217
water holding capacity (WHC), 217
starch, 220–222
gelatinization properties, 220, 220t
rheological properties, 221–222, 222f
swelling properties and solubility, 220–221
Frijoles negros, 324
Fructooligosaccharides, 192
Fructosamine, 341
Frying, 271
Fungicides, 25
Gaminæ, 56
Gamma irradiation, 134
Garbanzo beans, 157. See also Cowpea
Garden bean, nutrient composition of, 104t
Gelatinization, starch, 220, 220t
Gelation, proteins and, 219
Gene pools, 29–32, 30t
Genetically modified beans, 47–48
Genetic diversity, 26–27
Genetic drift, 24
Genetics, 28–32
bean species, 28–29, 28f
gene pools, 29–32, 30t
wild bean germplasm, 32
Genome size, 23
Genomic research, 46–48
comparative mapping with soybean, 47
genetically modified beans, 47–48
Genotypic screening of canning quality, 43
Geosmin, 95
German bean soup, 320
German style green beans, 320–321

Germination
 - in chickpeas, 289
 - in cowpeas, 245
 - in lentils, 292
 - in mung beans, 295–296
 - nutritional quality of beans and, 116, 116t
 - in pigeon peas, 302
 - processing in Africa, 272

Germplasm
 - collections, 29–30
 - genetic diversity, 26–27
 - wild bean, 32

Githeri, 274–275, 274t, 275f

Globulins
 - in bean flours, 206
 - cowpea, 240
 - emulsifying activity, 218

Glutelins, cowpea, 240

Glycated proteins, 341

Glycemic index, 336, 337f, 338–342, 338t

Glycemic load, 337f, 338–341

Glycine max. See Soybean

Gobirasha, 207t

Gofta, 207t

Grading beans, 157, 169–170

Grains
 - culinary preference for, 313
 - nutritional benefits versus dry beans, 15f
 - nutritional profile of, 14t

Gravity table, 77, 79

Greasy beans, 318

Great Northern bean
 - antinutritional constituents in, 362t
 - appearance of, 4f, 58f
 - blanching process, 136f
 - description and culinary uses of, 60
 - flour composition, 207t
 - flour use in baked foods, 225
 - physical characteristics and cultivars, 59t
 - seed size, 66t
 - soaking and cooking times, 329t
 - starch composition of, 107t
 - US consumption, 156, 156f
 - USDA grading standards, 70t
 - US production, 10f

Growth habits, 29, 30f

Gumbo, 316

Habas con jamón, 323

Habichuelas, 324

Handling
 - chickpea, 287
 - pigeon pea, 299
 - postharvest, 75–97
 - conveying and transfers, 78
 - food safety and, 96–97
 - overview, 76–77
 - receiving, cleaning and separation, 78–79, 80f
 - storage facilities, 79–81
 - unit operations, 76f

Hard shell, 86. See also Hard-to-cook (HTC) phenomena

Hard-to-cook (HTC) phenomena, 86–94, 87f, 88t–90t, 91f–93f
 - causes, 119
 - cellular integrity and ultrastructural changes, 91, 92f–93f
 - composition of beans and, 119–120
 - cowpeas and, 243–244
 - extrusion cooking and, 190
 - lignification of middle lamella, 91–92
 - pectin-cation cross-linking, 92–94
 - phenolic interactions, 91
 - phytase-phytate-pectin hypothesis, 119
 - protein-starch interactions, 94
 - relative humidity and, 87, 88t–90t, 91f
 - storage conditions and, 88t–90t

Harissa, 322–323

Harvesting
 - black gram, 297
 - chickpea, 287
 - methods, 25–26
 - HBA1C, 341–342
 - HDL-C (high-density lipoprotein cholesterol), 344

Health benefits, 14–16, 335–350
 - antinutritional factors, 359–372, 363t
 - cancer, 345–350
 - breast cancer, 347–349
 - colorectal cancer, 345–347
 - prostate cancer, 349–350
 - cardiovascular disease, 342–345
 - diabetes mellitus, 340–342
 - extrusion products, 199–200
 - hyperglycemia and chronic disease, 336–338, 337f–338f
 - longevity, 345
 - obesity, 338–340
 - studies on, 336t

Heat penetration, 147

Heat transfer, 144–146, 145f–146f

Heat treatments. See also Cooking
 - blanching, 117–118, 135–141, 160–161
 - effect on
 - fiber content, 223
 - protein solubility, 217
 - extrusion cooking, 116t, 118
 - infrared heating, 121
 - of mung beans, 296
 - of pigeon peas, 301–302
 - thermal processing, 141–151

Heirloom beans, 61
Hemagglutinins, 105
 as antinutritional factors, 178–179, 360t
 in cowpeas, 244
 extrusion cooking effect on, 118
 soaking/blanching effect on, 138–139
Hemicellulose, 328
Herbicides, 24
High-density lipoprotein cholesterol (HDL-C), 344
High-temperature short-time (HTST) process, 136, 185–186
Hilum, 62, 62f
History of dry beans and pulses, 5
 “Holy Trinity,” 317–318
Hopper cars, 83
Hoppin’ John, 317
HTC. See Hard-to-cook (HTC) phenomena
HTST (high-temperature short-time) process, 136, 185–186
Hummus, 157, 323
Hybrid varieties, 24
Hydration, 130–135. See also Soaking
Hydration property of fi ber, 223–224
Hydrostatic pressure sterilizers, 150–151
Hydroxycinnamic acids, 91, 178
Hyperglycemia, 336
Hypocotyl, 62, 62f
IgE, 269
Imbibition, 131–132
Inbred backcross method, 32, 36
Inbreeding, 24
 procedures, 34
Incompatibility genes, 31
Indian vetch (Lathyrus sativus), 286f, 303–304
Irradiation, 325
Insect pests, 25
Insecticides, 25
Infestation of stored beans, 95–96, 96f
Insoluble dietary fi ber, 222–223
Intellectual property (IP) rights, 30–31, 35
IP3, 367
IP6, 365–366
Iron content
 breeding for, 44–45
 loss with soaking/blanching, 141
 in raw versus cooked beans, 110t
Irradiation, 325
Irrigation, 24–26
Isoflavones, health benefi ts of, 365
Jack bean
 antinutritional constituents in, 362t
 world distribution of, 262t
Jamapa, 207t–208t
Jambalaya, 316
Japanese cuisine, 324–325
Kaempferol, 112
Kantatayo, 275
Katogo, 274, 274t
Kidney bean. See also Red kidney bean
 amino acid composition of, 106t
 antinutritional constituents in, 362t
 dehulling effect on composition of antinutritional factors, 115t
 fatty acid composition of, 113t
 fi ber composition of, 109t
 flour composition, 207t
 mineral content of, 110t
 nutrient composition of, 15t
 phytate content of, 366t
 seed size, 31, 66t
 soaking and cooking times, 329t
 splitting of beans, 120–121
 starch composition of, 107t–109t
 USDA grading standards, 70t
 vitamin content of, 111t
 world distribution of, 262t
 yield, 31
Kinetics, of thermal destruction, 149–150
Kombu, 328
Kpejigaou, 275–276
Lactic acid fermentation, 116–117
Lactobacillus fermentum, 223
Lathyrus sativus. See Indian vetch
Latin American cuisines, 323–324
LDL-C (low-density lipoprotein cholesterol), 343–345
Least gelling concentration (LGC), 219
Leather britches, 317–318
Lectins, 105
 as antinutritional factor, 360t, 362t–363t
 benefi cial effects of, 363t, 370
 in cowpeas, 242
 dry bean/pulses containing, 362t
 extrusion processing effect on, 199
 soaking/blanching effect on, 138–139
Legumes. See also specifi c legume types
 in Africa, 261–278
 antinutritional factors in, 284–285
 black gram (Vigna mungo), 285t, 286f, 296–298
 characteristics of, 55–56
 chickpea (Cicer arietinum), 285–290, 285t–286f, 288t
 as diverse food resource, 11–13, 13f
 early evidence of consumption, 314–315
 in human nutrition, 359–360
 Indian vetch (Lathyrus sativus), 286f, 303–304
 lentil (Lens culinaris), 285t, 286f, 290–293, 293t
mung bean (*Vigna radiata*), 285t, 286f, 293–296, 295t
negative social connotations of, 313–314
nutritional benefits of, 283–285
overview of, 283–285
physical characteristics, 285t
pigeon pea (*Cajanus cajan*), 285t, 286f, 299–302
scientific names, 5, 285t
terminology, 56–58, 57b
Legumins, 370
Lehata, 274t, 277
Lentils (*Lens culinaris*), 290–293, 293t
in Africa, 263t–265t
antinutritional constituents in, 362t
appearance of, 4f, 286f
Cajun, 316
composition and nutritional profile, 290–292, 291t
fatty acid composition of, 113t
food products, 293t
global production of, 8, 8t
historical references to, 314
market classes, 60
nutrient composition of, 15t
nutrient composition of cooked, 331t
processing, 292–293
production and cultivation, 290
seed shape, weight, and dimensions, 285t
soaking and cooking times, 329t
USDA grading standards, 71
US production, 10, 10f
vitamin content of, 111t
world distribution of, 262t
Lethal rate, 147–150, 148f
formula method, 148–149
kinetics, 149–150
LGC (least gelling concentration), 219
Light red kidney bean. See Red kidney bean
Lignification of middle lamella, 91–92
Lima bean (*Phaseolus lunatus*)
antinutritional constituents in, 362t
phytate content of, 366t
soaking and cooking times, 329t
US consumption, 156f
US production, 10f
world distribution of, 262t
Linnaeus, Carolus, 55
Linoleic acid, 110
Linolenic acid, 110
Lipids
bean flour composition, 207t
in canned beans, 179
changes during thermal processing, 179
in chickpeas, 288t
composition of processed beans and pulses, 110, 112, 113t
in cowpeas, 241
in Indian vetch, 303
in lentils, 291t
in mung beans, 295t
in pigeon peas, 300t
Longevity, 345
Low country cuisine, 316–317
Low-density lipoprotein cholesterol (LDL-C), 343–345
Lupins (*Lupinus* spp.)
in Africa, 263t–264t
global production of, 8, 8t
Lysine, 284, 300, 360
Magnesium, content in raw versus cooked beans, 110t
Magnesium chloride, additive to soak water, 134
Makande, 274–275, 274t, 275f
Malnutrition, 16
Manganese
content in raw versus cooked beans, 110t
loss with soaking/blanching, 141
Manhuchu, 277
Manufacturing process sequence, 129–130
Marker assisted selection (MAS), 46–47
Market classes, 58–61, 104
cross-contamination among, 60–61
cultivars, 61
descriptions and culinary uses of common beans, 58, 60
diversity of, 61
heirloom beans, 61
organic beans, 61
physical characteristics, 59t
for regional or ethnic needs, 61
seed size and shape characteristics, 66–67, 66t
USDA standards, 69–71, 70t
Meat products, bean flours/fractions in, 224–225
Mediterranean cuisine, 322–323
Methionine, 284, 360
Mexican bean beetle (*Zabrotes subfasciatus*), 32
Mexican cuisine, 319
Micronization, 121
Micronutrient content, breeding for, 44–45
Micropyle, 62, 62f
Microwave beans, 332
Middle American gene pool, 29, 31–32
Midwestern United States, regional bean cuisine of, 320–321
Milling
dry, 268–269
household, 269
wet, 267–268
Minerals
- in black gram, 297–298
- in canned beans, 177–178
- changes during thermal processing, 177–178
- in chickpeas, 288t
- composition of processed beans and pulses, 110, 110t
- in cowpeas, 241
- in lentils, 291t
- in mung beans, 294, 295t
- in pigeon peas, 300t
- soaking/blanching effect on, 140–141

Missir wat, 277

Moin-moin, 251–252, 274t, 277

Moisture content
- drying and aeration of beans, 81
- extruded cowpea-based ingredients, 249
- median cooking time and, 87F
- soaking and, 114, 130, 131t
- during storage, 76–78, 84–85
- testing post-blanching, 138

Mold development during storage, 94–95

Morogo wa dinawa, 277

Moth bean, saponin concentration in, 371t

Mpswapswa, 277

Mucuna, 274t, 277

Mung bean (*Vigna radiata*), 285t, 286f, 293–296, 295t
- antinutritional constituents in, 362t
- appearance of, 4f, 286f
- composition and nutritional profile, 294–295, 295t
- cultivation and production, 294
- processing, 295–296
- seed shape, weight, and dimensions, 285t
- soaking and cooking times, 329t
- USDA grading standards, 70t

Mutakura, 277

Myco toxins, 95

Myocardial infarction, 343

Navy bean
- appearance of, 4f, 58f
- description and culinary uses of, 60
- extrusion processing reduction of oligosaccharides, 192t
- flour composition, 207t
- flour use in baked foods, 225, 226t, 227
- nutrient composition of, 15t, 104t
 - cooked, 331t
- physical characteristics and cultivars, 59t
- seed size, 66t
- soaking and blanching treatments, 137t
- soaking and cooking times, 329t
- soaking/blanching effect on, 140t
- starch composition of, 107t–108t

US consumption, 156, 156f
- USDA grading standards, 70t
- US production, 9, 10f
- vitamin content of, 111t
- world distribution of, 262t

Neo-scratch foods, 330

New Mexican cuisine, 319

New varieties, release of, 35

Niacin, 111t

Niche markets, breeding for, 45–46

Nitrogen fixation
- breeding for improved biological nitrogen fixation (BNF) capacity of beans, 45–46

Rhizobium and, 56

North African cuisine, 322–323

Northeastern United States, regional bean cuisine of, 321

Northern bean. See Great Northern bean

Northwestern United States, regional bean cuisine of, 321–322

Nutrient composition
- black gram, 297–298
- chickpea, 287–289, 288t
- of cooked beans and pulses, 331t
- cowpea, 237–243, 238t
- of dry beans and pulses, 15t, 104t
- lentil, 290–292, 291t
- mung bean, 294–295, 295t
- pigeon pea, 300–301, 300t
- of processed beans and pulses, 104–112
- antioxidants, 112
- ash, 110
- beans varieties and, 104t
- carbohydrate, 107–110
- fiber, 109–110, 109t
- lipids, 110, 112, 113t
- minerals, 110, 110t
- protein, 105–107, 106t
- starch, 107–108, 107t–108t
- vitamins, 110, 111t

Nutrition, 335–350. See also Diet; Nutrient composition

antinutrients (see Antinutritional factors)

benefits of extrusion products, 199–200

health significance, 14–16, 335–350

legumes in, 359–360

nutritional profile, 13–14, 14t

processing and nutritional quality of beans, 112–118, 116t, 138–141

blanching and cooking (heat treatments), 117–118, 138–141

dehulling, 114, 115t–116t

extrusion cooking, 116t, 118

fermentation, 116–117

germination, 116, 116t

soaking, 114, 116, 116t, 138–141
soaking/blanching effect on nutrients and antinutrients, 138–141
weaning foods, 16–17, 253–254

Obesity, 338–340
Oil absorption capacity (OAC), 217
Oil binding capacity (OBC), 217, 224
Oil/fat adsorption capacity, of extrusion products, 199
Oil holding capacity (OHC), 217, 224
Oil retention capacity. See Oil binding capacity (OBC)
Okpa, 274t, 277
Oligosaccharides
 in black gram, 298
 in canned beans, 241, 244–246, 245f
 extrusion processing reduction of, 192, 192t
 fructooligosaccharides, 192
 raffinose, 117, 192, 192t, 244–246, 245t
 soaking/blanching effect on, 138, 139f
 stachyose, 192, 192t, 194, 244–246, 245f
Organic beans
 breeding for niche market, 45–46
 market classes available, 61
Origin of dry beans and pulses, 5
Oxygen radical absorbance capacity (ORAC), 14, 16

Pacific Northwest cuisine, 321
Packaging, 82–84
 canned beans
 can/jar sizes, 165, 165t
 filling and closing containers, 164
 innovations, 180–181
 for overseas shipment, 84
 systems for domestic shipments, 82–83, 83f
 bulk polyethylene totes, 83
 commercial polypropylene bags, 82
 retail polyethylene bags, 82
 Packaging machine, 82–83, 83f
 Pad thai, 325
Papilionoideae, 55
Parenchymal cells, 63
Pasta e fagioli, 323
Patents, 30–31
Peanut allergens, 368–369
Peas
 allergens in, 369
 saponin concentration in, 371t
 soaking and cooking times, 329t
 Pea vicilin, 369–370
Pectin
 in canned beans, 177
 changes during thermal processing, 177
 hard-to-cook (HTC) phenomena and, 119
 solubilization, 177
 splitting of beans and, 121
 structure, 120
Pectin-cation cross-linking, 92–94
Pectin-cation-phytate model, 92
Pectin methylsterase, 93–94
Pedigree breeding method, 34
Penicillium spp., 95
Peptides, antinutritional, 368–371
Phaseolin, 105
Phaseolus. See also specific bean varieties
 in Africa, 263t–264t
 classification, 55–56, 56f
 cultivated species, 28–29, 28f
 early evidence of consumption, 315
 flour composition, 207t
 origin of, 5
 vitamin content of, 111t
Phenolic compounds
 as antinutritional factors, 112, 360t, 363t
 beneficial effects of, 112, 363t
 classification of, 67f
 in cowpeas, 242
 extrusion processing effect on, 200
 hard-to-cook (HTC) phenomena and, 91, 119
 health benefits of, 16, 364–365
 in lentils, 292
 processing effects on, 112
 seed color and, 67–68, 94
Phosphate solutions, as additives to soak water, 134
Phosphorus, content in raw versus cooked beans, 110t
Physical characteristics of common dry beans, 59t
Physiochemical properties of bean fractions, 216–224
Phytase-phytate-pectin hypothesis, 119
Phytate/phytic acid, 92
 as antinutritional factor, 360t, 362t–363t
 beneficial effects of, 363t
 content of dry bean/pulse varieties, 366t
 in cowpeas, 242, 244, 245t
 dehulling effect on composition of, 114, 115t
 dry bean/pulses containing, 362t
 effect on digestibility and bioavailability of proteins, 106
 germination effect on content of, 116, 116t
 hard-to-cook (HTC) phenomena and, 119–120
 health benefits of, 365–368
 mineral binding by, 365–366
 in pigeon peas, 301
 processing procedure effects on content of, 116t
 soaking effect on, 116, 116t, 140, 179
 structure, 120
Phytochemicals, 112
in canned beans, 178
changes during thermal processing, 178
Phytoestrogens, health benefits of, 365
Phytohemagglutinins, 105
as antinutritional factors, 178–179, 360t
in cowpeas, 244
extrusion cooking effect on, 118
soaking/blanching effect on, 138–139
Phytosterols
as antinutritional factors, 363t
beneficial effects of, 363t
Pickett puller, 26
Pigeon pea (*Cajanus cajun*), 285t, 286f, 299–302
in Africa, 263t–265t
antinutritional constituents in, 362t
appearance of, 286f
composition and nutritional quality, 300–301, 300t
cultivation, production and consumption, 299
global production of, 8, 8t
handling, transportation and storage, 299
processing, 301–302
seed shape, weight, and dimensions, 285t
soaking and cooking times, 329t
Pigmentation, seed coat, 67–69
Pink bean
flour composition, 207t
physical characteristics and cultivars, 59t
seed size, 66t
USDA grading standards, 70t
US production, 10f
Pinto bean
appearance of, 4f, 58f
cooking times, 329t
dehulling effect on composition of antinutritional factors, 115t
description and culinary uses of, 60
extrusion processing reduction of oligosaccharides, 192t
fatty acid composition of, 113t
fiber composition of, 109t
flour composition, 207t
flour use in baked foods, 225, 226t, 227
mineral content of, 110t
nutrient composition of, 15t, 104t
cooked, 331t
physical characteristics and cultivars, 59t
phytate content of, 366t
seed size, 66t
soaking, 159, 329t
splitting of beans, 121
starch composition of, 107t, 109t
US consumption, 156, 156f
USDA grading standards, 70t
US production, 9, 10f
vitamin content of, 111t
world distribution of, 262t
Plant Germplasm System, 29–30
Planting time, 24
Pollination, 33–34, 33f
Polyethylene
bulk totes, 83
retail bags, 82
Polyphenols, 67–68, 67f, 94
in cowpeas, 242
processing procedure effects on content of, 116t, 118
Polypropylene bags, 82
Population density, 24
Pork and beans, 162
Postharvest handling. See Handling, postharvest
Postharvest losses, 86
Potassium content in raw versus cooked beans, 110t
Pot beans, 319–320
Prebiotics, 200
Probiotics, 291
Processing. See also specific processes
in Africa, 266–274, 266f
agglomeration, 272–273
canning, 273–274
dry milling, 268–269
fermentation, 272
frying, 271
germination, 272
puffing, 271–272
roasting, 270–271
steaming, 272
wet and dry integrated process, 269–270
wet milling, 267–268
black gram (*Vigna mungo*), 298
blanching, 135–141, 160–161
canned beans, 157–161
blanching, 160–161
cleaning/grading, 157
destoning, 160
flow diagram, 158f
soaking, 158–159
thermal processing, 165–168, 166t–168t
quality changes during processing, 176–179
chickpea, 289–290
composition of processed beans and pulses, 103–122
hard-to-cook (HTC) phenomena and, 119–120
novel treatments, impact of, 121
nutritional quality of beans and, 112–118, 116t
splitting of processed beans, 120–121
cowpea
cowpea-based ingredients, 246–249
whole seed processing, 243–246
dehulling (see Dehulling)
destoning, 160
extrusion, 116t, 118, 185–201
flours and fractions, 205–229
hydration, 130–135
lentils, 292–293
mung bean, 295–296
nutrient composition of processed beans and pulses, 104–112
nutritional quality of beans and, 112–118, 116t
blanching and cooking (heat treatments), 117–118
dehulling, 114, 115t–116t
extrusion cooking, 116t, 118
fermentation, 116–117
germination, 116, 116t
soaking, 114, 116, 116t
pigeon pea, 301–302
quality, breeding for, 40–44, 42f
quick-cooking beans, 134–135, 135f
soaking (see Soaking)
thermal, 141–151
canned beans, 165–168, 166t–168t
quality changes during, 176–179
commercial sterility, 141
considerations in, 141–146
heat penetration, 147
hydrostatic pressure sterilizers, 150–151
lethal rate, 147–150
retort sterilizers, 150–151
Processing quality index, 42
Production
in Africa, 262–263, 263t–265t
black gram, 297
global, 6–9, 7f, 8t, 9t
lentils, 290
mung bean, 294
pigeon pea, 299
US, 9–10, 9t, 10f
Production practices, 24–26
Production trends, 26–28
Product manufacturing process sequence, 129–130
Products. See specific products
Prolamins, cowpea, 240
Prostate cancer, 349–350
Protease inhibitors
as antinutritional factors, 363t
beneficial effects of, 363t
Protein(s)
amino acid content, 105, 106t
antinutritional, 242–243, 368–371
bean flour composition, 207t
bioavailability, 105–106
in black gram, 297
calculated protein efficiency ratio (CPER), 245
in canned beans, 179
changes during thermal processing, 179
in chickpeas, 287, 288t
composition of processed beans and pulses, 105–107, 106t
in cowpeas, 238–240, 239t
digestibility, 105, 106, 116, 116t, 117–118, 179, 242, 245
eXtraction protocols for bean fractions, 209–213
dry processing, 209–210, 210f
wet processing, 211–213
acid extraction, 211–212
alkaline extraction, 211
comparison of techniques, 212–213
salt extraction, 212
ultrafiltration method, 212
water extraction, 212
in Indian vetch, 303
in lentils, 291, 291f
in mung beans, 294, 295t, 296
physiochemical properties of bean fractions, 216–219
emulsifying properties, 217–218
fat absorption capacity (FAC), 217
foaming property, 218–219
gelation, 219
solubility, 216–217
water absorption capacity (WAC), 217
water holding capacity (WHC), 217
in pigeon peas, 300–301, 300t
Protein concentrates, cowpea, 248–249
Protein digest corrected amino acid score (PDCAAS), 253
Protein isolates, cowpea, 248–249
Protein separation efficiency (PSE), 210
Protein-starch interactions, hard-to-cook (HTC) phenomena and, 94
Proteolytic enzymes of mung beans, 296
Proximate chemical composition, 175
PSE (protein separation efficiency), 210
Puffing, 271–272
Pulses. See also specific legume types
in Africa, 264t–265t
antinutritional factors in, 284–285, 359–372
black gram (Vigna mungo), 285t, 286f, 296–298
chickpea (Cicer arietinum), 285–290, 285t, 286f, 288t
composition of processed pulses, 103–122
constraints on utilization of, 17–18
distinctive features of, 284
as diverse food resource, 11–13
extrusion processing, 185–201
food security and, 18–19
Indian vetch (*Lathyrus sativus*), 286f, 303–304
lentil (*Lens culinaris*), 285t, 286f, 290–293, 293t
mung bean (*Vigna radiata*), 285t, 286f, 293–296, 295t
nutrient composition of, 15t
nutritional benefits of, 283–285
overview of, 283–285
pigeon pea (*Cajanus cajan*), 285t, 286f, 299–302
scientific names and physical characteristics, 285t
utilization in Africa, 261–278
as weaning foods, 16–17
world production of, 6, 7f, 8t

Pyridoxine, 111t
Pythagoras, 314

QTL analysis
breeding for canning quality, 40–41
breeding for disease resistance, 40
breeding for micronutrient content, 44–45
Quality of canned beans, 169–179
chemical/nutritional measurements, 174–175
quality changes during thermal processing, 176–179
quality evaluation, 170–174
sensory attributes, 175–176
standards of quality, 169–170, 169t
Quercetin, 112
Quick-cooking beans, 134–135, 135f

Radicle, 62, 62f
Raffinoise family oligosaccharides, 117, 192, 192t
in cowpeas, 244–246, 245t
Rail transport, 83
Rajma, 325
Random amplified polymorphic DNA (RAPD) markers, 46
Rapid viscoanalyzer, 221
Ras el Hanout, 322
Ready-to-eat products, 180, 186, 195
Recombinant inbred line (RIL)
QTL analysis of breeding for canning quality, 40–41
QTL analysis of breeding for micronutrient content, 44–45
single seed descent (SSD) method and, 37
Recurrent selection method, 37–38

Red flour beetle, 96
Red kidney bean. *See also* Kidney bean
appearance of, 4f, 58f
blanching effect on, 139t–140t
dehulling effect on composition of antinutritional factors, 115t
description and culinary uses of, 115
fiber composition of, 109t
flour composition, 207t
mineral content of, 110t
nutrient composition of, 15t, 104t
cooked, 331t
physical characteristics and cultivars, 59t
soaking, 139t–140t, 159
splitting of beans, 120–121
starch composition of, 109t
US consumption, 156, 156f
US production, 10f
vitamin content of, 111t
weight gain during soaking, 130f
Red-Red, 252, 252f, 276
Redwolaita, 207t
Refried beans, 156, 163, 319
Relative humidity and hard-to-cook (HTC) phenomena, 87, 88t–90t, 91f
Response surface methodology, 194
Restaurant trends, 332–333
Retort, 150–151
agitating cookers, 150–151
continuous, 151
static, 150
Retort pouches, 180–181
Rheological properties of starch, 221–222, 222f
Rhizobium, 56, 299
Rhizopus microspores var. *oligosporus*, 246
Roasted beans, 332
Roasting processing in Africa, 270–271
Roba, 207t
Rod-puller, 26
Row width, 24
Royalty, 35

Salt content of canned beans, 175
Salt extraction, 212
Saponins
as antinutritional factors, 360t, 362t–363t
beneficial effects of, 363t, 371–372
in canned beans, 178
concentration in legume varieties, 371t
dry bean/pulses containing, 362t
Saturated fatty acid, 113t
Sauce, beans in, 161–162
Scalping, 81
Scandinavian brown beans, 320
Sclerotinia, 25
Index

Screening dry beans, 67, 79
Seed
 discoloration, 94
 insecticide treatment, 25
 multiplication, 35–36
 physiology of dry bean, 62–66
 shape, 67
 size, 66–67, 66t
 states producing for sale, 26
 structure and anatomical features, 62–66, 62f–65f
 types grown by state, 25f
Seed-borne diseases, 26
Seed coat
 color, 64, 67–69
 damage to, 78, 80–81
 structure of, 62–64, 62f–63f
Seeding rates, 24
Seed size, 66–67, 66t
Segregation distortion, 31
Self-pollination, 33–34, 33f
Senate bean soup, 318
Sensory evaluation of beans, 175–176
Sequence characterized amplified region (SCAR) markers, 46
Shape, seed, 67
Shell/shelly beans, 318
Shipping
 domestic rail and truck transit, 83
 overseas, 84
Shiro, 274, 274t
Shuck/shucky beans, 318
Silo, 79
Single seed descent (SSD) method, 36–37
Size, seed, 66–67, 66t
Size separation of dry beans, 79
Small red bean
 appearance of, 4f, 58f
 dehulling effect on composition of antinutritional factors, 115t
 description and culinary uses of, 60
 fiber composition of, 109t
 flour composition, 207t
 mineral content of, 110t
 physical characteristics and cultivars, 59t
 saponin concentration in, 371t
 seed size, 66t
 starch composition of, 109t
 USDA grading standards, 70t
 US production, 10f
Small white bean
 dehulling effect on composition of antinutritional factors, 115t
 fatty acid composition of, 113t
 flour composition, 207t
 physical characteristics and cultivars, 59t
 splitting of beans, 121
 USDA grading standards, 70t
 vitamin content of, 111t
Soaking, 130–135
 additives to soak water, 133–134
 calcium chloride, 134
 EDTA (ethylene-diamine-tetraacetic acid), 133
 magnesium chloride, 134
 sodium bicarbonate, 133–134
 sodium chloride, 134
 sodium hexametaphosphate and phosphate solutions, 134
 canned beans, 158–159
 in cowpea processing, 244–245, 244f, 245t
 dried legumes, 327–330, 329t
 effect on nutrients and antinutrients, 138–141
 gamma irradiation, 134
 magnetic resonance images of beans during, 130, 131f
 moisture content and soak time, 130, 131t
 mung beans, 295
 nutritional quality of beans and, 114, 116, 116t
 parameters, typical, 130
 pigeon peas, 301
 processing in Africa, 267–268
 for quick-cooking beans, 134–135, 135f
 temperature, 132–133
 vacuum hydration pretreatment, 134
 water imbibition and bean softening, 131–132
 water quality and water volume, 132
 weight gain during, 130f
Sodium bicarbonate
 additive to soak water, 133–134
 in extrusion processing, 192–193
Sodium chloride
 additive to soak water, 134
 measurement of salt content in products, 175
 salt extraction, 212
Sodium hexametaphosphate, additive to soak water, 134
Soil temperature, 24
Solubility
 fiber, 222–223
 protein, 216–217
 starch, 220–221
Soluble dietary fiber, 222–223
Sorting, 79, 80f
Soup
 bean, 163, 317–318
 German bean, 320
 yellow or green pea, 320
Soup beans, 317–318
South Asian cuisine, 325
Southeast Asian cuisine, 325
Southern United States, regional bean cuisines
of, 315–318
 Appalachian cuisine, 317–318
 Creole and Cajun, 316
 low country cuisine, 316–317
Southwestern United States, regional bean
cuisine of, 318–320
Soybean (Glycine max)
 comparative genome mapping with beans, 47
 soaking and cooking times, 329t
Soysaponins, 371
Species, bean, 28–29, 28f
Split peas, soaking and cooking times for, 329t
Splitting of processed beans, 120–121
Spoilage, 77
Sprouting
 of beans, 325, 326f
 of mung beans, 296
SSD (single seed descent) method, 36–37
SSE (starch separation efficiency), 213
Stachyose oligosaccharides, 192, 192t, 194
 in cowpeas, 244–246, 245t
Starch
 in bean flours, 206, 207t, 208
 in bean fractions, 208t
 in canned beans, 174, 176
 changes during thermal processing, 176
 composition of processed beans and pulses,
 107–108, 107t–108t
 in cowpeas, 240–241
 digestibility, 107–100, 108t, 116t, 117
 extraction protocols for bean fractions,
 213–215, 215f
 dry processing, 210f, 213
 wet processing, 213–215, 215f
 physiochemical properties of bean fractions,
 220–222
 gelatinization properties, 220, 220t
 rheological properties, 221–222, 222f
 swelling properties and solubility,
 220–221
Starch granules, 64, 65f
Starch separation efficiency (SSE), 213
States, been production, 25f
Steaming
 cowpeas, 244
 processing in Africa, 272
Steel bins for storage, 80
Stem scar. See Hilum
Sterility, commercial, 141
Sterilizers
 hydrostatic pressure, 151
 retort, 150–151
Stew, bean, 275f, 276
Storage
 chickpea, 287
 conditions, 76–77
 cowpea, 237
 damage during, 78, 80–81, 84
 drying and aeration, 81
 facilities, 79–81
 concrete silo, 79–80
 flat storage, 80
 steel bins, 80
 totes, 80–81
 on-farm, 77
 pigeon pea, 299
 protein solubility and, 217
Storage-induced defects, 86–96, 87t
 hard-to-cook (HTC) phenomena, 86–94, 87f,
 88t–90t, 91f–93f
 insect infestation, 95–96, 96f
 mold development, 94–95
 seed discoloration, 94
Storage quality, postharvest, 84–86
 moisture content, 84–85
 postharvest losses, 86
 storage-induced defects, 86–96
 temperature and time, 85
Stroke, 343
Structure and anatomical features, seed, 62–66,
 62f–65f
Succotash, 321
Sugars, 108
 in chickpeas, 288t
 extrusion processing effect on, 192–194,
 192t, 193f
 in lentils, 291t
 in mung beans, 295t
Swelling properties, 220–221
Tabor, 207t
Tagine, 323
Tannins, 67–68, 67f, 94
 as antinutritional factors, 360t, 362t
 blanching effect on, 139–140
 in cowpeas, 242, 244–245, 245t
 dehulling effect on composition of, 114, 115t
 dry bean/pulses containing, 362t
 effect on digestibility and bioavailability of
 proteins, 106
 germination effect on content of, 116, 116t
 health benefits of, 365
 processing procedure effects on content of,
 116t
 soaking effect on content of, 114, 116t,
 139–140
Temperature, storage, 85
Tepary bean, antinutritional constituents in,
 362t
Terminology, legume, 56–58, 57b
Terpenoids
as antinutritional factors, 363t
beneficial effects of, 363t
Testa. See Seed coat
Tex-Mex cuisine, 319
Thermal death time curve, 142–144, 143f
Thermal processing, 141–151
canned beans, 165–168, 166t–168t
quality changes during processing, 176–179
antinutritional factor inactivation, 178–179
lipids, 179
oligosaccharides, 176–177
pectic substances, 177
phytochemicals, 178
proteins, 179
starch, 176
vitamins and minerals, 177–178
commercial sterility, 141
considerations in, 141–146
heat transfer, 144–146, 145f–146f
thermal death time curve, 142–144, 143f
heat penetration, 147
hydrostatic pressure sterilizers, 150–151
lethal rate, 147–150, 148f
formula method, 148–149
kinetics, 149–150
retort, 150–151
agitating cookers, 150–151
continuous, 151
static, 150
Thermocouple, 146–147
Three-bean salad, 163–164, 320
“Three Sisters,” 318
Threshing, 26
Tipiminti, 275
Tocopherol, 111t
Total cholesterol, 343–345
Total dietary fiber, 222–223
Totes
for overseas shipment, 80–81
polyethylene bulk packaging, 83
storage in, 80–81
Trade
global, 6–9, 7f, 8t–9t
US, 9–10, 9t, 10f
Transport
conveyance of harvested beans, 78
pigeon pea, 299
shipping
domestic rail and truck transit, 83
overseas, 84
Truck transport, 83
Trypsin inhibitors
as antinutritional factor, 105–106, 360t, 362t
beneficial effects of, 370
in cowpeas, 242–246, 244f
dehulling effect on composition of, 114, 115t
dry bean/pulses containing, 362t
extrusion cooking effect on, 118, 191
germination effect on activity of, 116
resistance to heat treatment, 117
soaking effect on, 116, 139, 140f, 179
Ultrafiltration, 212
Unsaturated fatty acid, 113t
UPC (universal product code), 83
USAID (Agency for International Development), 18, 19f
USDA standards, 69–71, 70t
Vacuum hydration pretreatment, 134
Value-added processing and products, 12–13, 13f
Velvet bean, antinutritional constituents in, 362t
Very low density lipoprotein cholesterol (VLDL-C), 344
Vetches
in Africa, 263t–265t
global production of, 8, 8t
Indian vetch (Lathyrus sativus), 286f, 303–304
Vicia faba. See Fava beans
Vicilin, 369–370
Vigna angularis. See Adzuki
Vigna mungo. See Black gram
Vigna radiata. See Mung bean
Vigna species, 28
Vigna subterranea. See Bambara groundnut
Vigna unguiculata. See Cowpea
Viscoanalyzer, 221
Viscosity, dietary fiber and, 224
Vitamin B1, in content in bean varieties, 111t
Vitamin B2, in content in bean varieties, 111t
Vitamins
in canned beans, 177
changes during thermal processing, 177
in chickpeas, 288t
composition of processed beans and pulses, 110, 111t
in cowpeas, 241
in lentils, 291t
in mung beans, 294, 295t
in pigeon peas, 300t
VLDL-C (very low density lipoprotein cholesterol), 344
Water absorption capacity (WAC), 217
Water absorption index, 197, 198t
Water extraction, 212
Water holding capacity (WHC), 217
Water retention capacity (WRC), 223–224
Water solubility index, 197, 198t
Weaning foods, 16–17, 253–254
Wet milling
 chickpeas, 289
 processing in Africa, 267–268
Wet processing
 protein extraction for bean fractions, 211–213
 acid extraction, 211–212
 alkaline extraction, 211
 comparison of techniques, 212–213
 salt extraction, 212
 ultrafiltration method, 212
 water extraction, 212
 starch extraction for bean fractions, 213–215, 215f
White kidney bean, physical characteristics and cultivars of, 59t
Winged bean, antinutritional constituents in, 362t
Yellow-eye bean
 appearance of, 58f
 description and culinary uses of, 60
 physical characteristics and cultivars, 59t
 USDA grading standards, 70t
Yellow or green pea soup, 320
Yield
 breeding for, 38–39, 39f
 production trends, 26–27, 27f
 testing, 35
Zinc content
 breeding for, 44–45
 in raw versus cooked beans, 110t