<table>
<thead>
<tr>
<th>A</th>
<th>Accelerated thermal cycling (ATC) test, 199</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH</td>
<td>See American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>Action</td>
<td>Cycle. See Plan, do, check and act phase, 84</td>
</tr>
<tr>
<td>Active disassembly</td>
<td>225–227</td>
</tr>
<tr>
<td>Active Disassembly using Smart Materials (ADSM)</td>
<td>225–227</td>
</tr>
<tr>
<td>Activity-based costing (ABC)</td>
<td>72</td>
</tr>
<tr>
<td>Activity-based management (ABM)</td>
<td>72</td>
</tr>
<tr>
<td>Actual emissions</td>
<td>299</td>
</tr>
<tr>
<td>Actual Value Precedence (AVP)</td>
<td>215, 216</td>
</tr>
<tr>
<td>Acid poisoning</td>
<td>154</td>
</tr>
<tr>
<td>Additional Disassembly Time</td>
<td>250</td>
</tr>
<tr>
<td>Adhesives, usage</td>
<td>189</td>
</tr>
<tr>
<td>Administrative actions</td>
<td>311</td>
</tr>
<tr>
<td>Administrative costs</td>
<td>272</td>
</tr>
<tr>
<td>ADSM. See Active Disassembly using Smart Materials</td>
<td></td>
</tr>
<tr>
<td>AEHA. See Association Electric Home Appliances</td>
<td></td>
</tr>
<tr>
<td>Aerosols</td>
<td>Composition, 152–153</td>
</tr>
<tr>
<td></td>
<td>Definitions, 149–150</td>
</tr>
<tr>
<td></td>
<td>Harm, 165</td>
</tr>
<tr>
<td></td>
<td>Sampling/analysis instrumentation, 153</td>
</tr>
<tr>
<td>Aging substrates, experimental results</td>
<td>203</td>
</tr>
<tr>
<td>Agricola</td>
<td>48</td>
</tr>
<tr>
<td>Airborne particles</td>
<td>Origin, 156–161</td>
</tr>
<tr>
<td></td>
<td>Standards, OSHA publication, 155–156</td>
</tr>
<tr>
<td>Airborne particulate production</td>
<td>146–147</td>
</tr>
<tr>
<td>Air compressors</td>
<td>Intake, 287</td>
</tr>
<tr>
<td></td>
<td>Usage, 287–288</td>
</tr>
<tr>
<td>Air emissions</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Inventory, 303</td>
</tr>
<tr>
<td>Air-jet systems, usage</td>
<td>106</td>
</tr>
<tr>
<td>Air leaks, repair. See Compressed air leaks</td>
<td></td>
</tr>
<tr>
<td>AirMaster+</td>
<td>268</td>
</tr>
<tr>
<td>Air permits, control authority</td>
<td>299</td>
</tr>
<tr>
<td>Air quality. See Manufacturing health effects/regulations, 153–156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction, 145–148</td>
</tr>
<tr>
<td></td>
<td>References, 172–178</td>
</tr>
<tr>
<td></td>
<td>See Workplace air quality regulations</td>
</tr>
<tr>
<td></td>
<td>Trends, 156</td>
</tr>
<tr>
<td></td>
<td>Standards, trends, 156</td>
</tr>
<tr>
<td>American Conference of Governmental Industrial Hygienists (ACGIH)</td>
<td>156</td>
</tr>
<tr>
<td>American National Standards Institute (ANSI)</td>
<td>149</td>
</tr>
<tr>
<td>AND/OR charts methodology</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Usage, 247</td>
</tr>
<tr>
<td>AND/OR graph basis. See Disassembly process layout model, 231</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annotation, 250</td>
</tr>
<tr>
<td></td>
<td>ANSI. See American National Standards Institute</td>
</tr>
<tr>
<td></td>
<td>Anti-degradation policies, 303</td>
</tr>
<tr>
<td></td>
<td>AP-42 handbook, 302</td>
</tr>
<tr>
<td></td>
<td>API. See Application programming interface</td>
</tr>
<tr>
<td></td>
<td>Application programming interface (API), 252</td>
</tr>
<tr>
<td>AR. See Assessment recommendation</td>
<td></td>
</tr>
<tr>
<td>ARC. See Assessment Recommendation Code</td>
<td></td>
</tr>
<tr>
<td>Arc-welding processes</td>
<td>17–18</td>
</tr>
<tr>
<td></td>
<td>Environmental impacts, 18</td>
</tr>
<tr>
<td>Area array packages, manufacture</td>
<td>194</td>
</tr>
<tr>
<td>Art of War, The (Tzu)</td>
<td>49</td>
</tr>
<tr>
<td>Asbestosis</td>
<td>154</td>
</tr>
<tr>
<td>ASHRAE Handbook, usage</td>
<td>287</td>
</tr>
<tr>
<td>Assemblies</td>
<td>197–198</td>
</tr>
<tr>
<td>AssemblyDoc</td>
<td>254</td>
</tr>
<tr>
<td>Assessment planning</td>
<td>87–88</td>
</tr>
</tbody>
</table>
Assessment (Continued)
synopsis, 91
two-way communication, 92
usage, 86–92
Assessment recommendation (AR), 92
Assessment Recommendation Code (ARC), 277–278
Associate (employee/worker synonym), 50
Association Electric Home Appliances (AEHA), 229
ATC. See Accelerated thermal cycling
Automatic disassembly, 227
Automatic flow controls, installation, 139
AVP. See Actual Value Precedence

B
Backlog, limitation, 71
Baldrige, Malcolm, 54
Ball grid array (BGA), 200. See also
Plastic ball grid array assembly, 199
Barrel-plating operations, 125
BAT. See Best available technology economically feasible
BDAT. See Best demonstrated available technology
Bearing outer shell, disassembling operation method, 257–258
tool (usage), 257–258
BEIs. See Biological exposure indices
Ben & Jerry’s, principles, 65
Best available technology economically feasible (BAT), 304
Best demonstrated available technology (BDAT), 311
Best Practices, 267
tools, 280
Best Value Precedence (BVP), 214, 215–216
BGA. See Ball grid array
Bill of materials (BOM), 254
tree, 224
Bioaerosols, 170–171
Biochemical oxygen demand (BOD), 100. See also Metalworking fluids loadings, 109
removal, 108
Biocides, 117
Biological exposure indices (BEIs), 156
Biological inhibition, 117–118
Biomimcry, 65
Bipartite directed graph, 223
BOD. See Biochemical oxygen demand
Boeing, specialization, 68
Boilers
air-fuel ratio adjustment, 281–282
bare surfaces, insulation, 280–281
combustion air, preheating (hot flue gas usage), 281
energy efficiency measures, 280–283
waste heat recovery, 281
Branding, 31
Brazing, 20
Building-block design, 218
Build-to-order process, 68
BVP. See Best Value Precedence

C
CAA. See Clean Air Act
CAAA. See Clean Air Act
CAD. See Computer-assisted design
Cadmium plating, 128
CAM. See Computer-aided machining
Canadian runner modeling, 23
Capacity planning, usage, 82
Carbon arc welding (CAW), 157
Carbon black (CB)
manufacturing, 160
usage, 160–161
Carbon monoxide, pollutant, 302
Carbon nanotubes (CNTs), exposure, 168–170
assessment, 169–170
Carburizing flame, production, 17
Case hardening, 126
Casting, 159–160. See also Die casting
surface quality, 11
Casting Emissions Reduction Program (CERP), 160
Categorical pretreatment standards, 304
Cavity block, 22
CAW. See Carbon arc welding
CBD. See Carbon black; Chronic beryllium disease
Centrifugation, 111–113
Ceramic process, 12
CERCLA. See Comprehensive Environmental Response, Compensation, and Liability Act
CERP. See Casting Emissions Reduction Program
CESQGs. See Conditionally exempt small quantity generators
CFCs. See Chlorofluorocarbons
CFEST. See Cutting Fluid Evaluation Software Testbed
Change, stimulation, 54–57
Check cycle. See Plan, do, check and act phase, 83–84, 86–87
Chemical conversion, 125–126
Chemical recovery, 141
Chemicals manufacturing, energy efficiency case studies, 290–291
Chemical treatment, 163–164
Chillers, usage, 286
Chip scale packages (CSPs), 200
Chlorofluorocarbons (CFCs), 134
elimination, 190
material substitution, 167
CHP. See Combined heat and power
Chromating, 125
Chromium, usage, 187–188
Chromium plating, 129
Chronic beryllium disease (CBD), 154
Chronic obstructive pulmonary disease (COPD), 154
Chronic poisoning, 154
Cladding process, 126
Clean Air Act (CAA), 134, 298–303 amendment (1990) (CAAA), 133–134 regulation, 7
Cleaners, usage, 132
Cleaning chemicals, usage, 188
Cleaning processes, 190
Clean Water Act (CWA), 134–135, 303–304 regulation, 7
Closed-loop process, 118
CNTs. See Carbon nanotubes
Coalescers, 110–111
Coastal Zone Management Act (CZMA), 304, 317
Coefficient of thermal expansion (CTE), 204
Cold-chamber die casting, 11
Collected MWF mist, returning, 162
Combined heat and power (CHP), 288
Commons, concept, 65
Communications facilitation, 57 laws, 315–316
Company bottom-line, energy efficiency (importance), 268–269
Component companies, lead-free technology change (reaction), 191
Components production/supply, 40–41 reclamation, 212
Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 305, 312–313, 315
Compressed air leaks, repair, 287–288
Computer-aided machining (CAM), 23
Computer-assisted design (CAD), 231, 233 set, 252
COM-supported programming language, 252
Conditionally exempt small quantity generators (CESQGs), 136, 309
Conductive adhesives, 204–205
Consciousness, superior levels (acquisition), 55
Conservation, 66
Consumer/customer charges, 272
Consumers, habits, 29
Control authority. See Air permits
Control systems, 83
Control technologies, 161–164
Conversion coatings, 129
COPD. See Chronic obstructive pulmonary disease
Core preparation/setting, 6
Corporate image, improvement, 85
Corrosivity, definition, 308
Cost-performance benefits, 63
Cost savings, IAC recommendation, 279
Cradle-to-grave regulatory system, 306
Creative destructions, 52
Creative process, usage, 59–61
Criteria pollutants, 302
Cross-disciplinary teams, 51
Cross-flow filtration, 114
Cross-flow membrane filtration, 115–117
Cross-training inhibition, 50 needs, 71
Crown jewels, 67
CSPs. See Chip scale packages
CTE. See Coefficient of thermal expansion
Customer charges, 276
Customer delight, speed, 67
Customer demand, 27
Cutting Fluid Evaluation Software Testbed (CFEST), 104–105
Cutting fluids roles, 4 use, 4
CWA. See Clean Water Act
Cyanide-based plating, 128
CZMA. See Coastal Zone Management Act

D
Das, tool bag (employment), 214
Data analysis, 91
Data collection, 87–90
DD. See Disassemblability degree;
Disassembly direction
Dead-end filters, contrast, 115
Dead-end filtration, 114–115
Decision-making degrees of freedom, 166
Decisions
macro level, 86
micro level, 86
De-gating, 23
DEI. See Disassembly effort index
Dell, integration, 68
Dell, Michael, 68
Demand charges, 272–273
Deming, W. Edwards, 49
ideas, 61–62
De Morbis Artificum Diatriba (Ramazzini), 153
De Re Metallica, 48
Derived from rule, 308
Designated use goal, 303
Design complexity, 247
procedure simplification, 236
Design engineers, questions, 190
Design for Assembly (DFA) analysis, 249
Design for disassembly (DFD), 35
Design for ease of disassembly (DFE), 34, 39
Design for recycling (DFR), 32, 35
Design for reliability, 202
Design for the environment (DFE) application, 34–36
applying, 37–40
axioms, lists, 34
checklist, modules, 36
cooperative program, 320
introduction, 29–36
LCA, 27
methods/instruments, 33
necessity, 29–32
perspective, 33
proactive approach, 181
procedures, LCA (inclusion), 34
products, philosophy, 36
reading, 44
references, 42–44
software, 42
structure, 32–33
summary, 42
tools, selection, 37, 38
web sites, 44
usefulness, 40–42
Design for topics (DFX), 35
Design improvement suggestions, providing, 237
Desired Value Precedence (DVP), 214, 215
DfA. See Design for Assembly
DfD. See Design for disassembly; Design for ease of disassembly
DFD system, SolidWorks (application), 253–255
DfE. See Design for the environment
DfR. See Design for recycling
DFX. See Design for topics
Die casting, 10–12. See also
Cold-chamber die casting;
Hot-chamber die casting
advantages/limitations, 11
Digital business (e-business), 67
Dilution prohibition, 311
Dip/galvanized coatings, application, 126
Directed graph model, 233–234
Directional graphs, basis. See
Disassembly process
Direction of Disassembly, 249
Direct productivity enhancements, 278
Disassemblability degree (DD), 247–252
Disassembling models, 231–236
system, composition, 236–237
techniques, 229–231
Disassembly. See Active disassembly;
Automatic disassembly; End-of-life
electromechanical products
analysis, 237
assessment, 237
design
complexity, 247
system, composition, 236–237
direction, 245–247
equipment, maintenance, 228–229
estimation method, 247–252
evaluation, 237–238
chart, 248–250
chart, categories, 248–250
method proposal, 214–218
expense, 239
families, concept, 227
objective aspects, relative index, 238–244
objects, determination, 230
optimization relationship, 220
process
energy consumption, 240–243
environment, impact, 243–244
programming, 224–225
research, shortfalls, 229
sequence, formation, 220
standardization, degree (measurement).
See Products
strategy, establishment, 230–231
subjective aspects, target correlations, 244–247
system control, 228–229
time, 239–240
tool, 228
study, 255–260
Disassembly direction (DD) scope, 246
Disassembly effort index (DEI), 214
Disassembly Petri Net (DPN), 221
Disassembly Precedence Matrix (DPM), 221
Disassembly process, 220
directional graphs, basis, 223
graphs, basis, 224
multiple graphs, basis, 223–224
Touzanne proposal, 224
Disassembly process layout, 218–224
AND/OR graph, basis, 222
nondirected graph basis, 218–221
Petri Net, basis, 221–222
Disassembly Process Plan (DPP), 221
Disassembly Tools, 249
Disk-stack centrifuge, operation, 112
Dismantling
occurrence, 213
product design, nonsuitability, 212
Disposal prohibition, 311
Distribution, 41
Do
cycle. See Plan, do, check and act
phase, 83
Document access, 88
down-sizing, phrase, 62
DPM. See Disassembly Precedence
Matrix
DPN. See Disassembly Petri Net
DPP. See Disassembly Process Plan
Drag-out, 131–132
composition, 141
Drawing, 15–16
Dry machining, 105–106, 158
Due diligence, 318
Dust, ANSI definitions, 149
DVP. See Desired Value Precedence

E
Early manufacturing involvement (EMI), 53
E-business. See Digital business
ECD. See Environmentally conscious
design
ECDM. See Environmentally conscious
design and manufacturing
ECM. See Electrochemical machining;
Environmental conscious
manufacturing; Environmentally
conscious manufacturing
ECO. See Energy Conservation
Opportunities
Ecodesign, 32
rules, 35
Edge-opposing punch, usage, 15
EDM. See Electrical discharge machining
Education programs, 70–71
EEE. See Electrical and electronic
equipment
EEM. See Energy efficiency measures
EEO. See Energy efficiency opportunities
E&E products. See Electrical and
electronic products
EERE. See Office of Energy Efficiency
and Renewable Energy
Effluent Guidelines and Standards for
Electroplating, 135
Effluent Guidelines and Standards for
Metal Finishing, 135
EHS. See Extremely hazardous
substances
EIS. See Environmental impact statement
Electrical and electronic (E&E) products, 24
Electrical and electronic equipment
(EEE), 182–184
Electrical discharge machining (EDM),
4–5, 23
cutting material suitability, 5
Electric furnaces, energy requirements, 8
Electric Household Appliance Recycling
Law, 184
Electricity cost calculation, example,
274–275
Electricity energy bills, components,
271–272
Electrochemical conversion, 125–126
Electrochemical machining (ECM), 23
Electroless plating, 125
Electron-beam welding, 19–20
Electronic ballasts/reflectors, usage, 285
Electronic products, making (green
approach), 211–212
Electroplating, 123–124
process, 124–125
references, 143
shop, conductivity control system, 140
standards, 135
Electropolishing, 127
Electroslag welding (ESW), 157
Elegance, subjective measure, 54
Emergency Planning and Community Right-to-Know Act (EPCRA), 315, 316
EMI. See Early manufacturing involvement
Emissions
cap, 302
reduction, 280
reports, 89
Employee commitment, organization structure/development. See General Motors Saturn Project
Empowerment, 62. See also Workers
EMS. See Environmental management system; Environmental Management Systems
Endangered Species Act (ESA), 316–317
End-of-life, concept, 64
End-of-life cycle, 26
End-of-life electromechanical products, disassembly study, research/methodologies, 229–260
introduction, 211–214
product disassembly, 214–229
references, 260–263
research activities/overview, 214–229
End-of-pipe waste treatments, 179–180
End points, determination, 230–231
Energy benchmarking. See Industrial energy bills, 89, 90
charges, 272
consuming equipment, energy efficiency measures, 280–288
consumption. See Disassembly module, 36
cost, 81
savings calculation, example, 275–276
management, 278
reduction, 80
resources, conversion effectiveness, 270
savings, 279
Energy Auditor’s Handbook, 269
Energy Conservation Opportunities (ECO), 289
Energy efficiency. See Industrial energy efficiency
DOE initiatives, 267–268
economics, 268–269
environmental benefits, 269
importance. See Company bottom-line measures
case studies, 288–291
data analysis, 271–280
term, 270
Energy efficiency measures (EEM), 267
Energy efficiency opportunities (EEO), 267
Energy expenditure per unit delivery, 3
Engineer, compliance tools, 319–320
Engineering Institute of Canada, climate change conference, 32
Enterprises, manufacturing systems, 69
Environment repercuission, 230
term, 202
Environmental conscious manufacturing (ECM), 79
decisions, best indicators, 86
defects, indicators, 90
influence, 85–86
objectives, 86–87
system effects, 84–85
Environmental consciousness, 64–67
Environmental design strategies/methodologies, categories, 32
Environmental hot spots, identification, 37. See also Product life cycle
Environmental image, concern, 31
Environmental impact, minimization, 4
Environmental impact statement (EIS), 298
Environmental laws, impact, 298–312
Environmentally benign manufacturing (EBM)
introduction, 1
issue, 2
manufactured product, 26–27
movement, 1–2
principle, inclusion, 34
processes, 3–26
references, 27–28
supply chain, relationship, 2–3
Environmentally conscious design and manufacturing (ECDM), 32
Environmentally conscious design (ECD), 32
principles, 66–67
Environmentally conscious electronic manufacturing assemblies, 197–198
boards, 191
case studies, 187–204
components, 191–194
federal initiatives, 185
future plans, 204–205
history, 183–185
introduction, 179–180
LCA, usage, 185–186
legislation/regulation, 183–185
materials, usage, 187–189
processes, 189–191
products, 198–199
references, 206–209
reliability/performance, 202–203
solders, 195–197
state initiative, 185
summary, 205
terms, definitions, 180–182
testing/qualification, 199–202
tin whisker formation, 203–204
tools, 185–187
Environmentally conscious manufacturing (ECM), 3, 182–183
components, 80–81
incremental practices, 138–139
practices, 137–140
techniques, innovation, 140–142
vendor roles, 142
Environmentally conscious process planning, model categories, 102–104
Environmentally responsible particulate mitigation/elimination, 164–167
Environmentally safe recycling, 185
Environmental management, stages, 38
Environmental management system (EMS), 318–319
Environmental Management Systems (EMS), 187, 320
Environmental pollutants, loadings, 109
Environmental regulations approaches, 318–319
introduction, 295–296
EPA. See U.S. Environmental Protection Agency
EPCRA. See Emergency Planning and Community Right-to-Know Act
3EPlus, 268
EPS. See Expanded polystyrene
Equipment, requirement, 57
Equivalent to new (ETN) product, 66
ERM approach, 165–166
ESA. See Endangered Species Act
1E Series Electric Motor, disassembly
mandrel design, 259–260
sleeve design, 259
tool design, 258–260
Estimation method, 247–252. See also Disassembly
ESW. See Electroslag welding
Etchants, 132
ETN. See Equivalent to new European Union RoHS, 184–185
Exemplary plant practices, 91, 92
Expanded polystyrene (EPS), 160
Expert systems, 32
Exposure time. See Manufacturers
Extremely hazardous substances (EHS), 315
Extrusion, 15

F
FAHP. See Fuzzy Analytic Hierarchy Process
Fat, oil, and grease (FOG), 100
loadings, 109
removal, 108
FCA. See Fuel cost adjustment
Federal environmental laws, impact, 316–317
Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), 314–315
Federal Mine Safety and Health Amendments Act of 1977, 155
Federal regulations, 296–297
information/communication laws, 315–316
overview, 297–317
Feedback loop, 181–182
Feedback sensors, 227
Feed system, 23
Fiber structure, production, 14
FIFRA. See Federal Insecticide, Fungicide and Rodenticide Act
File sharing, 253
Filler materials, absence, 20
Filtration, 114–117
occurrence, 114
Final report, timeliness, 92
Finishing process. See Metal finishing
Fire/explosion, creation, 134
Fishbone diagrams, 60
Flotation, 111
Flow restrictors, installation, 139
Fluxes
absence, 20
usage, 189
FOG. See Fat, oil, and grease
Fog sprays, installation, 139
FOIA. See Freedom of Information Act
Force block, 22
Ford, Henry, 50
Forecasting, usage, 82
Forging, 14–15
processes, 14–15
Foundry solid wastes, spent sand (percentage), 9
Freedom of Information Act (FOIA), 316
From the American System to Mass Production (Hounshell), 49
Front block, 22
Fuel cost adjustment (FCA), 273–275
Fuel-fired furnaces, energy requirements, 8
Full-mold casting, 12
Fumes, ANSI definitions, 149
Furnaces
 air-fuel ratio adjustment, 281–282
 bare surfaces, insulation, 280–281
 energy efficiency measures, 280–283
 preheating (hot flue gas usage), 281
 waste heat recovery, 281
Future of Life, The (Wilson), 65
Fuzzy Analytic Hierarchy Process (FAHP), 250–252
Fuzzy judgment matrix, 251

G
GaBi, web site, 42
Gas exchange, 147
Gas-flame processes, 17
Gas metal arc welding (GMAW), 157
Gas ovens, waste heat recovery, 281
Gas usage rate, 276
Gate reclamation, 7
Gaussian sphere, 246–247
GENAD. See Generic Assembly and Disassembly
General Electric, silicone development, 1889
General Motors Saturn Project, employee commitment (organization structure/development), 63
Generic Assembly and Disassembly (GENAD), 214
Geometric locking, 39
Glass manufacturing, energy efficiency case studies, 289
GMAW. See Gas metal arc welding
Goal-oriented concept, 180
Godkin, Edwin L., 58
Government Printing Office (GPO), 297
Grain structure, orientation, 14
Graphs, basis. See Disassembly process
Gravity settling, 110
Green design, 32
Greenhouse gases, production (decrease), 31
Greenpeace, 59
Grinding, 158–159
Groundwater monitoring, 306
Growth, life cycle, 51
Guilds, participation, 48
Gutenberg, printing operations, 48

H
Hand-operated lines, drain bar installation, 139
HAPs. See Hazardous air pollutants
Hazard communication standard (HCS), 316
Hazardous air pollutants (HAPs), 298–299, 302
Hazardous and Solid Waste Amendment (HSWA), 305, 311
Hazardous materials, definition, 81
Hazardous materials/processes, reduction, 80
Hazardous waste, 132–133
determination, 306
generator, 308–309
properties, dangers, 306
HCS. See Hazard communication standard
Health effects. See Air quality
Heating, Ventilation & Air Conditioning (HVAC)
 bioaerosols, origination, 170
equipment, usage, 286–287
 units, ventilation system configuration, 162
Heat pasteurization, 117–118
 limits, 117–118
HEPA. See High-efficiency particulate air
Hierarchal operations, 50
Hierarchies, handicap, 49–51
High-efficiency particulate air (HEPA), 162
Higher-level systems, failure, 84
High-level goals, 84
High pressure carbon monoxide (HiPCO), 169
High-pressure water cut, usage, 213
High-pressure waterjets, usage, 228
High-quality materials, usage, 39
HiPCO. See High pressure carbon monoxide
Holding pressure, 21
Homogeneous aerosol, definition, 149
Hot-chamber die casting, 10–11
Hot runner modeling, 23
Hot-working, 14
House of quality, 60
HSWA. See Hazardous and Solid Waste Amendment
Hughes Aircraft, change, 189
Human expense, 239
Human resource issues, 58
Human respiratory system, function, 147
HVAC. See Heating, Ventilation & Air Conditioning
Hydrocyclone, 113

I
IAC. See Industrial Assessment Center
IACs. See Industrial assessment centers
IBM, stability, 63
IDEALS. See Improved Design Life and Environmentally Aware Manufacturing of Electronic Assemblies by Lead-free Soldering
IE. See Industrial ecology
IEC. See International Electrotechnical Commission
Ignitability, definition, 308
Illinois Waste Management and Research Center, assessment, 129
Immersion plating, 125
Impression-die drop forging, 14
Improved Design Life and Environmentally Aware Manufacturing of Electronic Assemblies by Lead-free Soldering (IDEALS), 183
Improvement activity, design, 60
impact, 59–61
Inception, life cycle, 51
Industrial Assessment Center (IAC) database, 271
analysis, 277–280
recommendations, 277–278. See also Cost savings
implementation, 278–279
Industrial assessment centers (IACs), 267
Industrial ecology (IE), 32, 180
Industrial energy conservation, potential, 266–267
consumption, benchmarking, 266
Industrial energy efficiency conclusion, 291
introduction, 265–269
literature review, 269–271
references, 292–294
Industrial environmental compliance regulations, 295
Industrial Revolution, power density (increase), 48
Industrial Technologies Program (ITP), 267
Industries of Future (IOF) program, 267
inclusion, 270
Industry consultants, reviews, 54
Information flow control, 228
Information laws, 315–316
Information technology (IT), growth, 67
Inhalable fraction, 152
In-house production, 41
Injection molding auxiliaries, 23
equipment, 21–22
involvement, 24
materials, usage, 23
principle, 21
processes, environmental analysis, 24–25
products, 23–24
tooling, 22–23
usage, 25
In-plant mists, reduction, 107
In-process recycling conclusions, 118–119
usage. See Metalworking fluids
Insulated runner modeling, 23
Intellectual property, 67
International Electrotechnical Commission (IEC), 197
Inventory control system, implementation, 138
Inventory turnover reports, 89
Investment casting, 11–12
Investment costs, 272
Investment process, 12
IOF. See Industries of Future
Ishikawa diagrams, 60
ISO 14000, 187
ISO140001, 79–80
Isothermal rolling, 14
IT. See Information technology
ITP. See Industrial Technologies Program
Japan take-back policy, 184
JEDEC standard J-STD-020A Moisture Sensitivity Classification, 192
Joining elements, minimization, 39
methods, 212
Jungle, The (Sinclair), 49
Just-in-time (JIT) manufacturing systems, 67

K
Kaizen, 68
Kan-bans, usage, 69
Kidder, Tracey, 52
Knowledge workers, 58
Kondratieff, ideas, 52
Kyoto Protocol, 31

L
Labor reduction, 62
Land disposal restrictions (LDRs), 311
Landfilling, 305
Large quantity generators (LQGs), 136, 309
Large-scale projects, usage, 47–48
Laser cut, usage, 213
Law on Promoting Green Purchasing, 184
LaySiD software, 224
LCA. See Life-cycle analysis
LCCCs. See Leadless ceramic chip carriers
LCD. See Life-cycle design
LCE. See Life-cycle engineering
LCI. See Life-cycle inventory
LCM. See Life-cycle management
LDRs. See Land disposal restrictions
Lead, pollutant, 302
Lead-based configurations, 201
Lead-based materials, alternatives, 195
Lead-based technologies, 200
Lead containment, addition, 201–202
Leadership
evolution, 49–51
issues, 58
Lead Exposure Reduction Act, 183
Lead-free alloys, reflow soldering temperature (increase), 191
Lead-free materials/processes, components, 193
Lead-free solder
impact, 192
lead, addition, 201
Lead-free technologies, switch, 195
Leadless ceramic chip carriers (LCCCs), 200
Lead plating, 129
Lead reporting level, adjustment, 184
Lead Tax Act (1983), 183
Lead termination finishes, 193
Lead-tin plating, 129
Leaks, prevention/containment, 138
Lean principles, 68
Legacy systems, 196
Legal jurisdictions, regulations, 31
LFC. See Lost foam casting
Liberty Brass, small company example, 69–70
Life-cycle analysis (LCA), 37. See also Streamlined life-cycle analysis
inclusion. See Design for the environment
origination, 186
usage, 145
Life-cycle design (LCD), 32
Life-cycle engineering (LCE), 32
efforts, 33
focus, 32–33
Life-cycle inventory (LCI), generation, 186
Life-cycle management (LCM), systems/software (availability), 59
Life-cycle stages, 40–42
Lighting, energy efficiency, 285–286
Localization Requirement, 250
Logistic control, 228
Logistics, usage, 58
Long-range objectives, 70
Lost foam casting (LFC), 160
Lost-wax casting processes, 11–12
LQGs. See Large quantity generators
Lunar Society, discussions, 48

M
Machiavelli, 49
Machine tool, ECM, 95
Machining
allowances, 10
processes, 3–5
MACT. See Maximum achievable control technology
Magnetic ballasts, usage, 285
Magnetic separation, 113–114
Make to order, 85
Make to stock, 85
Management
briefing, 90
evolution, 49–51
issues, 58
styles, 49–50
Manorial system, 47
Manufactured product, 26–27
alternative process plan, 164–166
alternative process sequence, 166
process change, 166–167
processing conditions, 167
Manufacturers
exposure time, 192
federal environmental laws, impact, 316–317
responsibility, extension, 66
Manufacturing
air quality issues, 148
atomic level, 168
biotech applications, 170
embeddedness, 64–67
enterprise, responsibility, 148
environmental laws, impact, 298–312
environments, air quality, 153
facility, effectiveness, 86
industry, energy usage, 266
molecular level, 168
processes, environmental impact, 30
supra-molecular level, 168
trends, 167–171
Manufacturing systems, 81–84
components, 57–58
control systems, 83
levels, 82–83
metasystem, 82
strategic level, 82–83
tactical level, 83
Manufacturing systems, organization/management/improvement
change, 73–74
concepts, dichotomies, 72–73
future, 72–74
implementation, 67–72
introduction, 46–47
real-world examples, 68–70
references, 74–77
Manufacturing systems evaluation
introduction, 79–80
references, 93
Mass concentration, 152
Mass median aerodynamic diameter
(MMAD), 158
Mass production
efficiencies, 49
norm, 30
Mass spectrometry, 152
Material flow analysis (MFA), 187
Materials
choice, 37
design, 39
module, 36
production/supply, 40–41
purchase orders, 89
recovery, 213
transformation, 57
variety, 212
Material safety data sheets (MSDSs), 89, 316
accompaniment. See Metalworking fluids
Matrixed cross-functional teams, 51
Maturation, life cycle, 51
Maximum achievable control technology (MACT), 303, 311
Maximum theoretical emissions (MTE), 299
Measurement, system, 54–57
Melting temperature delta, 197
Messaging software, 253
Metal, inclusions/impurity material (reorientation), 14
Metal casting, 3, 5–12
Metal-cutting operations, environmental considerations, 102–103
Metal-cutting process, 104
Metal-fabricated products manufacturing, pollution prevention, 96–97
Metal finishing, 123–124
environmental issues, 128–133
facilities, 133
federal regulations, impact, 133–137
operations
wastewater issues, 131–132
water issues, 129–131
post treatment, 128
processes, 124–126
alteration, 124
stages, 127–128
references, 143
regulatory issues, 128–133
standards, 135
surface preparation, 127
surface treatment, 127–128
Metal forming, 3
Metal-forming processes, 12–16
Metal fume fever, 154
Metal halide lamps, replacement, 285
Metal inert gas (MIG) arc welding, 157
Metal joining, 3
processes, 16–20
Metallic coatings, vapor deposition, 127
Metallic parts, separation, 39
Metal pouring, 7, 8
Metal preparation, 6, 8
Metal products, improvements, 14
Metal recovery, 141–142
site-specific savings, 141
Metals manufacturing, energy efficiency
case studies, 289
Metal-to-metal contact, prevention, 15
Metalworking fluids (MWFs), 96–97
application, 147
bacterial byproducts, 101
BOD, 100
categories, 97–98
deterioration, microbial contamination, 101
environmental impact, 99–100
formulation considerations, 108
NEPA. See National Environmental Policy Act of 1969
Neutral flame, production, 17
New products, innovation, 30
New Source Performance Standards, 304
Nickel-gold boards, 199–200
Nickel-gold printed circuit board finish, 200
Nickel-tungsten-silicon carbide, 188
Nitrogen dioxide, pollutant, 302
No-clean processes, 190–191
Nokia lead-free/lead-based mixed study, 200–201
Nokia Mobile Phones. See Plastic ball grid array
Nondirected graph, basis. See Disassembly process layout
Nonfatal workplace illnesses (U.S. Bureau of Labor Statistics), 154
Nonhazardous MWF, change, 99
Nonionic wetting agents, usage, 139
Nonpoint sources, 304
Nontuberculosis mycobacteria (NTM), 170. See also Metalworking fluids
NPDES. See National Pollution Discharge Elimination System
NPL. See National Priorities List
NRC. See National Research Council of Canada; Nuclear Regulatory Commission
NTM. See Nontuberculosis mycobacteria
Nuclear Regulatory Commission (NRC), 307
Number concentration, 152
Numbers, management, 49

O
Occupancy sensors, installation, 285–286
Occupational Safety and Health Act of 1970 (OSHA), 155, 316
employer requirement, 164
OEM. See Original equipment manufacture
Office of Energy Efficiency and Renewable Energy (EERE), 267, 269
Off-shore foundries, pollution reduction, 9
Off-site evaluation, 88
Oil Pollution Act of 1990 (OPA), 314
OLE-supported programming language, 252
OPA. See Oil Pollution Act of 1990
Open-die hammer, 14
Operating agents, requirement, 58
Optical emission spectrometry, 152
Orchestral management, 53
Organic solderability preservative (OSP), 194, 196, 198
boards, 199–200
Organizational behavior, 52–53
Organizational details, attention, 61
Organizational effectiveness, measurement, 54
Organizational maturity, 56
Organizations
design, 59
dyslexia, 51
measurement intervals, 56–57
structures, 56–57
design, 59
system, 54–57
turbulence/internal rearrangement, 56
Organizing tools, 32
Original equipment manufacture (OEM), 166
bidding wars, 69
OSHA. See Occupational Safety and Health Act of 1970; U.S. Occupational Safety & Health Administration
OSP. See Organic solderability preservative
Outside air, usage, 287
Outside facilitator, usage, 71
Ovens
bare surfaces, insulation, 280–281
energy efficiency measures, 280–283
preheating (hot flue gas usage), 281
waste heat recovery. See Gas ovens
Oxidizing flame, production, 17
Ozone, pollutant, 302

P
Packing pressure, 21
Palladium-nickel-finished components, 193–194, 196
Parent organizations, expectations, 52
Pareto plots, 60
PartDoc, 254
Part-fastener assembly relationship, 220
Particle composition, identification devices, 152
Particle size, 150–152
ISO classifications, 152
Particulate
classification, 149–153
classification, 149–150
corruptions, 167–171
generation, 151
Particulate matter (PM), 147, 299
pollutant, 302
Particulates not otherwise regulated (PNOR), 170
Part Number, assignation, 248–249
Parts
cleaning, 7
reclamation, 212
PAW. See Plasma arc welding
PBGA. See Plastic ball grid array
PBT. See Persistent bio-accumulative toxic
PBT Profiler, 320
PCBs. See Polychlorinated biphenyls
PDCA. See Plan, do, check and act
PELS. See Permissible exposure limits
PEO. See Polyethylene oxide
PEP, 268
Performance, definition, 202–203
Permissible exposure limits (PELs), 155–156
Persistent bio-accumulative toxic (PBT) substances, 320
Personal protection systems, 164
Petri Net, 223
basis. See Disassembly process layout
disassembly model, 234–236
PF. See Phenolics; Power factor
P2 Framework, 320
PGA. See Purchase gas adjustment
Phase separation, usage, 110–113
PHAST. See Process Heating Assessment Tool
Phenolics (PF), 23–24
Phosphate-based lubricants, usage, 15
Phosphating, preparation, 125
PIB. See Polymer polyisobutylene
PIXE. See Proton-induced X-ray emission spectrometry
Plan
cycle. See Plan, do, check and act
phase, 83
Plan, do, check and act (PDCA) cycle, 83–84
Plasma arc welding (PAW), 17, 157
Plastication stage, 21
Plastic ball grid array (PBGA)
Nokia Mobile Phone assembly, 199–200
packages, 194
Plastic product, life cycle, 25–26
Plastics injection molding, 3, 20–26
environmental impact, 26
Plastics manufacturing, energy efficiency
case studies, 289–290
Plating
baths, 132
chemicals, usage, 188
processes, 189–190
Playing field, 70–71
PM. See Particulate matter
Pneumoconiosis, 154
PNOR. See Particulates not otherwise regulated
Pollutants, inclusion, 8
Pollution control laws, impact, 312–315
Pollution Prevention Act of 1990 (PPA), 185, 314
Pollution prevention (PP), 38
engagement, reasons, 180–181
focus, 181
goal, 180
Polychlorinated biphenyls (PCBs), 313
Polydisperse aerosol, definition, 150
Polyethylene oxide (PEO), usage (investigation), 164
Polymer polyisobutylene (PIB), addition, 163
Polymer resin, development, 25
Polypropylene, affinity, 110
Polytetrafluoroethylene-PTFE, 159
Popcorn impact, 197
Pore sizes, usage, 115
Positive block, 22
Post-solder assembly, 190
Post treatment. See Metal finishing
Potential, development, 55
Potential theoretical emissions (PTE), 299
POTWs. See Publicly owned treatment works
Powder manufacture, 160–161
Power factor (PF), 275
PP. See Pollution prevention
PPA. See Pollution Prevention Act of 1990
Precision-casting processes, 11–12
Press forging, 14
Prince, The (Machiavelli), 49
Principles of Scientific Management, The (Taylor), 49
Printed wiring board (PWB), 189, 191
surface finish, 196, 198
Problem solving
journey, 61
usage, 59–61
Process bath, type, 141
Process data, feed-forward, 57
Process design, 212
Process-energy use targets, development, 270
Process equipment, requirement, 57
Process Heating Assessment Tool (PHAST), 268, 281
Process modification, usage. See Metalworking fluids
Process planning, 85–86
levels, 86
macro level, 86
micro level, 86
Process plans, 165. See also Manufactured product
Process tank ingredients, concentration (reduction), 139
Production levels, 62
Productivity improvements, 63
studies, 52
Product life cycle consideration, 146
environmental hot spots, identification, 37, 38
importance, 24
Products
American Society of Mechanical Engineers, examination, 32
appropriateness, determination, 37
cleaning, 9
components, 30
configuration graph, 223
connection graph, 223
delivery, 56
design, 30, 39
environmental impact, 30
modules, 36
disassembly, 36
standardization, degree (measurement), 245
environmental impact, minimization, 29
green manufacture, 198–199
innovation. See New products
lifespan, segments, 212
lifetime, stages, 198–199
recycling, shredding (usage), 36
reutilization, 212
usage, 41
whole life cycle, 64
Program-focused teams, 51
Project-focused teams, 51
Proton-induced X-ray emission spectrometry (PIXE), 152
PTE. See Potential theoretical emissions
Publicly owned treatment works (POTWs), 134, 303, 304
water discharge, 136
Purchase gas adjustment (PGA), 276
PWB. See Printed wiring board

Q
QFD. See Quality function deployment
Quality enhancement, 55
experts, ideas, 61–62
Quality defect reports (QDRs), 89
Quality function deployment (QFD), 60
Quantity generators. See Conditionally exempt small quantity generators; Large quantity generators; Small quantity generators
Quasi-island economy, 50

R
Rack-1 operations, 125
Radioactive wastes, exemptions, 307
Ramazzini, Bernardino, 153
Rating/ranking tools, 32
RCRA. See Resource Conservation and Recovery Act
Reachability, 249–250
Reach capability, 244–245
Real-time design information, distillation, 254
Rear block, 22
Reclaiming self-cost, optimization, 218
Reclamation, waste treatment classification, 141
Recognition issues, 58
Recovering models, 231–236
Recovery/disposal, 41–42
Recyclable parts, 230
Recycled material, usage, 39
Recycling consideration, 109
product design, nonsuitability, 212
Reengineering, phrase, 62
Reflow-processes components, 201
Reflow temperatures, 199
Regulatory compliance, 38
Relative index. See Disassembly
Reliability, definition, 202–203
Repetitive Operation Times, 249
Repetitive Times. See Summation of Difficulty Grades and Repetitive Times
Reporting/project formulation, 91–92
Resistance welding processes, 18–19
Resource Conservation and Recovery Act (RCRA), 134, 304–312
explanation, 135–136
Orientation Manual, 305, 306
regulations, 311
Resources, effective use, 65
Respirable fraction, 152
Restoration, 66
Results, measurement, 71–72
Retrieval condition graph, 223–224
Reused components, usage, 39
Reward issues, 58
Right-sizing, phrase, 62
Rinse tanks, countercurrent configuration installation, 139
Rinse water, treatment, 132
Rinsewater purification/recovery techniques, 140–142
Rinsing baths, agitation, 139
Risk, reduction, 85
RoHS. See European Union RoHS
Roll forging, 15
Safe Drinking Water Act (SDWA), 315
Sand casting, 5–7
environmental concerns, 7–9 steps, 5–6
Sand reclamation, 7, 9
SARA. See Superfund Amendments and Reauthorization Act
SAW. See Submerged arc welding
Screw connection, accomplishment, 241–242
SD. See Sustainable design
SDWA. See Safe Drinking Water Act
Self-managed teams, 52
SETAC. See Society of Environmental Toxicology and Chemistry
Sewage plant operations, interference, 134
Shakeout, 7
Shielded metal arc welding (SMAW), 157
Shielding gases, absence, 20
Shredding, usage. See Products
SIC codes, usage, 277
Simapro, web site, 42
Sinclair, Upton, 49
SIPs. See State implementation plans
Site visit
inspection, 90
observations, 91
Six Sigma, 70
Sketch Dimension, 254
Skimming, 110
SLCA. See Streamlined life-cycle analysis
SldWorks, 254
Sliding block, positioning, 257
Small blind bores (bearings), disassembly tool (usage), 256–257
Small companies, assistance, 87
Small quantity generators (SQGs), 136–309
SMAW. See Shielded metal arc welding
Smith, Adam, 49
Smoke, definition, 149
Smoothness, 60
Snap connection, accomplishment, 242–243
Social engineering, 61–64
Society of Environmental Toxicology and Chemistry (SETAC), 186
Software systems, 32
Soldering, 20
Solders, 195–197
Solid waste, 132–133
definition, 305
Solid Waste Disposal Act (1965), 304
SolidWorks, 252–253 application. See DFD system capability, 253
dimension-driven system, 254
Soul of a New Machine, The (Kidder), 52
Source reduction, 185, 305, 314
SPCC. See Spill Prevention Control and Countermeasures
Special Disassembly Problems, 250
Special projects, attention, 53
Spill Prevention Control and Countermeasures (SPCC), 314
Spills, prevention/containment, 138
Spray, definition, 149
Sprue reclamation, 7
SQGs. See Small quantity generators
SSAT. See Steam System Assessment Tool
SSST. See Steam System Scoping Tool
Stability, quest, 52–53
Standardization, degree (measurement). See Products
Standby charges, 276
Star systems, 53
State implementation plans (SIPs), 298–299
State of business session, usefulness, 71
State regulatory requirements, 317–319
Stationary platen, usage, 22
Statistics, benchmarking, 89
Steam engine, improvement, 48
Steam-related energy efficiency measures, 283
Steam System Assessment Tool (SSAT), 268
Steam systems
bare surfaces, insulation, 280–281
energy efficiency measures, 280–283
Steam System Scoping Tool (SSST), 268
Steam traps,
inspection/repair/maintenance, 282–283
Storage prohibition, 311
Streamlined life-cycle analysis (SLCA), 36
usage, 37
Stripping rate, 188
Subjective aspect, target correlations. See Disassembly
Submerged arc welding (SAW), 157
Suga, quantitative evaluation method, 216–217
Sulfur dioxide, pollutant, 302
Summation of Difficulty Grades, 250
Summation of Difficulty Grades and Repetitive Times, 250
Superfund Amendments and Reauthorization Act (SARA), 313, 315
Supply chain, relationship. See Environmentally benign manufacturing
Supply-chain model, 181–182
Surface finishing technologies, 126–127
Surface grinding, 159
Surface preparation. See Metal finishing
Surface treatment. See Metal finishing
Sustain, definition, 64
Sustainability, 64–66
Sustainable design (SD), 32
Sustainable development, 179
Swaging, 15
Synthetic minor permits, 302
Systems design, 59–61
System wastes, detection methods, 84
T
Taguchi design-of-experiments method, application, 197–198
Taguchi principles, 60
Taylor, Frederick, 49
TCLP. See Toxicity characteristic leaching procedure
Team decomposition, 54–55
Team interdependencies, management recognition, 53
Team members, pre-interview, 88
Technical criteria, EPA establishment, 305–306
Technology, change, 56
TEM. See Transmission electron microscopy
Thermal emission, 19–20
Thermoplastic materials, 192
Thermoplastic resins, requirement, 23
Thermosetting resin systems, 23–24
Thin small outline package (TSOP), 194
Thoracic fraction, 152
Three-dimensional design software, characteristics, 252
Three-dimensional environment, development. See Disassembly
Three-phase separation capability, 112–113
Threshold limit values (TLVs), 156
Tier I/II supplier environmental issues, 2 manufacturing processes, 3
TIG. See Tungsten inert gas
Tin-lead eutectic alloy, 197
Tin-silver-bismuth solder joints, 199
Tin-silver-copper solder paste, 196
Tin whiskers, formation, 203–204
Title V Permit Program, 302–303
T12 lighting fixtures, replacement, 285
TLVs. See Threshold limit values
TMDLs. See Total maximum daily loads
TMY data, 287
Tooling, requirement, 57
Toshiba Chemical Corporation, board testing, 191
Total life-cycle basis, 179, 180
Total maximum daily loads (TMDLs), 303–304
Total quality management (TQM), 61–62
Total quality objectives, 56
Toxicity, definition, 308
Toxicity characteristic leaching procedure (TCLP), 308
Toxic reactions, promotions, 153
Toxics Release Inventory (TRI), 134, 315–316 reporting, 137
Toxic Substances Control Act (TSCA), 313–314
Toxic Use Reduction Institute (TURI), 44
Toyota Production System (TPS), 68
TQM. See Total quality management
Tramp oils, 110
Transmission electron microscopy (TEM), 159
Transportation charges, 276
Transporters, 3
Treatment, storage or disposal facilities (TSDFs), 306, 310
TRI. See Toxics Release Inventory
TSCA. See Toxic Substances Control Act
TSDFs. See Treatment, storage or disposal facilities
TSOP. See Thin small outline package
T8/T5 lighting fixtures, usage, 285
Tungsten inert gas (TIG) arc welding, 157
TURI. See Toxic Use Reduction Institute
Type of Disassembly Tasks, 249
Tzu, Sun, 49

U
Ultraviolet (UV) radiation, 118
Underground storage tanks (UST), 312
Undirected graph model, 231, 233
Uniform hazardous waste manifest, 309
United States Code, impact, 296–297
Universal waste rules, 310
University of Washington, web site, 44
Unsaturated polyester (UP), 23–24
UP. See Unsaturated polyester
Upset forging, 14
U.S. Department of Energy (DOE) initiatives. See Energy efficiency
U.S. Environmental Protection Agency (EPA), 40
bibliographic report, production, 96
computer projection, 211
pollution prevention hierarchy, publication, 181–182
U.S. foundries, pollution reduction, 9
U.S. Occupational Safety & Health Administration (OSHA), mission, 148
Used Oil Recycling Act of 1980, 310
Users, quality-of-life, 66
UST. See Underground storage tanks
Utility bills
analysis, 271–277
demand charges, 272–273
energy charges, 272
rate schedules, 273

V
Vacuum systems, usage, 106
Value-added output, 69
Value of Disassembly Force, 250
Vapor deposition. See Metallic coatings
Ventilation systems, 161–162
maintenance program, implementation, 162
Vertical integration, 67–68
Virtual Assembly and Disassembly (VIRAD), 214
Visual C++, 254
Viswanathan, studies, 214–216
Volatile organic compounds (VOCs), 299, 302
emission, 167
expected total amount, 302
Vortex-encouraging conical chamber, 113

W
Walsh-Healy Public Contract Act (1936), 155
Waste expenditures, 80
material, level, 26
minimization/pollution prevention, 278
reduction, 80
streams, segregation, 138
tracking, 138
Waste electrical and electronic equipment (WEEE), 184–185
Waste Management and Public Cleansing Law, 184
Wastewater flow, obstruction, 134
sources, 132
Water-based MWFs, 163
Water meters (body/core disassembling), equipment usage (research), 255–256
Water-soluble MWFs, 101, 117
WEEE. See Waste electrical and electronic equipment
Welding, 16–17
operations, 156–157
processes, 17–20
West Virginia University, Industrial Assessment Center, 289
Wet machining, 157–158
Wild and Scenic Rivers Act, 304
WIP, 71
Workers
 empowerment, 50
 exposure, 161
Workforce
 considerations, 61–64
 reduction, considerations, 62–63
Workpieces
 melting, 156–157
 withdrawal, 138

Workplace air quality
 maintenance, 163
 regulations, 155–156

X
 X-ray diffraction (XRD), 152
 X-ray fluorescence spectrometry (XRF), 152