Contents

Foreword 1: Role of Technology in Emerging Markets xv
Foreword 2: Connecting the Unconnected xvii
Preface xix
Acknowledgements xxi

1 Cellular Technology in Emerging Markets 1
1.1 Introduction 1
1.2 ICT in Emerging Markets 1
1.3 Cellular Technologies 5
 1.3.1 First Generation System 5
 1.3.2 Second Generation System 6
 1.3.3 Third Generation System 6
 1.3.4 Fourth Generation System 7
1.4 Overview of Some Key Technologies 7
 1.4.1 GSM 7
 1.4.2 EGPRS 8
 1.4.3 UMTS 8
 1.4.4 CDMA 8
 1.4.5 HSPA 9
 1.4.6 LTE 10
 1.4.7 OFDM 10
 1.4.8 All IP Networks 11
 1.4.9 Broadband Wireless Access 11
 1.4.10 IMS 12
 1.4.11 UMA 13
 1.4.12 DVB-H 13
1.5 Future Direction 14

2 GSM and EGPRS 15
2.1 Introduction 15
2.2 GSM Technology 16
 2.2.1 GSM Network 16
 2.2.2 Signalling and Interfaces in the GSM Network 22
Contents

2.2.3 Channel Structure in the GSM 23

2.3 Network Planning in the GSM Network 25
 2.3.1 Network Planning Process 25
 2.3.2 Radio Network Planning and Optimization 25
 2.3.3 Transmission Network Planning and Optimization 35
 2.3.4 Core Network Planning and Optimization 41

2.4 EGPRS Technology 44
 2.4.1 EGPRS Network Elements 45
 2.4.2 Interfaces in the EGPRS Network 46
 2.4.3 Channels in the EGPRS Network 48
 2.4.4 Coding Schemes 49

2.5 EGPRS Network Design and Optimization 50
 2.5.1 Parameter Tuning 52

3 UMTS 55
 3.1 The 3G Evolution – UMTS 55
 3.2 UMTS Services and Applications 57
 3.2.1 Teleservices 57
 3.2.2 Bearer Services 58
 3.2.3 Supplementary Services 58
 3.2.4 Service Capabilities 58
 3.3 UMTS Bearer Service QoS Parameters 59
 3.4 QoS Classes 60
 3.4.1 Conversational Class 60
 3.4.2 Streaming Class 61
 3.4.3 Interactive Class 61
 3.4.4 Background Class 61
 3.5 WCDMA Concepts 62
 3.5.1 Spreading and De-Spreading 62
 3.5.2 Code Channels 63
 3.5.3 Processing Gain 64
 3.5.4 Cell Breathing 64
 3.5.5 Handover 65
 3.5.6 Power Control 66
 3.5.7 Channels in WCDMA 66
 3.5.8 Rate Matching 67
 3.6 ATM 68
 3.6.1 ATM Cell 68
 3.6.2 Virtual Channels and Virtual Paths 69
 3.6.3 Protocol Reference Model 70
 3.6.4 Performance of the ATM (QoS Parameters) 72
 3.6.5 Planning of ATM Networks 75
 3.7 Protocol Stack 76
 3.8 WCDMA Network Architecture – Radio and Core 77
 3.8.1 Radio Network 78
 3.8.2 Core Network 80
Contents

3.9 Network Planning in 3G 81
 3.9.1 Dimensioning 81
 3.9.2 Load Factor 85
 3.9.3 Dimensioning in the Transmission and Core Networks 88
 3.9.4 Radio Resource Management 89
3.10 Network Optimization 89
 3.10.1 Coverage and Capacity Enhancements 92

4 CDMA 95
 4.1 Introduction to CDMA 95
 4.2 CDMA: Code Division Multiple Access 96
 4.3 Spread Spectrum Technique 98
 4.3.1 Direct Sequence CDMA 98
 4.3.2 Frequency Hopping CDMA 100
 4.3.3 Time Hopping CDMA 100
 4.4 Codes in CDMA System 100
 4.4.1 Walsh Codes 100
 4.4.2 PN Codes 101
 4.5 Link Structure 102
 4.5.1 Forward Link 102
 4.5.2 Reverse Link 102
 4.6 Radio Resource Management 103
 4.6.1 Call Processing 103
 4.6.2 Power Control 105
 4.6.3 Handoff 107
 4.7 Planning a CDMA Network 107
 4.7.1 Capacity Planning 107
 4.7.2 Parameters in a CDMA Network 109
 4.8 CDMA2000 111
 4.8.1 CDMA2000 1X 112
 4.8.2 CDMA2000 1XEV-DO Technologies 112
 4.8.3 Channel Structure in CDMA2000 114
 4.8.4 Power Control 115
 4.8.5 Soft Handoff 115
 4.8.6 Transmit Diversity 115
 4.8.7 Security 115
 4.8.8 CDMA2000 Network Architecture 115
 4.8.9 Key Network Elements (CDMA2000) 116
 4.8.10 Interfaces of the CDMA2000 Network 117
 4.8.11 Call Set Up Processes 118
 4.9 TD-SCDMA 119
 4.9.1 Services in TD-SCDMA 122
 4.9.2 Network Planning and Optimization 124

5 HSPA and LTE 125
 5.1 HSPA (High Speed Packet Access) 125
Contents

6 OFDM and All-IP 153
6.1 Introduction to OFDM 153
6.2 OFDM Principles 155
 6.2.1 Frequency Division Multiplexing 155
 6.2.2 Orthogonality 155
 6.2.3 Modulation in OFDM 156
 6.2.4 Inter-Symbol and Inter-Carrier Interference 158
 6.2.5 Cyclic Prefix 158
 6.2.6 Coded OFDM (C-OFDM) 159
6.3 MIMO Technology 159
 6.3.1 MIMO System 159
 6.3.2 MIMO Mode of Operation 160
6.4 OFDM System 161
 6.4.1 OFDM Variants 161
6.5 Design of OFDM Channel 163
6.6 Multi-User OFDM Environment 163
6.7 All-IP Networks 164
 6.7.1 Core/IP Network Evolution in Cellular Networks 165
 6.7.2 Advantages of All-IP Network 169
6.8 Architecture of All-IP Networks 169

7 Broadband Wireless Access: WLAN, Wi-Fi and WiMAX 173
7.1 Wireless Technology Differentiation 173
 7.1.1 Broadband Wireless Access 173
 7.1.2 IEEE 802.16 174
 7.1.3 BWA Technologies 175
7.2 Wireless LAN 176
 7.2.1 IEEE 802.11 176
 7.2.2 Channel Structure 178
 7.2.3 Efficient Channel Sharing 178
 7.2.4 Parameters in WLAN Planning 178
 7.2.5 Coverage and Capacity in WLAN 179
 7.2.6 Security and Authentication 179
 7.2.7 WLAN Network Architecture 179
 7.2.8 WLAN Network Types 180
 7.2.9 Network Planning in WLAN 180
7.3 Wi-Fi Networks 181
 7.3.1 Introduction to Wi-Fi Technology 181
 7.3.2 Wi-Fi Network Architecture 182
 7.3.3 Wi-Fi Network Design 183
7.4 WiMAX Networks 183
 7.4.1 Introduction to WiMAX 183
 7.4.2 OFDMA: Modulation in WiMAX 186
 7.4.3 WiMAX Network Architecture 188
 7.4.4 Protocol Layers in WiMAX 194
 7.4.5 Security 196
| 7.4.6 | Mobility Management | 198 |
| 7.4.7 | Network Design in WiMAX | 199 |

8 Convergence and IP Multimedia Sub-System

8.1 Introduction to Convergence

8.2 Key Aspects of Convergent Systems

8.2.1 Types of Convergence

8.2.2 Applications

8.3 Architecture in Convergent Networks

8.3.1 Business and Operator Support Networks

8.3.2 Technology

8.4 IMS

8.4.1 Introduction to IMS

8.4.2 IMS Development

8.4.3 Applications of IMS

8.5 IMS Architecture

8.5.1 Service or Application Layer

8.5.2 Control Layer

8.5.3 Connectivity or Transport Layer

8.5.4 IMS Core Site

8.5.5 Functions and Interface in IMS

8.5.6 Reference Points

8.5.7 Protocol Structure in IMS

8.6 IMS Security System

8.7 IMS Charging

8.7.1 Offline Charging

8.7.2 Online Charging

8.8 Service Provisioning in IMS

8.8.1 Registration in IMS

8.8.2 De-Registration in IMS

9 Unlicensed Mobile Access

9.1 Introduction to UMA

9.1.1 History and Evolution of UMA

9.1.2 Benefits of UMA

9.2 Working on UMA Network

9.3 Architecture of UMA

9.4 U_p Interface in UMA

9.5 Protocols in UMA

9.5.1 Standard IP-Based Protocol

9.5.2 UMA Specific Protocols

9.6 Security Mechanism of UMA

9.7 Identifiers and Cell Identifiers in UMA

9.8 Mode and PLMN Selection

9.8.1 Mode Selection

9.8.2 PLMN Selection

201

201

202

202

206

207

207

208

209

209

210

211

211

212

212

213

215

217

217

218

219

222

223

223

224

224

226

229

230

230

230

231

233

234

234

234

235

235

236

236

237
9.9 UMAN Discovery and Registration Procedures 237
9.9.1 Registration 237
9.9.2 De-Registration 239
9.9.3 Registration Update 241
9.9.4 ‘Keep Alive’ 242
9.10 UNC Blocks 242
9.11 Comparison between Femtocells and UMA 243
9.12 Conclusion 243

10 DVB-H 245
10.1 Mobile Television 245
10.1.1 Bearer Technologies for Handheld TV 245
10.1.2 Service Technology for Handheld TV 247
10.2 Introduction to DVB 247
10.2.1 Digital Video Broadcasting – Terrestrial 248
10.2.2 Digital Video Broadcasting – Handheld 249
10.2.3 History of DVB-H 249
10.3 DVB-H Ecosystem 249
10.4 DVB-H System Technology 250
10.4.1 Time Slicing 251
10.4.2 IPDC (Internet Protocol Datacasting) 252
10.4.3 MPE/FEC (Multiple Protocol Encapsulation/Forward Error Correction) 252
10.4.4 Protocol Stack for DVB-H 253
10.4.5 4k Mode and In-Depth Interleavers 254
10.4.6 Multiplexing and Modulation 254
10.4.7 DVB-H Signalling 255
10.4.8 SFN 255
10.4.9 Power Consumption 255
10.4.10 Signal Quality in DVB-H Networks 255
10.5 DVB-H Network Architecture 256
10.5.1 Content Provider 256
10.5.2 Datacast Operator 256
10.5.3 Service Operator 256
10.5.4 Broadcast Network Operators 257
10.6 DVB-H Network Topologies 257
10.6.1 Multiplexing – DVB-T and DVB-H Networks 257
10.6.2 Dedicated DVB-H Networks 257
10.6.3 Hierarchal DVB-T and DVB-H Networks 258
10.7 Network Design in the DVB-H Network 258
10.7.1 Site Planning 261
10.7.2 Coverage Planning 261

Appendix A VAS Applications 265
A.1 Multimedia Messaging Service 265
A.2 Push-to-Talk over Cellular 267
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3 Streaming Service</td>
<td>270</td>
</tr>
<tr>
<td>A.4 Short Message Service</td>
<td>271</td>
</tr>
<tr>
<td>A.5 Wireless Application Protocol</td>
<td>272</td>
</tr>
<tr>
<td>Appendix B Energy in Telecommunications</td>
<td>275</td>
</tr>
<tr>
<td>B.1 The Solution Exists – But It’s Not Very Good</td>
<td>275</td>
</tr>
<tr>
<td>B.2 Renewable Energy – a Better Solution</td>
<td>276</td>
</tr>
<tr>
<td>B.2.1 Solar</td>
<td>277</td>
</tr>
<tr>
<td>B.2.2 Wind</td>
<td>277</td>
</tr>
<tr>
<td>B.2.3 Biofuels</td>
<td>278</td>
</tr>
<tr>
<td>B.2.4 Fuel Cells</td>
<td>278</td>
</tr>
<tr>
<td>B.2.5 Hydro and Geothermal</td>
<td>279</td>
</tr>
<tr>
<td>B.3 The Optimal Design for a Base Station Site</td>
<td>279</td>
</tr>
<tr>
<td>B.4 Business Case for Renewable Energy in Mobile Base Station Sites</td>
<td>279</td>
</tr>
<tr>
<td>B.5 Effects of Climate Change on Mobile Networks</td>
<td>281</td>
</tr>
<tr>
<td>Bibliography</td>
<td>283</td>
</tr>
<tr>
<td>Index</td>
<td>291</td>
</tr>
</tbody>
</table>