Index

abbreviations, nomenclature, 237–238, 461
ackee, 295r, 324, 324b
adsorption, ion exchange process, 444
adsorber resins, 431–432
Amberlite® RXAD, 447–451, 448f, 450f
anion exchange resins, 453–454, 454f
apple and grape pomace, results, 455
apple extracts, results, 455–456, 456f
apple pomace, pectin combined recovery, 458–459, 459f
concentration and fractionation, anion exchange resins, 453–454, 454f
multicomponent model systems, 451–452
nomenclature, 461
pilot plant scale, 457–458, 457f
saccharides, amino acids impact, 452–453
single compound model systems, 447–451, 448f, 450f
sorption kinetics evaluation, 445–446
sorption process at equilibrium
Freundlich isotherm, 446–447
Langmuir isotherm, 446
sunflower expeller, 459–461
anion exchange resins, 453–454, 454f
antioxidant response to digestion; apparent vs. real bioavailability, 42
bioaccessibility, bioavailability of antioxidants in fruit, 45
colonic metabolites, 51
cooking of food impact, 45
current dietary needs, ancient physiology, 53
flavonoids, 47–49
fruit after harvest, processing methods, 44
increasing bioavailability of antioxidants, 51–54, 53r
intrinsic antioxidant content of fruit, 43–44
lutein, zeaxanthin content of fruits, 46
lycopene, 46
plasma antioxidant capacity, 50f
total antioxidant content, 49–50, 50f
Vitamin C, 45–46
Vitamin E, 46
antioxidants in fruits, 36
α-tocopherol content, 39, 39r
β-carotene, 39–40, 41r
carotenoids, 38–40, 40r
flavonoids, 40–41, 40r, 42r, 46–49
fruits with high ascorbic acid content, 37, 38r
lutein, zeaxanthin content of fruits, 40, 40r, 46
lycopene, 39, 40r, 46
oxidative stress, disease, 36–37
photosynthesis, plant growth and protection, 36
total antioxidant content, 41–42, 43r, 44, 49–50, 50f
Vitamin C, 37, 38r
Vitamin E, 37–38, 46
apple
bioactive content improvement strategies, 93–94
bioactives, major classes, 82
anthocyanins, cyanidins, 84–85
dihydrochalcones, phloridzin, 83
flavan-3-ols, atechins, epicatechins, di-, oligo-, polymers, 84
quercetin, kaempferol flavonols, 84
biosynthesis, genetic regulation of apple bioactive
anthocyanins, 87–88
carotenoids, 88
dihydrochalcones, 86
flavonoids, 86–87
carotenoids, 85
domestication of, 81–82
apple (Continued)
 human health
 antioxidant activity, apple and apple products, 89–90
 apple bioactives bioavailability, 88–89
 asthma, 91–92
 cancer, 90–91
 cardiovascular disease (CVD), 91
 cognitive processes, 91–92
 diabetes, 91
 gastrointestinal health, 92–93
 origin of, 81–82
 other phytochemicals/bioactives, 85–86
 oxidation during processing, 93
 production, 81–82
 storage, processing, 93
 top 20 producers, by country, 83

apricot
 agronomic practices, 140–141
 carotenoids, 132
 cold temperature storage, 141
 drying effects, 142
 fibre, vitamin source, 133
 health effects
 Alzheimer’s disease, 152
 blood fluidity, 153
 cancer, 151–152
 cardiovascular disease (CVD), 151–152
 cholesterol, 152–153
 lipid peroxidation and, 152
 kernels, kernel oil, 133
 minerals in, 133
 mono-, polysaccharides, 133
 polyphenols, 131–132
 postharvest handling, storage, 141
 processing effects, 141–142
 Vitamin C, 132–133

avocado, 295
 aging and, 345–347
 anticonvulsive properties, 345
 antioxidant properties, 329
 avocado soy unsaponifiables (ASU), 341–343
 calorie restriction mimetics (CRM), 346–347
 cancer, 344–345
 cardiovascular disease (CVD), metabolic diseases, 339
 clinical studies, 340–341
 diabetes, 340
 high density lipoproteins (HDL), 340
 hypertension, 340
 preclinical studies, 340
 D-Mannoheptulose (MH), 345–347
 dermatological applications, 347
 health fats, 339
 inflammation, 343–344
 neuroprotection, 345
 nutritional facts, 338, 338t
 origins, traditional use, 337
 osteoarthritis, bone health, 341
 clinical studies, 342–343
 inflammation, 343
 pain, 343
 preclinical studies, 342
 phytosterols, 339–340
 sugar content, 346
 toxicity, allergic reaction, 347–348
 wound healing, 345

berry fruit, breeding for enhanced bioactives
 anthocyanins, 389–390, 390t, 391f, 392, 394t, 395t
 black current case study
 anthocyanins, 397t, 398t, 399f
 genetic correlation, 399–400, 399f, 400t
 heritability, 399
 varieties, 397
 blueberry case study
 anthocyanins, 397, 397t, 398t, 399f
 genetic correlation, 399–400, 399f, 400t
 heritability, 399
 breeding process, equation, 392–393
 breeding value (BV), 393
 genetic engineering, improved bioactive compounds, 400–402
 ripening, fruit quality research summary, 400–402
 transgenic strawberry, 391f, 402, 402t
bioactives. See also plant-derived bioactives
 bioactives and food component interactions, matrix effect, 477–479, 478t, 479f
 added polyphenols recovery, control and fortified breads., 478t, 479f
 beverage matrix containing dietary fibres on fruit bioactives, 495–496, 496f, 497f
 carboxymethylcellulose (CMC), 486–489, 487f, 488f, 489f, 498f
 consumer demand, 467, 469
 fruit-based functional foods, key components carbohydrates, 470–472
 enzymes, 473–474
 food preparation, processing, 476–477
 lipids, 474–475
phytochemicals, 468–469
proteins, 472–473
water, 475–476
future outlook, 498–499
polyphenols
lipids interaction, 480–482, 480f, 481f
proteins and starch polysaccharides interaction, 482–483, 483f, 484f, 485–486
polysaccharide polymers interaction, 486–495, 490f, 491f, 492f, 493f, 494f
bioactives in fruits
apples, 13
apricots, 13
berries, 12–13
citrus fruits, 13
palm dates, 13
peaches, nectarines, 13
plums, 13
pomegranates, 13–14
biological antioxidant, defined, 35
bitter melon, 295r, 321
blackcurrants, 215
anthocyanins, 216–218, 217f
classification, structural properties, 218–219, 219f
metabolism and bioavailability, 222–234
molecular structures, 220f
monomeric phenolic acids, aldehyde, 221f
stability, 219
stability under physiological conditions, 220–222
bioactivity of anthocyanins, metabolites
Alzheimer’s disease, 234
anticarcinogenic, 235–237
antimicrobial, 232–233
autoneurogeneration, 233–235
cardiaco circulating system disease (CVD), 228–230, 229
cholesterol, 229
future research, 235–237
immunoregulation, 232
metabolic syndrome, 224
glucose metabolism, 225–227
lipid regulation, 227–228
vascular function, 230–231
blackcurrants, case study
anthocyanins, 395r, 396f
breeding value (BV), 395, 396f
genetic correlation, 396–397, 396r
genetic variation, 393
heritability, 394–395
blueberries
antiproliferative role, 260
benefits summary, 267–268
bioactive components, 251–253, 252r
breast cancer, 260–261
cancer, 259–261
cardiaco circulating system disease (CVD)
 blood pressure, 257–259
 cardiac function, 259
 endothelial function, 256
lipids, 257
fermented, 255
gastrointestinal disease, 266
longevity and, 261–262
neuroprotection, aging
 brain cellular signaling, 263–264
cerebral ischemia, 264–265
cognitive function, 262–263
Parkinson’s, Huntington’s disease, 265–266
obesity, 253
origins, cultivation, 251
pre-diabetes, 253–254
prostate cancer, 260
Type 2 diabetes mellitus, 254–255
vision, 266–267
blueberry, case study
anthocyanins, 397, 397r, 398r, 399f
genetic correlation, 399–400, 399f, 400r
heritability, 399
varieties, 397
bottle gourd, 295r, 321, 323
breadfruit, 294r, 296r, 324–325
caigua, 296r, 323
capsicum, 296r
 health benefits, 314–315r
 adrenaline consumption, 313, 316
 obesity, 313, 316
 pain relief, 313, 313b
 mechanism of action, 316–317
phytochemical composition, 311f
capsaicinoids, 311–312
carotenoids, 312
flavonoids, other phenolics, 312–312
species, 310
carotenoids, 11, 11f, 312, 319–321
cell wall composition, cooking and processing effects, 25–36
chayote, 296r
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>chili</td>
</tr>
<tr>
<td>biofilms, 282–283</td>
</tr>
<tr>
<td>children, 280–281</td>
</tr>
<tr>
<td>clinical trials, 278–279</td>
</tr>
<tr>
<td>etiology, pathogenesis, 278</td>
</tr>
<tr>
<td>mechanism of action, 281</td>
</tr>
<tr>
<td>pregnant women, 280</td>
</tr>
<tr>
<td>women with recurrent, 279–280</td>
</tr>
<tr>
<td>vascular health, 284</td>
</tr>
<tr>
<td>cucurbitaceae, 297f</td>
</tr>
<tr>
<td>genres, species, 319</td>
</tr>
<tr>
<td>health benefits</td>
</tr>
<tr>
<td>anti-inflammatory, 323</td>
</tr>
<tr>
<td>diabetes, 321</td>
</tr>
<tr>
<td>mechanisms of action, 323–324</td>
</tr>
<tr>
<td>phytochemical composition</td>
</tr>
<tr>
<td>Y-aminobutyric acid (GABA), 320</td>
</tr>
<tr>
<td>alkaloids, 320</td>
</tr>
<tr>
<td>carotenoids, 319–320</td>
</tr>
<tr>
<td>cucurbitacin, 320</td>
</tr>
<tr>
<td>other, 320–321</td>
</tr>
<tr>
<td>polysaccharides, 320</td>
</tr>
<tr>
<td>saponins, 323</td>
</tr>
<tr>
<td>total phenolics, flavonoids, 322r</td>
</tr>
<tr>
<td>dietary fibre (DF) in fruit, 19–20</td>
</tr>
<tr>
<td>cell wall</td>
</tr>
<tr>
<td>composition, cooking and processing effects, 25–36</td>
</tr>
<tr>
<td>polysaccharides, 21–25, 22f, 23f, 24f</td>
</tr>
<tr>
<td>cellulose, generalized structure, 22f</td>
</tr>
<tr>
<td>common phytosterols, 11, 12f</td>
</tr>
<tr>
<td>fruit consumption, 20</td>
</tr>
<tr>
<td>fruit, defined, 20</td>
</tr>
<tr>
<td>functional lipids, 11–12, 12f</td>
</tr>
<tr>
<td>glucuronorabinoxylan, generalized structure, 23, 23f</td>
</tr>
<tr>
<td>health benefits, 26–27</td>
</tr>
<tr>
<td>health functionality, future considerations, 27–28</td>
</tr>
<tr>
<td>homogalacturonan (HG), 23</td>
</tr>
<tr>
<td>pectic polysaccharides, generalized structure, 23, 24f, 25</td>
</tr>
<tr>
<td>plant tissues, cell walls types, 20–21</td>
</tr>
<tr>
<td>proteins, peptides, 11</td>
</tr>
<tr>
<td>rhamnogalacturonan (HG), 23</td>
</tr>
<tr>
<td>xyloglucan, generalized structure, 22, 22f</td>
</tr>
<tr>
<td>eggplant, 297f</td>
</tr>
<tr>
<td>antioxidant capacity, 317</td>
</tr>
<tr>
<td>cancer, 318</td>
</tr>
<tr>
<td>cholesterol, 318</td>
</tr>
<tr>
<td>food history, 317</td>
</tr>
</tbody>
</table>
Index

513

health benefits, 317–318
phenolics, 317
environmental stress, pre- and post-harvest stress
blueberries, 415
chemical priming, 415
cherry, 421
citrus fruits, 417–418
drought, salinity, 414
global warming, 413
grapefruit, 417
grapes, 418–419
intermittent-direct-electric-current (IDC), 415
ionizing radiation, 415
lemons, 417–418
mangos, 421
phytosterols, 412–413
plant phenolics, 411–412
primary vs. secondary metabolites, 409–410
quantity vs. quality crops, 413–414
raspberries, 415–416
secondary metabolite production, 413
strawberries, 419–420
sweet orange, 418
temperature changes, 414
tomatoes, 420–421
ultraviolet radiation (UVR), 414–415
Vitamin C, 410–411
Vitamin E, 410–411
xenohormesis, 421–422

feijoa
cancer, 185–186
anti-inflammatory activity, 185
antioxidant activity, 184–185
immune responses, 184
infection, 183–184
nutritional content, 183
origins, traditional use, 182–183
phytochemicals, 183
fruit
consumption, 20
defined, 20, 35–36
texture, 20
ginkgo biloba extract (GBE), 59
adverse reactions, 68
anticoagulant parameters influence, 67–68, 67f
clinical study, 66–68, 67f
cytochrome P450 (CYP) induction, 63–64, 64f, 65f
hepatic drug-metabolizing enzyme induction, 65–66
hypoglycemic effect, 67f
pharmacodynamic interaction, 66
use, constituents, 63
grapefruit juice, 59. See also orange, grapefruit
bioactive compounds
cyclosporine plasma concentration, 60f
morphine tolerance and concentration in blood, 61–62, 61f, 62f
grapes, resveratrol
Alzheimer’s disease, 209
bioavailability, metabolic fate of compounds, 198–200
cancer, 206–207
cardiovascular disease (CVD), health benefits
mechanisms of action, 200
blood lipids, inflammatory factors, 202–204
blood pressure, 202
endothelial cell function, 204–205
HDL cholesterol production, 203
platelet aggregation, 201–202
stressed individuals, haemodialysis patients, 204
urinary biomarkers, 203
cognition, 210r, 208–210
flavonoid compounds, 197, 198r
grape composition, 197, 198r
immune response, 205–206
obesity, metabolic function, diabetes, 207–208
post harvest processing, 197
proanthocyanidin content, 199r
resveratrol content, 200r
species, 197
green tea
catechins, 68–69
cytochrome P450 (CYP) enzymes, 69, 70r, 71
interactions through other mechanisms, 72
transporter mediated interaction, 71–72
human ingredients, 59
ion exchangers, 431–432
ivory gourd, 297f
kiwifruit
antimicrobial action, 175
bolus obstructions, 181
cardiovascular disease (CV), 178–179
cognitive benefits, 179–181
kiwifruit (Continued)
cold, flu-like illnesses, 177–178
dermatology benefit, 181
gut health, digestion, 173–175
hypertension, 179
immune health, protection from infection, 175–178
inflammatory diseases, 176
kisper, cystic fibrosis, 181–182
kiwifruit allergies, other detrimental effects, 182
laxative properties, 174
origins, traditional uses, 169–170
oxidative stress, mutagenicity, cancer protection, 171–173
phytochemical composition, 170
sleep disorders, kiwi’s sleep-inducing effects, 179–181
Vitamin C benefits, 170–171

luffa, 297t

membrane fouling
flux, 434
flux decline, 435
fouling mechanisms, 430
fouling mechanisms, flux decline prediction, 441–442, 442t
pure water flux, 435
membrane fouling, characteristics
fouling mechanism, modified cross-flow filtration equations, 435–436
permeate flux variations modeling, 435, 440–441
resistances determination, resistance-in-series model, 435, 440
membrane fouling, operating conditions
diafiltration, 440
feed concentration, 437, 441t
membrane molecular weight cut-off (MWCO), k and R² values, 441–442, 442t, 443f
pH, 437–438, 438f, 441t
protein, sugar content, 438–440, 439f, 439t
temperature effect, 436–437
transmembrane pressure, 437
membrane separation, filtration
fouling mechanisms, 433
membrane fouling, membrane characteristics, 434
membrane module design, configuration, 432–433
membrane technology, 432
ultrafiltration of polyphenols, 433–434
membrane technology studies, 429–430

New Zealand fruit extracts, 62–63
okra, 298t, 324–325
olive, 298t
olive oil. See virgin olive oil
orange, grapefruit bioactive compounds
citrus and specific ailments, 103
bone health, 111
cancer, 109–110
cardiovascular diseases (CVD)
animal, clinical studies, 106–109
biomarkers and pathways, 105–106
blood pressure, 107–108
blood vessel walls, 106
cholesterol, 105
epidemiological studies, 104–105
high density proteins (HDL), 107
inflammation, 107
lipid oxidation, 108
naringin effect, 105–106
plasma lipids, 106
plasma NO, 109
cognition, 109
citrus composition, 102
citrus phytochemical bioavailability, metabolism, 102–103
citrus, disproportionate concerns
dental health, 116
grapefruit-drug interaction, 111–113
high fructose corn syrup (HFCSO), 114
obesity, sugar metabolism, 113–116

peach, nectarines, 133
agronomic practices, 142–143
carotenoids, 134
fruit load per tree effect, 142–143
health benefits, 153–154
irrigation regime, 143
polyphenols, 133
postharvest handling, storage, 143
processing, 143–144
Vitamin C, 134
pharmacokinetic, pharmacodynamic interactions
drug transporters and, 62
elderly and, 59
ginkgo bilboa extract (GBE), 59
adverse reactions, 68
anticoagulant parameters influence, 67–68, 67f
clinical study, 66–68, 67f
cytochrome P450 (CYP) induction, 63–64, 64f, 65f
hepatic drug-metabolizing enzyme induction, 65–66
hypoglycemic effect, 67f
pharmacodynamic interaction, 66
use, constituents, 63
grapefruit juice, 59
cyclosparine plasma concentration, 60f
morphine tolerance and concentration in blood, 61–62, 61f, 62f
green tea
catechins, 68–69
cytochrome P450 (CYP) enzymes, 69, 70t, 71
interactions through other mechanisms, 72
transporter mediated interaction, 71–72
herbal ingredients, 59
New Zealand fruit extracts, 62–63
saw palmeto extract (SPE), 72–73, 73f
schematic representation, 60f
St. John’s Wort, 59
phenolic extraction
adsorber resins, 431–432
adsorption, ion exchange process, 444
Amberlite® RXAD, 447–451, 448f, 450f
apple and grape pomace, results, 455
apple extracts, results, 455–456, 456f
apple pomace and pectin, combined recovery, 458–459, 459f
concentration and fractionation using anion exchange resins, 453–454, 454f
multicomponent model systems, 451–452
nomenclature, 461
pilot plant scale, 457–458, 457f
saccharides, amino acids impact, 452–453
single compound model systems, 447–451, 448f, 450f
sorption kinetics evaluation, 445–446
sorption process at equilibrium, sorption isotherms
Freundlich isotherm, 446–447
Langmuir isotherm, 446
sunflower expeller, 459–461
current technology, 429
fouling mechanisms, 430
ion exchangers, 431–432
membrane fouling
flux, 434
flux decline, 435
fouling mechanisms, flux decline prediction, 441–442, 442r
pure water flux, 435
membrane fouling, characteristics
fouling mechanism, modified cross-flow filtration equations, 435–436
permeate flux variations modeling, 435, 440–441
resistances determination, resistance-in-series model, 435, 440
membrane fouling, operating conditions
diafiltration, 440
feed concentration, 437, 441r
pH, 437–438, 438f, 441r
protein, sugar content, 438–440, 439f, 439r
temperature effect, 436–437
transmembrane pressure, 437
membrane molecular weight cut-off (MWCO), k and R² values, 441–442, 442r, 443f
membrane separation, filtration
fouling mechanisms, 433
membrane fouling, membrane characteristics, 434
membrane module design, configuration, 432–433
membrane technology, 432
ultrafiltration of polyphenols, 433–434
membrane technology studies, 429–430
resin-based technologies, 429–430
water purification, 431
plant-derived bioactives, classification, 2f
plant-derived bioactives, phenolic compounds, 1
antioxidants, types, 3
natural antioxidants
flavonoids, 3, 4–6f, 5–7
other phenolic compounds, 8–9, 9f, 10f
phenolic acids, 8, 8f, 9f
phytochemical present in different fruits, 7f
proanthacyandins, 9, 10f
tocopherols, 7–8, 8f
plums, 134
agronomic practices, 144–145
anthocyanin concentrations, 144
carotenoids, 135
health benefits
anxiety disorders, 156
cancer, 155–156
plums (Continued)
cardiovascular disease (CVD), 154–155
hepatic disorders, 156–157
hypercholesterolemia, 155
hypertension, blood pressure, 154–155
immunostimulatory effects, 155
osteoporosis, 156
other disorders, 157
polyphenols, 135
processing, 145
Vitamin C, 135–136

pomegranate
archaeological evidence, 126
cultivation, 126
health effects
- anti-inflammatory, 151
- cancer, 150–151
- cardiovascular disease (CVD), 149–150
origin, diversity, traditional uses, 125–126
phytochemical composition, 128, 129
polyphenols
- anthocyanins, 129, 129f
- ellagic acid derivatives, 130
- ellagitannins, 130
- fatty acids, triglycerides, 130
- flavonols, 130
- gallotannins, 130
- organic acids, 130
- proanthocyanidins, 130
- sterols, triterpenes, 130–131
- Vitamin C, 130–131
storage and processing, bioactives, 138
agronomic practices, 139
postharvest handling, storage, 139
storage, processing effect on bioactives
processing, 139–140
pumpkin, squash, 298tr, 321
resin-based technologies, 429–430
saw palmeto extract (SPE), 72–73, 73f
snake gourd, 299tr
St. John’s Wort, 59
stone fruits. See also apricots; cherry; peach,
nectarine; plums
origin, diversity, traditional uses, 126, 127r,
128, 128tr
tomatillo, 299tr
carotenoids, 187
health benefits, 187, 318
nutritional profile, 186

origins, traditional uses, 186
phenolic contents, 186–187
tomato, 299tr
health benefits
- cancer, 303, 304–305tr, 306
- cardiovascular disease (CVD), 306–307
- other diseases, summary, 307, 308tr, 309
lycopene mechanism of action, 309
other components, mechanism of action,
310
phytochemical composition, 300tr
Y-aminobutyric acid (GABA), 303
cystine-knot miniproteins (TCMP-1,
TCMP-2), 303
glycoalkaloids, 302–303
lycopene, dietary intake, 301b
lycopene, other carotenoids, 300–302
phenolics, 302

vegetable fruits, 293, 294tr
ackee, 295r, 324, 324b
avocado, 295r
bitter melon, 295r, 321
bottle gourd, 295r, 321, 323
breadfruit, 295r, 324–325
ciaiga, 296tr, 323
capsicum, 296tr
health benefits, 314–315tr
- obesity, 313, 316
- pain relief, 313, 313b
- mechanism of action, 316–317
phytochemical composition, 311tr
capsaicinoids, 311–312
carotenoids, 312
flavonoids, other phenolics, 312–312
species, 310
chayote, 296r
cucumber, 297r
cucurbitaceae
genera, species, 319
health benefits
- anti-inflammatory, 323
diabetes, 321
mechanisms of action, 323–324
phytochemical composition
Y-aminobutyric acid (GABA), 320
alkaloids, 320
carotenoids, 319–320
cucurbitacins, 320
other, 320–321
polysaccharides, 320
saponins, 323
total phenolics, flavonoids, 322
eggplant, 297
 antioxidant capacity, 317
 cancer, 318
cholesterol, 318
food history, 317
health benefits, 317–318
 phenolics, 317
ivy gourd, 297
luffa, 297
okra, 298, 324–325
olive, 298
phytochemical composition, health benefits,
 293, 295–299
pumpkin, squash, 298, 321
snake gourd, 299
tomatillo, 299
 health benefits, 318
tomato, 299
 health benefits
 cancer, 303, 304–305, 306
 cardiovascular disease (CVD), 306–307
 other diseases, summary, 307, 308, 309
 lycopene mechanism of action, 309
other components, mechanism of action, 310
phytochemical composition, 300
 γ-aminobutyric acid (GABA), 303
 cystine-knot miniproteins (TCMP-1, TCMP-2), 303
 glycoalkaloids, 302–303
lycopene, dietary intake, 301
 lycopene, other carotenoids, 300–302
 phenolics, 302
wax gourd, 299
virgin olive oil (VOO)
cardiovascular diseases (CVD), 362
 antioxidant, free radical scavenging, 359
 atherosclerosis, 358–360
 blood pressure, 359
 endothelial dysfunction, 360
 inflammation effect, 361
 LDL particles, 360
monounsaturated fatty acids (MUFAs)
 benefits, 357–358
 olive oil phenolic compounds,
 cardioprotective effects, 358–361
components, 352–354, 354
classes of olive oil, production schemes,
 355–356, 356
future perspectives, 361–362
Mediterranean diet, 353
minor components, 353–354
monounsaturated fatty acids (MUFAs), 353
phenol compound content, factors affecting,
 355–357, 355
phenolic components, 354, 354
stability, 357
storage conditions, 356–357
water purification, 431
wax gourd, 299
Keep up with critical fields

Would you like to receive up-to-date information on our books, journals and databases in the areas that interest you, direct to your mailbox?

Join the Wiley e-mail service - a convenient way to receive updates and exclusive discount offers on products from us.

Simply visit www.wiley.com/email and register online.

We won’t bombard you with emails and we’ll only email you with information that’s relevant to you. We will ALWAYS respect your e-mail privacy and NEVER sell, rent, or exchange your e-mail address to any outside company. Full details on our privacy policy can be found online.