Contents

About the companion website viii

Chapter 1: Introduction 1
1.1 Geochemistry 1
1.2 This book 2
1.3 The philosophy of science 4
1.4 Elements, atoms, and chemical bonds: some chemical fundamentals 6
1.5 A brief look at the Earth 15
References and suggestions for further reading 19

Chapter 2: Energy, entropy and fundamental thermodynamic concepts 20
2.1 The thermodynamic perspective 20
2.2 Thermodynamic systems and equilibrium 21
2.3 Equations of state 24
2.4 Temperature, absolute zero, and the zeroth law of thermodynamics 26
2.5 Energy and the first law of thermodynamics 27
2.6 The second law and entropy 30
2.7 Enthalpy 38
2.8 Heat capacity 39
2.9 The third law and absolute entropy 47
2.10 Calculating enthalpy and absolute entropy changes 48
2.11 Free energy 51
2.12 The maxwell relations 58
References and suggestions for further reading 58
Problems 59

Chapter 3: Solutions and thermodynamics of multicomponent systems 61
3.1 Introduction 61
3.2 Phase equilibria 62
3.3 Solutions 67
3.4 Chemical potential 68
3.5 Ideal solutions 71
3.6 Real solutions 73
3.7 Electrolyte solutions 80
3.8 Ideal solutions in crystalline solids and their activities 88
3.9 Equilibrium constants 89
3.10 Practical approach to electrolyte equilibrium 96
3.11 Oxidation and reduction 100
References and suggestions for further reading 110
Problems 111
9.3 Isotope geothermometry 384
9.4 Isotopic fractionation in the hydrologic system 387
9.5 Isotopic fractionation in biological systems 388
9.6 Paleoecology 396
9.7 Hydrothermal systems and ore deposits 404
9.8 Stable isotopes in the mantle and magmatic systems 409
9.9 Isotopes of boron and lithium 417
References and suggestions for further reading 424
Problems 428

Chapter 10: The big picture: cosmochemistry 430
10.1 Introduction 430
10.2 In the beginning . . . nucleosynthesis 431
10.3 Meteorites: essential clues to the beginning 442
10.4 Time and the isotopic composition of the solar system 456
10.5 Astronomical and theoretical constraints on solar system formation 467
10.6 Building a habitable solar system 478
References and suggestions for further reading 489
Problems 492

Chapter 11: Geochemistry of the solid earth 493
11.1 Introduction 493
11.2 The Earth’s mantle 493
11.3 Estimating mantle and bulk earth composition 502
11.4 The Earth’s core and its composition 510
11.5 Mantle geochemical reservoirs 516
11.6 The crust 529
References and suggestions for further reading 557
Problems 561

Chapter 12: Organic geochemistry, the carbon cycle, and climate 563
12.1 Introduction 563
12.2 A brief biological background 564
12.3 Organic compounds and their nomenclature 565
12.4 The chemistry of life: important biochemical processes 575
12.5 Organic matter in natural waters and soils 580
12.6 Chemical properties of organic molecules 589
12.7 Sedimentary organic matter and coal and oil formation 599
12.8 Isotope composition of hydrocarbons 614
12.9 The carbon cycle and climate 617
References and suggestions for further reading 629
Problems 633

Appendix 635
Index 637