1 FOUNDATION FOR CALCULUS: FUNCTIONS AND LIMITS 1
1.1 FUNCTIONS AND CHANGE 2
1.2 EXPONENTIAL FUNCTIONS 13
1.3 NEW FUNCTIONS FROM OLD 23
1.4 LOGARITHMIC FUNCTIONS 32
1.5 TRIGONOMETRIC FUNCTIONS 39
1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS 49
1.7 INTRODUCTION TO LIMITS AND CONTINUITY 58
1.8 EXTENDING THE IDEA OF A LIMIT 67
1.9 FURTHER LIMIT CALCULATIONS USING ALGEBRA 75
1.10 OPTIONAL PREVIEW OF THE FORMAL DEFINITION OF A LIMIT ONLINE
REVIEW PROBLEMS ONLINE
PROJECTS ONLINE

2 KEY CONCEPT: THE DERIVATIVE 83
2.1 HOW DO WE MEASURE SPEED? 84
2.2 THE DERIVATIVE AT A POINT 91
2.3 THE DERIVATIVE FUNCTION 99
2.4 INTERPRETATIONS OF THE DERIVATIVE 108
2.5 THE SECOND DERIVATIVE 115
2.6 DIFFERENTIABILITY 123
REVIEW PROBLEMS ONLINE
PROJECTS ONLINE

3 SHORT-CUTS TO DIFFERENTIATION 129
3.1 POWERS AND POLYNOMIALS 130
3.2 THE EXPONENTIAL FUNCTION 140
3.3 THE PRODUCT AND QUOTIENT RULES 144
3.4 THE CHAIN RULE 151
3.5 THE TRIGONOMETRIC FUNCTIONS 158
3.6 THE CHAIN RULE AND INVERSE FUNCTIONS 164
3.7 IMPLICIT FUNCTIONS 171
3.8 HYPERBOLIC FUNCTIONS 174
3.9 LINEAR APPROXIMATION AND THE DERIVATIVE 178
3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS 186
REVIEW PROBLEMS ONLINE
PROJECTS ONLINE

4 USING THE DERIVATIVE 191
4.1 USING FIRST AND SECOND DERIVATIVES 192
4.2 OPTIMIZATION 203
4.3 OPTIMIZATION AND MODELING 212
4.4 FAMILIES OF FUNCTIONS AND MODELING 224
4.5 APPLICATIONS TO MARGINALITY 233
4.6 RATES AND RELATED RATES 243
4.7 L’HÔPITAL’S RULE, GROWTH, AND DOMINANCE 252
4.8 PARAMETRIC EQUATIONS 259
REVIEW PROBLEMS ONLINE
PROJECTS ONLINE
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Key Concept: The Definite Integral</td>
<td>5.1 - 5.4</td>
<td>271 - 302</td>
</tr>
<tr>
<td>6</td>
<td>Constructing Antiderivatives</td>
<td>6.1 - 6.4</td>
<td>315 - 335</td>
</tr>
<tr>
<td>7</td>
<td>Integration</td>
<td>7.1 - 7.7</td>
<td>341 - 473</td>
</tr>
<tr>
<td>8</td>
<td>Using the Definite Integral</td>
<td>8.1 - 8.8</td>
<td>401 - 504</td>
</tr>
<tr>
<td>9</td>
<td>Sequences and Series</td>
<td>9.1 - 9.5</td>
<td>473 - 504</td>
</tr>
</tbody>
</table>
10 APPROXIMATING FUNCTIONS USING SERIES 513
10.1 TAYLOR POLYNOMIALS 514
10.2 TAYLOR SERIES 523
10.3 FINDING AND USING TAYLOR SERIES 530
10.4 THE ERROR IN TAYLOR POLYNOMIAL APPROXIMATIONS 539
10.5 FOURIER SERIES 546
REVIEW PROBLEMS ONLINE
PROJECTS ONLINE

11 DIFFERENTIAL EQUATIONS 561
11.1 WHAT IS A DIFFERENTIAL EQUATION? 562
11.2 SLOPE FIELDS 567
11.3 EULER'S METHOD 575
11.4 SEPARATION OF VARIABLES 580
11.5 GROWTH AND DECAY 586
11.6 APPLICATIONS AND MODELING 597
11.7 THE LOGISTIC MODEL 606
11.8 SYSTEMS OF DIFFERENTIAL EQUATIONS 616
11.9 ANALYZING THE PHASE PLANE 626
11.10 SECOND-ORDER DIFFERENTIAL EQUATIONS: OSCILLATIONS 632
11.11 LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 640
REVIEW PROBLEMS ONLINE
PROJECTS ONLINE

APPENDICES Online
A ROOTS, ACCURACY, AND BOUNDS ONLINE
B COMPLEX NUMBERS ONLINE
C NEWTON'S METHOD ONLINE
D VECTORS IN THE PLANE ONLINE

READY REFERENCE 651
ANSWERS TO ODD-NUMBERED PROBLEMS 663
INDEX 707