Index

a
accidental limit state, 411
acoustical fatigue, xvi, 377
noise-induced fatigue, 377
acoustic emission, 71, 109, 117, 164, 227, 294
event source, 227
adhesive bonded joints, xvi, 615, 631
adiabatic shear banding, 139, 152
aerospace structures, corrosion, 564, 582
crack control of metals, 737
repair, 716, 737, 740
AFGRW Program, 25
aging/ageing, 68, 570, 588, 606, 740, 743, 756
aircraft impacting, 434, 435
Airy stress function, 9
ALPS/SCOL, 483
aluminum alloys, 62
aluminum crack arresters, 720
aluminum oxide layer, 578
aluminum structures, 578
contradiction characteristic, 578
corrosion resistance, 579
corrosion types, 579
aluminum welded panels, 694
amorphous metals, metallic glasses, 69
analysis of large plated structures (ALPS), 361
anodes, sacrificial, 590, 591, 607
anti-corrosion steels, 591
Anti-slosh baffles, 528
arc strike cracking, 693
arrest crack length, 751
arrest energy, 754
arrester efficiency, 759, 761
empirical, 760
artificial neural network, 280, 293
assessment structures under sloshing loads, 465
asymptotic approximation, 657
atomic cohesive strength, 37
auxiliary field, 32

b
Bayesian statistics, 367, 408
Bayes rule, 265
bending moment, negative, 440
bifurcation analysis, 674
bi-materials, 155, 157, 206
bi-metallic corrosion, 395
Biot number, 91
bolt relaxation, 349
bolts see joints
bolts, high temperature, 380
bond, 171, 184, 200
bonded structure delamination, 583
bottom slamming, 446, 448
boundary conditions, 213, 215, 221, 276, 283, 323
non-autonomous, 649
time-dependent, 647, 662
uncertainty, 643, 650
boundary effect detection, 327
boundary-layer (free-edge) effect, 38, 327
bow-flare slamming, 448
branching instability, 131
breaking wave impacts, 448
bridge collapse, 440
bridge failure, 438
brittle crack arrest, 711, 717, 724, 726
toughness value, 724
weldment, 723, 726
brittle-crack propagation, 721, 752
brittle failure mode, 150
brittle fracture, 5, 82
B-train, 515
buckle arresters of pipe-lines, 756, 758, 762

c

cantilever pipes, 531, 534
carbon-fiber-reinforced composite, 237
carbon-fiber-reinforced polymers (CFRP), 77, 294, 731
catastrophe theory, 3
catastrophic failure, 3, 21, 59, 76, 117, 132, 437
catastrophic rupture, 361, 373
catastrophic structural failure, 432
cathodic protection, 590, 591
Cauchy stress, 7
Cauchy stress tensor, 27
caustic curves, 140
caustic method (shadow-spot method), 16
caustics, 139
cauastic surface, 142
chaotic excitation, 247
chaotic features, 308, 349, 545
chaotic flutter, 663
Charpy impact energy, 62
Charpy test, 5, 185, 724
cladding, 592, 599
cleavage, 5, 133, 724
inter-granular cleavage, 36
trans-granular cleavage, 36, 137
cleavage fracture, 5, 36, 729
collapse, localized, 432
collapse mechanism, 433
collision of eigenvalues, 535
collision of road tankers, 443, 516
structural fatigue 516
composite bonded joints, 631
composite patches, 743, 745
composite structures, damage, 70
assessment, 71
connection rigidity, 634
control of liquid sloshing, passive, 527
coordinate transformation, 650, 667

correlation function amplitude vector (CorV), 292

corrosion, xvi, 490, 519, 563
aluminum ship structures, 578
anaerobic, 564, 571
control, 589
crevise, 580
erosion-corrosion, 581
exfoliation, 581, 594
fatigue, 380, 574, 581
filiform, 583
fretting, 563, 583, 598, 599, 602
galvanic, 564, 579
general, 565
inter-granular, 580, 583
mechanism, 564
modeling, 565
monitoring, 567, 588
nonlinear, 567, 568
pitting/loss, 565, 580
rate, 565, 585
stress corrosion, 581, 583
stress corrosion cracking, 581
structural damage, 572
structural details, 697
surface, 583
time-dependent, 568, 569
uniform, 581
corrosion damage algorithm, 584
corrosion fatigue cracking, 593, 606
propagation rate, 594
corrosion fatigue life, 595
coupled dynamics of liquid-tanker, 520
coupon testing, 72
crack acceleration, 139

collapse, localized, 432
collapse mechanism, 433
collision of eigenvalues, 535
collision of road tankers, 443, 516
structural fatigue 516
composite bonded joints, 631
composite patches, 743, 745
composite structures, damage, 70
assessment, 71
connection rigidity, 634
control of liquid sloshing, passive, 527
coordinate transformation, 650, 667

correlation function amplitude vector (CorV), 292

corrosion, xvi, 490, 519, 563
aluminum ship structures, 578
anaerobic, 564, 571
control, 589
crevise, 580
erosion-corrosion, 581
exfoliation, 581, 594
fatigue, 380, 574, 581
filiform, 583
fretting, 563, 583, 598, 599, 602
galvanic, 564, 579
general, 565
inter-granular, 580, 583
mechanism, 564
modeling, 565
monitoring, 567, 588
nonlinear, 567, 568
pitting/loss, 565, 580
rate, 565, 585
stress corrosion, 581, 583
stress corrosion cracking, 581
structural damage, 572
structural details, 697
surface, 583
time-dependent, 568, 569
uniform, 581
corrosion damage algorithm, 584
corrosion fatigue cracking, 593, 606
propagation rate, 594
corrosion fatigue life, 595
coupled dynamics of liquid-tanker, 520
coupon testing, 72
crack acceleration, 139
crack, arc strike, 693
branching, xv, 136, 716
cold, 693
crater, 693
fusion-line, 693
hat, 693
instability, 133
longitudinal, 693
reheat, 693
root and toe, 693
solidification, 693
turning, 741
underbead, 693

crack arrest, xiv, xvi, 711
basic concept, 711
composite ship structures, 730
delamination, 740, 749
development, 721
fatigue, 723, 726
fracture toughness, 724
integral, 754
length, 3, 4, 714, 715, 717, 729, 738, 743, 748
master curve, 719
non-integral, 754
pipeline, 729, 752
pre-cured doubler, 747
reinforced doubler, 738
ship structures, 719, 720
steel structures, 720
stress intensity factor, 714, 716, 725
temperature, 718
toughness, 714, 715, 716, 718, 722, 725, 727, 729
transmission pipelines, 752
welded, 713

crack closure, 71
crack control of composite structures, 745
crack dynamics, 137, 162, 164
crack growth modeling, 610
crack growth rates, 23, 60, 594, 720, 743, 747
crack growth resistance curve
 R-curve, 21, 25
crack growth retardation, 702
crack length, 3, 18
critical, 19, 22, 24
crack microbranching, 130, 135
 onset, 136
crack opening displacement (COD), 22, 73, 133
crack opening stretch (COS), 22
crack oscillatory instability, 167
crack propagation, 431
dynamic, 140, 142
extrinsic, 36
high speed, 141
intrinsic, 36
mechanisms, 35
rapid, 137, 716, 753
speed, 12
stochastic, 69
unstable, 716
crack size parameter, 67
crack speed, 133, 134, 138, 140, 163, 169, 753
crack stopper strap, 738
crack tip element method, 22, 71, 295
crack-tip opening displacement (CTOD), 6, 22, 61, 168
crack tip speed, 133, 141, 145, 717
crack tip temperature, 718
crater crack, 693
crazing fracture, 37
creep, 373
creep buckling, 433
critical crack length, 19, 63
critical flow velocity in pipes, 531
critical fracture velocity, 134, 139, 154, 165
critical velocity of fluid, 530, 534, 553
cross correlation function, 286
cumulative density function, 269, 275, 471, 481
curvature changes, 330
curvature mode shapes, 292
curvature operating shapes, 318
cyclic crack resistances, 69
cyclic load-unload, 118
dAMAGE, 483
damage classification, 263, 267, 356
Index

damage detection, 213, 214, 267, 278, 280, 285
 in bridges, 315
 in composites, 292
 in concrete structures, 321
damping effect, 327
destructive, 214
 non-destructive, 214
 statistical, 214
 in T-joints, 294, 349
vibration-based, 263
damage, due to corrosion, 562
due to collision, 478
 linear, 276, 278
 multi-site, 740
 nonlinear, 276, 278
damage identification, 78, 213, 215, 216
damage index, xv, 263, 267, 282, 286, 467, 471
damage location 213, 241, 244, 251, 280
damage mechanisms, 71, 227
damage prognosis, 217
damage quantification, 213
damage tolerance, 59
damage tolerance criteria, 69
Damage Tolerance Design, 740
damping, negative, 616
 positive, 616
debond, 73, 81, 735, 749
debond modeling, 82
delamination, 39, 45, 46, 70, 71
 crack divider, 740
 δ-convergence, 190, 203
design lifetime, 381, 399
differential inclusion, 616
diffusion flux, 175
directional stability, 513
discordancy concept, 266
discrimination, 265
dissimilar metals, 582, 583
double cantilever beam, 72, 139, 734
ductile–brittle transition, 723
ductile–brittle transition temperature, 62, 724
dynamic crack initiation, 139, 141, 724
dynamic crack instability, 135, 139
dynamic crack propagation, 137, 140, 142, 149, 182
 in metals, 149
dynamic fracture, xv, 129
 birth, childhood, crisis, 130, 131
 composites, 155
 features, 131
 metals, 148
dynamic load factor, 504
dynamic shear localization, 137
earthquake ground motion, 443
elastic modulus, 17
elastic, plateau, and densification, 88
elasto-plastic fracture mechanics (EPFM), xiv, 5, 19, 730
electric capacitance technique, 251
electric resistance technique, 251
electromagnetic heat, 745
EMU code, 185, 195, 200
endurance limit, xiv
energy balance criterion, 716
Energy dissipation, 122, 617
energy released, 3, 18, 711, 723, 731, 744
energy release integrals
 H-Integral, 35
 J-Integral, 6, 27
 L-Integral, 34
 M-Integral (Interaction Integral), 30, 162
energy release rate, 18, 21, 28, 134, 295, 723, 731, 744, 750
 critical, 22
dynamic, 134
global, 30
 strain, 6, 22, 27
environmental effects, 425, 565
environmental parameter, 568
 equivalent linear elastic spring, 283
equivalent mechanical models, 507
Euler-Bernoulli beam, 193
explosive loads, 154
extreme loading, xvi, 194, 431, 432
 bridges, 438
extreme observations, 263, 266
extreme sloshing loads, 471
extreme value distributions, 268
extreme value, generalized, 271
extreme value statistics, 268
Gumbel, Weibull, Frechet, 268
extreme waves, 392
extreme weather, 426, 428

f
failure rate, 366
failure surface, 492
fatigue-based design, 419
welded joints, 696
fatigue crack arrester, 723, 726
fatigue crack enhancement, 608
fatigue crack initiation life, 419, 696
fatigue crack propagation, 3, 35, 36, 361, 362, 695, 720, 723, 726, 733
extrinsic mechanisms, 362
growth rate, 64, 69, 743
intrinsic mechanisms, 362
fatigue cumulative damage, 363
fatigue damage, 457
collision of vehicles, 515
fatigue delamination, 73
fatigue failure mode, 361, 493
fatigue fracture, 35
fatigue in joints, 379
composite joints, 382
metal joins, 379
riveted joints, 380
fatigue life assessment, xiv, 63, 69, 362, 493, 518, 739
design considerations, 386
number of stress cycles, 363
fatigue limit, xiv, 3
fatigue limit state, 411
fatigue resistance, 401
fatigue safety level, 401
fatigue strength, xiv, 362, 411, 419
feature discrimination, 266
feature extraction, 264
fiber Bragg grating, 220, 244, 246, 295, 731
fiber optic sensors, 220
fiber-reinforced composites, 169
Fick’s first law, 175
first-passage problem, xvi, 495
fixity factors, 634
flaw tolerance sensitivity, 68
FLOW-3D, 510
 fluidelastic instability, 544
fluid/structure/fracture interaction, 753
fluid-structure interaction, 445, 448, 518
axial, 600
flutter, 647, 662, 671
chaotic, 677
nonlinear panel, 674
non-stationary time-frequency, 647
foams, closed-cell, 108
micromechanical model, 122
phenomenological model, 115, 122, 127
response, 122
solid, 108, 122
Fokker–Planck–Kolmogorov equation, 496
force-balance method, 49
FORM, 406, 575, 695
Forman equation, 25
foundation, strong, 305
weak, 305
Fourier transform, windowed, 685
short time, 696
spectrogram, 308
four-point bending load, 63, 77
FPSO, 364, 454, 590, 726
fractographic, xiv, 140, 153, 379
fracture, brittle, 5, 17, 21, 36, 37, 60
interlaminar, 72
unstable, 721
fracture criterion, Mohr–Coulomb, 66
fracture dynamics, 131, 722
metals, 148
fracture energy, 135
fracture toughness, 22, 59, 64, 477, 712, 714, 717, 721, 726, 732, 740, 745
dynamic, 133
fracture velocity, critical, 165
Fréchet derivative, 173, 183
free-edge effect, 74
free-hanging risers, 531
frequency response function (FRF), 276, 285, 325, 328, 628
curvature method, 279
frequentist view, 367
fretting/wear, xvi, 381, 563, 598
heat exchangers, 598, 604
analytical and computational models, 600
experimental investigations, 603
impact force, 600
impact fretting, 604
impact-sliding, 599
work rate, 599
frictional damping, 619
friction characteristics, 616
friction laws, 616
constitutive, 618, 619
phenomenological, 618
friction stir welding, 694
front waves, 136
F-statistics, 214, 265
functionally graded materials, 94, 155, 157
functionally graded steels, 724
fusion-line crack, 693

\(g \)
genetic algorithm, 256
glass-fiber-reinforced epoxy (GFRP), 77, 230, 237, 295
glass transition temperature, 38
global wave statistics, 423
Griffith’s Criterion, 18, 19, 137
grounding accidents, 445, 472
grounding resistance, 473
Gumbel distribution, 268, 460, 482, 496

\(h \)
half-cycle fatigue life, 369
Harter T-method, 26, 743
hat crack, 693
hazard materials, 444, 499, 517
hazard rate, 575
heat-affected zone, 5, 64, 363, 693, 727
heat exchanger tubes, 546
H-integral, 35
hogging condition, 395, 398, 413
Hopf bifurcation, 540, 551
symmetry-breaking, 540
horizon, 171, 186
horizon convergence, 190
hot cracking, 693
solidification cracking, 693
hot spot, xiv, 494, 699, 795
hungry horse, 412
hybrid ships, 615
hydraulic jumps, 444, 558
hydrodynamic impact
431, 445, 453, 463, 470, 491, 497, 557
hydrodynamic loads, 433
hydrodynamic-structural coupling, 464
hydroelas tic response, 392
hydrogen cracking, 611
welding, 611
hydrogen embrittlement, xvi, 563, 594, 605
problems, 606
hydrogen induced cracking, 563, 594, 605, 606
hydrogen-induced inter-granular fracture, 596
hygrothermal loading, 49
hyperelastic deformation, 138
hyperelasticity, 129, 134, 190

\(i \)
ice impact, 480
ice-induced loads, 445
ICELOAD computer program, 480
ice loads, 479
ice–structure interaction, 445, 479
impact and fire simulations, 433
impact and thermal loads, 433
impact damage detection, 245
impact-echo method, 253
impact energy parameter, 456, 546
impact, power law model, 549
impact pressures, 454, 462, 465
impact resonance method, 253, 322, 329
impact-sliding interaction, 599
impact test, 195, 199, 200, 228
composite plates, 269
impact velocity, critical, 436
impulse response function, triangular, 470
impulsive loading, 66, 129
inner product vector, 286
Integral Airframe Structures program, 741
integral buffer strips, 746
integral fuel tank corrosion, 583
interaction energy integral, 158
interferometric fiber optic sensor, 244
interlaminar fracture mechanics, 72
interlaminar fracture toughness, 72
internal resonance, 304, 315, 329, 340, 536
inverse square root, 135
Irwin's criteria, 20
Itô stochastic differential equation, 496, 639

\(j \)
\(J \)-integral, 6, 27, 64, 204, 294, 723
dynamic, 139, 150
joints, adhesive bonded, xvi, 615
bolted, xvi
boundary conditions uncertainty, 643
design considerations, 629
effective tensile coefficient, 640
energy dissipation, 616
flexibility, 636
force-state mapping technique, 623, 626
material properties uncertainty, 643
nonlinear identification, 623
relaxation, xvi, 640, 649
restrained, 634
rigidity factor, 638
sensitivity analysis, 636
stochastic sensitivity, 638
strong, 305
transmitted force, 626
uncertainty, 640
weak, 305
joints and fasteners, xvi, 615
modes of failure, 379
joints and weldments, 615
joints nonlinearity, 616
sources, 621
\(J \)-resistance curve, 28
jump, response, 660

\(k \)
Kelvin–Voigt damping, 535, 549, 638

\(l \)
Lamb waves, 216, 220, 270, 282
antisymmetric, 222
guided, 221
symmetric, 222
Lame's constants/parameters, 95, 103, 176, 221, 254
LAMMPS, 155, 187
Large Amplitude Motion Program (LAMP), 449
laser Doppler velocimeter, 218
laser irradiation, 154
laser vibrometers, 217
lifecycle performance, 490
life expectancy assessment, 489
limit cycle oscillation, 644, 645, 674, 780
limit state function, 403, 574
linear, 403
nonlinear, 404
limit state design, 409
linear elastic fracture mechanics, xiv, 5, 17, 63, 164, 395, 743
linear mechanics of pipes, 530
L-integral, 34
liquefied natural gas (LNG), xvi, 445, 453, 462
liquid load shift, 506
liquid sloshing, 433, 5004
liquid-vehicle coupling during braking, 523
load-carrying capacity, 60
loading, localized, 66, 81
loading speed, 88, 115
load interaction effects, 702
load-resistance factor design, 407
load transfer ratio, 504
local elasticity, 137
locality principle, 3, 6
localized dissipative force, 551
localized loading, 86
local theory, 172
Lode angle, 66
logic trees, 408
logistical map equation, 135
longitudinal cracking, 693
long-term distributions, 400
low temperature load-unload, 88
Lyapunov exponent, 677

\(m \)
machine learning algorithms, 216
macroscopic yield strength, 37
Mahalanobis squared distance, 275
Manson–Coffin’s equation, 420
mapping equation, 142, 143
material inertia, 129
material properties uncertainty, 640, 643
material resistance, 21
maximum normal-strain theory
Saint-Venant’s theory, 11, 40
maximum normal stress theory,
Rankine, 11
maximum operator, 268
maximum principal strain criterion, 3
maximum principal stress criterion, 3
maximum shear stress theory, 11
Coulomb or Tresca theory, 11
m-convergence, 190
mechanics of nonlinear pipes, 534
cantilever pipes, 531, 534
supported pipes, 536
melting metals, 154
melts, 154
mesoscale, 74, 187, 204, 740
metal inert gas, 727
metallic glasses, 69, 153
metal, liquid, 153
mica, 4
microbranching, 130, 133, 153, 165
microcrazing, 71
micromechanical damage, 383
micromodulus tensor, 177
micropolar model, 183, 195, 197, 198
microscale approach, 73
microvoid nucleation, 133
Mie-Grüneisen equation, 519
Miner-Palmgren rule, 364, 419
M-Integral (Interaction Integral), 30
mirror, mist, hackle, xv, 138
modal analysis approach, 281
experimental, 282
modal assurance criterion (MAC), 286
modal properties, 280
modal sensitivity parameter, 281
modal strain energy, 278
modal techniques, 250
mode convergence, 677
mode-I (opening mode), 13
mode-II (sliding mode), 13
mode-III (out-of-plane shear), 13
mode shape curvature, 283
mode shapes, 229, 281, 282, 287, 288, 293,
302, 319, 324, 329
modes of hull failure, 395
modes of ships failure, 394
catastrophic failure, 394
end of serviceability, 394
non-Limiting failure, 395
serviceability limiting failure, 395
modulational instability, 427
Mohr–Coulomb fracture criterion, 66
molecular-dynamics, 130, 134, 154, 187, 200, 202
Monte Carlo simulation, 189, 391, 403, 477,
489, 496, 575, 602, 644, 652
Morlet wavelet transform, 685
mote/sensor line, 242
multi-periodic oscillations, 684
n
nascent frequencies, 223, 224
NASGRO equation, 26
natural frequency randomness, 642
neo-Hookean material, 168
neural system, 246
Nil ductility transition (NDT) temperature,
62, 721, 727
noise analysis, 284
noise-induced fatigue, 377
non-destructive evaluation, xv, 217, 250
non-Gaussian structural response, 457
nonlinear fracture mechanics, 19
nonlinear identification, 623
nonlinearity, strong, 623
nonlinear moment-rotation, 634
nonlinear wave loads, 396
non-local theory, 172, 194
non-smooth loadings, 445
normal mode properties, 276
0
ocean systems, 444
corrosion, 564
operational deflection shapes, 324
applications, 327
T-joints, 354
optical caustics, 130, 142, 162
optical fibers, 217
optimal sensor location, 256
optimization genetic algorithm, 245
outlier analysis, 267
outlier detection, 266, 271, 295, 356
outlier probability, 269, 271
outliers, xv, 226, 263, 266
overturning factor, 500
overturning limit, 502

\(p \)
Pad approximants, 106
Panel flutter, 662
Paris–Erdogan Law, 23, 367
path integral method, 496
pattern recognition, 216, 264
pattern recognition paradigm, 216, 264
peel stopper, 730, 736, 749
peridynamics, xiv, 130, 171
composite structures, 199
concrete under extreme loading, 194
electronic packages, 206
ingredients, 171
metals, 192
numerical simulations, 185
restrictions, 181
thermal effects, 204
phase transitions, 154, 155
phase velocity, 223
pH levels, 579, 581
photoelasticity, 16, 139, 162, 715
photography, high speed, 140
Pierson–Moskowitz spectrum, 425
piezoceramic wafers, 218, 226
piezoelectric crystals, 219
piezoelectric polyvinylidene fluoride, 255
piezoelectric sensors, 243
Piola–Kirchhoff stress tensor, 190
pipeline crack arresters, 752
pipes conveying fluids, 529, 599, 600
cantilever pipes, 531
constrained straight, 544
curved pipes, 553
linear mechanics, 530
nonlinear mechanics, 534
non-planar motion, 537
straight pipes, 544
supported pipes, 536
three-dimensional dynamics, 548
vibroimpact dynamics, 550
pipes dynamic stability, 532
pipes non-planar motion, 537
plastic dissipation, 20
plates flutter, analytical modeling, 664
linear analysis, 670
nonlinear analysis, 674
Poisson arrival process, 481
Poisson processes, 63
Poisson ratio \(\frac{4}{3} \), 177, 178, 182
polyacrylamide gels, 168
polyetherimide (PEI), 108
polymer, 163
polymethacrylimide (PMI), 79, 87, 103, 108, 230, 733
polymethyldisiloxane (PDMS), 207
polymethylmethacrylate (PMMA), 137, 146, 163
polystyrene (PS), 108, 207
polyurethane foams, 71, 76, 109, 730
polyvinyl alcohol (PVA), 108
polyvinyl chloride (PVC), 109, 749
power spectral density, 652
Prandtl–Reuss materials, 30
pre-cured doubler, 747
probabilistic fracture mechanics, 421
probabilistic models, 398
probability-based design, 490
probability of failure, 368, 401, 403, 417, 492
instantaneous, 575
time dependent, 578
probability of fatigue failure, 739
projectile impact, 436
prying load, 622
P-wave, 254

\(q \)
quasi-dynamic approach, 506
quasi-periodic oscillations, 541, 663

\(r \)
radial basis function, 230
random excitation, 652
rapid crack propagation, 753
Rayleigh distribution, 398, 451
Rayleigh–Lamb waves, 220
Rayleigh wave, 218, 253
Rayleigh wave speed, 134, 153, 170, 223
R-curve, 21, 70, 724
rebar rupture, 194
reheat cracking, 693
relaxation effect, 84
relaxation, preload, 629, 648
boundary conditions, 662
mechanism, 645
modeling, 655
phenomenological model, 668
relaxation slope parameter, 660
reliability, 415
extreme loading, 487
fatigue, 495
instantaneous, 487, 575
time-invariant, 417
time-variant, 417
reliability assessment, 361, 575
instantaneous, 487, 575
time-dependent, 489
reliability-based assessment, 490
reliability based design, 488, 490, 695
reliability-based fatigue assessment, 418
reliability-based formulation, 573
reliability based hot-spot S–N, 695
reliability-based methods, xiii
reliability index, 401
residual stresses, control, 743
response surface, 214
restrained joints, 615, 634
retardation factor, 739
risk acceptance criteria, 401
risk analysis, 408, 495
risk assessment, 431, 472, 588
riveted crack barriers, 728
riveted doubler plate, 713
roads tankers rollover, xvi, 496
Rogue/freak waves, 427
roll-on-roll-off (Ro/Ro), 24, 474
Rollover instability, xvi, 444, 497, 508, 512
rollover metrics, 497
rollover of road tankers, 508
rollover protection devices, 499, 508
rollover threshold, 433, 512, 515, 521, 527
international standards, 512
root and toe cracking, 693
R6 yield/fracture criterion, 401
rupture, 438
safety margin, 403, 417
sagging and hogging moments, 388, 458
Saint Venant solution, 97, 192
sandwich plates, 90, 99
saturated calomel electrode, 611
scalogram, 690
scanning laser Doppler vibrometer, 279, 324, 326
scantlings, 574, 590
sensors distribution and placement, 256, 257, 259
sensors, embedded, 216
service limit state, 410, 566
shear banding, adiabatic, 139, 150, 179
shear, dynamic, 150
shear fracture, 36
shear localization, dynamic, 139, 545
shearography, 229
shear stress, interlaminar, 39
ship collisions, 436
ship grounding, xvi, 436, 445
ship hogging, 388
ship sagging, 388
ship structural damage, 454
ship-to-ship collision, 485
SHM, ingredients, 216
active, 216
passive, 216
short time Fourier transform, 686
side force coefficient, 500
significance probability, 269
simplified collision model (SIMCOL), 482
singularity field, 29, 83
singularity, oscillatory, 71
skewness parameter, 467
slamming impact, 391
slamming loads, 445, 447
SLA vs. SHM, 213
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sloshing</td>
<td>xvi, 445, 462</td>
</tr>
<tr>
<td>Impact loads</td>
<td>445, 462</td>
</tr>
<tr>
<td>Random/stochastic</td>
<td>470</td>
</tr>
<tr>
<td>Sloshing-induced fatigue (damage)</td>
<td>463, 464</td>
</tr>
<tr>
<td>Smart Dust</td>
<td>242</td>
</tr>
<tr>
<td>Smart sensors</td>
<td>241</td>
</tr>
<tr>
<td>S-N curve</td>
<td>xiii, 72, 361, 374, 379, 397, 495, 697</td>
</tr>
<tr>
<td>SORM</td>
<td>406, 494, 574</td>
</tr>
<tr>
<td>Sound intensity</td>
<td>325</td>
</tr>
<tr>
<td>Spalling of metals</td>
<td>148, 440</td>
</tr>
<tr>
<td>Spatiotemporal modeling</td>
<td>315</td>
</tr>
<tr>
<td>Spectrogram</td>
<td>308, 315, 685</td>
</tr>
<tr>
<td>Splice-type crack arrester</td>
<td>730, 732</td>
</tr>
<tr>
<td>Springing</td>
<td>447, 461</td>
</tr>
<tr>
<td>Statistical difference</td>
<td>214</td>
</tr>
<tr>
<td>Statistical energy analysis</td>
<td>276</td>
</tr>
<tr>
<td>Statistical model</td>
<td>263, 264</td>
</tr>
<tr>
<td>Statistical pattern recognition</td>
<td>xv, 263</td>
</tr>
<tr>
<td>Basic concept</td>
<td>264</td>
</tr>
<tr>
<td>Steel structures crack arresters</td>
<td>720</td>
</tr>
<tr>
<td>Stick-slip</td>
<td>349, 354, 616</td>
</tr>
<tr>
<td>Stiffness loss</td>
<td>355</td>
</tr>
<tr>
<td>Stiffness, nonlinear contact</td>
<td>621</td>
</tr>
<tr>
<td>Stochastic characterization</td>
<td>368</td>
</tr>
<tr>
<td>Strain energy method</td>
<td>278</td>
</tr>
<tr>
<td>Strain energy release rate</td>
<td>6, 383</td>
</tr>
<tr>
<td>Strain fracture toughness</td>
<td>60</td>
</tr>
<tr>
<td>Strain transition temperature</td>
<td>62</td>
</tr>
<tr>
<td>Strakes, crack arresters</td>
<td>712, 720</td>
</tr>
<tr>
<td>Stress corrosion cracking</td>
<td>581, 595, 598, 604, 605, 607, 612</td>
</tr>
<tr>
<td>Stress, critical</td>
<td>2, 19</td>
</tr>
<tr>
<td>Interlaminar</td>
<td>74</td>
</tr>
<tr>
<td>Ratio, 25, 64, 369, 381</td>
<td></td>
</tr>
<tr>
<td>Stress field, three-dimensional</td>
<td>46, 50</td>
</tr>
<tr>
<td>Thermal</td>
<td>92</td>
</tr>
<tr>
<td>Stress intensity factor</td>
<td>xiv, 6, 12, 73, 139, 362, 596, 714, 739</td>
</tr>
<tr>
<td>Critical, threshold</td>
<td>22, 63, 64, 133, 596, 607, 699</td>
</tr>
<tr>
<td>Dynamic</td>
<td>134, 145, 169, 715</td>
</tr>
<tr>
<td>Evaluation</td>
<td>15</td>
</tr>
<tr>
<td>Instantaneous</td>
<td>141</td>
</tr>
<tr>
<td>Mixed modes</td>
<td>14</td>
</tr>
<tr>
<td>Range, 23, 69, 132, 368, 695, 697, 699</td>
<td></td>
</tr>
<tr>
<td>Translational</td>
<td>132</td>
</tr>
<tr>
<td>Stress localization</td>
<td>39</td>
</tr>
<tr>
<td>Stress relaxation</td>
<td>373</td>
</tr>
<tr>
<td>Stress singularities</td>
<td>75</td>
</tr>
<tr>
<td>Stress wave propagation</td>
<td>282</td>
</tr>
<tr>
<td>Stress waves</td>
<td>129</td>
</tr>
<tr>
<td>Striations</td>
<td>362</td>
</tr>
<tr>
<td>Stroboscopic map</td>
<td>355</td>
</tr>
<tr>
<td>Structural failure modes</td>
<td>411</td>
</tr>
<tr>
<td>Structural life</td>
<td>490, 493</td>
</tr>
<tr>
<td>Structural reliability analysis</td>
<td>408</td>
</tr>
<tr>
<td>Sub-zero temperature</td>
<td>82</td>
</tr>
<tr>
<td>Surface energy density</td>
<td>18</td>
</tr>
<tr>
<td>Surface energy dissipation</td>
<td>153</td>
</tr>
<tr>
<td>Surface flaws</td>
<td>4</td>
</tr>
<tr>
<td>Surface free energy</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>T beam, 737</td>
</tr>
<tr>
<td>Temperature, critical</td>
<td>94, 115</td>
</tr>
<tr>
<td>High</td>
<td>433</td>
</tr>
<tr>
<td>Low</td>
<td>120, 482</td>
</tr>
<tr>
<td>Sub-zero, 122, 125</td>
<td></td>
</tr>
<tr>
<td>Transition</td>
<td>5</td>
</tr>
<tr>
<td>Temperature load</td>
<td>205</td>
</tr>
<tr>
<td>Temperature shift, reference</td>
<td>718</td>
</tr>
<tr>
<td>Thermal bending moment</td>
<td>92</td>
</tr>
<tr>
<td>Thermal buckling</td>
<td>92</td>
</tr>
<tr>
<td>Thermal cycles</td>
<td>91, 744</td>
</tr>
<tr>
<td>Thermal effects, differential</td>
<td>647</td>
</tr>
<tr>
<td>Thermal fatigue</td>
<td>xvi, 372, 376</td>
</tr>
<tr>
<td>Mechanisms</td>
<td>372</td>
</tr>
<tr>
<td>Thermal impact</td>
<td>93</td>
</tr>
<tr>
<td>Thermal load</td>
<td>205</td>
</tr>
<tr>
<td>Thermal loading stress field</td>
<td>48</td>
</tr>
<tr>
<td>Thermal stresses</td>
<td>91</td>
</tr>
<tr>
<td>Thermo-elastic coupling</td>
<td>94</td>
</tr>
<tr>
<td>Thermo-elastic fracture</td>
<td>170</td>
</tr>
<tr>
<td>Thermo-elasticity</td>
<td>90</td>
</tr>
<tr>
<td>Thermographic heat patterns</td>
<td>283</td>
</tr>
<tr>
<td>Thermo-mechanical control process (TMCP)</td>
<td>728</td>
</tr>
<tr>
<td>Thermo-mechanical coupling</td>
<td>59, 90, 93</td>
</tr>
<tr>
<td>Thermo-mechanical fatigue</td>
<td>372, 376</td>
</tr>
<tr>
<td>Thermo-mechanical loading</td>
<td>49, 75</td>
</tr>
<tr>
<td>Thermos-elastic bending</td>
<td>92</td>
</tr>
<tr>
<td>Thermosetting polyester</td>
<td>163</td>
</tr>
<tr>
<td>Thermo-mechanical modeling</td>
<td>205</td>
</tr>
</tbody>
</table>
thickness reduction rate, 564, 566
three-dimensional equilibrium conditions, 74
three-dimensional stress field, 50
three-point bending, 76, 150
time-frequency analysis, 684
Titanic (RMS), 432, 437
T-joints, xv, 71, 78, 293, 294, 385, 729
crack formation, 298
 tonnage, 438, 474
top-hat stiffeners, 297
toughness, dynamic, 153
transfer matrix, 344
transgranular cracking, 606
transition temperature, 5, 62, 753
trapped air, 440
TruckSim, 497
T-stress, 15, 741
T-stress correction coefficients, 741
tube dynamics, 599
tube-to-support interactions, 599

U

U-bend tubes, 602
ultimate bending moment, 575
ultimate limit state, xvi, 410
ultimate strength, 388
ultrasonic impact peening, 705
ultrasonic transducers, 219
ultrasonic waves, 216
uncertainty, 415, 643
 boundary conditions, 643, 650
 modeling, 416
 natural, 416
 parametric, 644, 649
 random variable, 649, 651
underbead crack, 693
upper shelf temperature, 755

V

van der Waals forces, 201
vehicles collision, 432, 516
vehicles structural fatigue, 432, 516
vibration-based damage detection, 293
vibration-based fault diagnostics, 217
vibration-based techniques, 263, 276
vibration deflection shapes, 324
vibration-induced loosening, 647
vibroimpact, 544, 548, 550, 553, 559, 613
virtual crack closure, 72, 633
viscoelastic relaxation time, 135
Vitreloy, 153
volume fraction index, 94
von Karman plate equations, 643
Von Mises yield criterion, 19

W

Walker equation, 25, 369
wave impact, 447
wave-induced bending moment, 451, 454
wave-induced hogging, 460
wave-induced vertical bending, 392, 400
wavelet scalogram, 690
wavelet transform, 226, 277, 327, 689
 continuous, 688
wave speed, longitudinal, 221
 transverse/shear, 221
wear, 563, 598
 rate, 566
wear coefficient, 603
Weibull distribution, 268, 366, 460, 471, 482
weight function, 17, 30
welded crack arrester, 712, 713, 720, 726
welded joints, 690
 fatigue improvement, 704
 fatigue life, 701, 703
 fracture mechanics assessment, 699
welding, hydrogen cracking, 611
welding processes, 690
wet-deck slamming, 448
whipping, 391, 447, 461
windowed Fourier transform, 685
Winkler foundation, 79, 80
wireless sensor, 215, 228, 243
work rate, 599, 601, 603
World Trade Center Towers, 432