Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Sustainable Transportation</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Population, Energy, and Transportation</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Environment</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Economic Growth</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4</td>
<td>New Fuel Economy Requirement</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>A Brief History of HEVs</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Why EVs Emerged and Failed in the 1990s, and What We Can Learn</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Architectures of HEVs</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Series HEVs</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Parallel HEVs</td>
<td>13</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Series–Parallel HEVs</td>
<td>14</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Complex HEVs</td>
<td>15</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Diesel and other Hybrids</td>
<td>15</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Other Approaches to Vehicle Hybridization</td>
<td>16</td>
</tr>
<tr>
<td>1.4.7</td>
<td>Hybridization Ratio</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>Interdisciplinary Nature of HEVs</td>
<td>17</td>
</tr>
<tr>
<td>1.6</td>
<td>State of the Art of HEVs</td>
<td>17</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Toyota Prius</td>
<td>21</td>
</tr>
<tr>
<td>1.6.2</td>
<td>The Honda Civic</td>
<td>21</td>
</tr>
<tr>
<td>1.6.3</td>
<td>The Ford Escape</td>
<td>21</td>
</tr>
<tr>
<td>1.6.4</td>
<td>The Two-Mode Hybrid</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>Challenges and Key Technology of HEVs</td>
<td>24</td>
</tr>
<tr>
<td>1.8</td>
<td>The Invisible Hand—Government Support</td>
<td>25</td>
</tr>
<tr>
<td>1.9</td>
<td>Latest Development in EV and HEV, China's Surge in EV Sales</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>29</td>
</tr>
</tbody>
</table>

2 Concept of Hybridization of the Automobile 31

2.1 Vehicle Basics 31

2.1.1 Constituents of a Conventional Vehicle 31

2.1.2 Vehicle and Propulsion Load 31
Contents

4.4.4.1 Motor-Alone Mode 90
4.4.4.2 Combined Mode 90
4.4.4.3 Engine-Alone Mode 90
4.4.4.4 Regenerative Braking Mode 90
4.4.4.5 Power Split Mode 91
4.4.4.6 Standstill Charge Mode 91
4.4.4.7 Series Hybrid Mode 92
4.5 Hybrid Transmission Proposed by Zhang et al. 92
4.5.1 Motor-Alone Mode 92
4.5.2 Combined Power Mode 93
4.5.3 Engine-Alone Mode 94
4.5.4 Electric CVT Mode 94
4.5.5 Energy Recovery Mode 94
4.5.6 Standstill Mode 94
4.6 Renault IVT Hybrid Transmission 95
4.7 Timken Two-Mode Hybrid Transmission 96
4.7.1 Mode 0: Launch and Reverse 96
4.7.2 Mode 1: Low-Speed Operation 97
4.7.3 Mode 2: High-Speed Operation 97
4.7.4 Mode 4: Series Operating Mode 97
4.7.5 Mode Transition 98
4.8 Tsai's Hybrid Transmission 99
4.9 Hybrid Transmission with Both Speed and Torque Coupling Mechanism 100
4.10 Toyota Highlander and Lexus Hybrid, E-Four-Wheel Drive 102
4.11 CAMRY Hybrid 103
4.12 Chevy Volt Powertrain 104
4.13 Non-Ideal Gears in the Planetary System 106
4.14 Dynamics of the Transmission 107
4.15 Conclusions 108
References 108

5 Plug-In Hybrid Electric Vehicles 111
5.1 Introduction to PHEVs 111
5.1.1 PHEVs and EREVs 111
5.1.2 Blended PHEVs 112
5.1.3 Why PHEV? 112
5.1.4 Electricity for PHEV Use 114
5.2 PHEV Architectures 115
5.3 Equivalent Electric Range of Blended PHEVs 115
5.4 Fuel Economy of PHEVs 116
5.4.1 Well-to-Wheel Efficiency 116
5.4.2 PHEV Fuel Economy 117
5.4.3 Utility Factor 118
5.5 Power Management of PHEVs 119
5.6 PHEV Design and Component Sizing 121
5.7 Component Sizing of EREVs 122
5.8 Component Sizing of Blended PHEVs 123
5.9 HEV to PHEV Conversions 123
5.9.1 Replacing the Existing Battery Pack 123
5.9.2 Adding an Extra Battery Pack 125
5.9.3 Converting Conventional Vehicles to PHEVs 126
5.10 Other Topics on PHEVs 126
5.10.1 End-of-Life Battery for Electric Power Grid Support 126
5.10.2 Cold Start Emissions Reduction in PHEVs 126
5.10.3 Cold Weather/Hot Weather Performance Enhancement in PHEVs 127
5.10.4 PHEV Maintenance 127
5.10.5 Safety of PHEVs 128
5.11 Vehicle-to-Grid Technology 129
5.11.1 PHEV Battery Charging 129
5.11.2 Impact of G2V 131
5.11.3 The Concept of V2G 135
5.11.4 Advantages of V2G 136
5.11.5 Case Studies of V2G 137
5.12 Conclusion 140
References 140

6 Special Hybrid Vehicles 143
6.1 Hydraulic Hybrid Vehicles 143
6.1.1 Regenerative Braking in HHVs 146
6.2 Off-Road HEVs 148
6.2.1 Hybrid Excavators 151
6.2.2 Hybrid Excavator Design Considerations 157
6.3 Diesel HEVs 163
6.4 Electric or Hybrid Ships, Aircraft, and Locomotives 164
6.4.1 Ships 164
6.4.2 Aircraft 167
6.4.3 Locomotives 170
6.5 Other Industrial Utility Application Vehicles 172
References 173
Further Reading 174

7 HEV Applications for Military Vehicles 175
7.1 Why HEVs Can Be Beneficial for Military Applications 175
7.2 Ground Vehicle Applications 176
7.2.1 Architecture – Series, Parallel, Complex 176
7.2.2 Vehicles That Are of Most Benefit 178
7.3 Non-Ground-Vehicle Military Applications 180
7.3.1 Electromagnetic Launchers 181
7.3.2 Hybrid-Powered Ships 182
7.3.3 Aircraft Applications 183
7.3.4 Dismounted Soldier Applications 183
7.4 Ruggedness Issues 185
References 186
Further Reading 187

8 Diagnostics, Prognostics, Reliability, EMC, and Other Topics Related to HEVs 189
8.1 Diagnostics and Prognostics in HEVs and EVs 189
8.1.1 Onboard Diagnostics 189
8.1.2 Prognostics Issues 192
8.2 Reliability of HEVs 195
8.2.1 Analyzing the Reliability of HEV Architectures 196
8.2.2 Reliability and Graceful Degradation 199
8.2.3 Software Reliability Issues 201
8.3 Electromagnetic Compatibility (EMC) Issues 203
8.4 Noise Vibration Harshness (NVH), Electromechanical, and Other Issues 205
8.5 End-of-Life Issues 207
References 208
Further Reading 209

9 Power Electronics in HEVs 211
9.1 Introduction 211
9.2 Principles of Power Electronics 212
9.3 Rectifiers Used in HEVs 214
9.3.1 Ideal Rectifier 214
9.3.2 Practical Rectifier 215
9.3.3 Single-Phase Rectifier 216
9.3.4 Voltage Ripple 218
9.4 Buck Converter Used in HEVs 221
9.4.1 Operating Principle 221
9.4.2 Nonlinear Model 222
9.5 Non-Isolated Bidirectional DC–DC Converter 223
9.5.1 Operating Principle 223
9.5.2 Maintaining Constant Torque Range and Power Capability 225
9.5.3 Reducing Current Ripple in the Battery 226
9.5.4 Regenerative Braking 228
9.6 Voltage Source Inverter 229
9.7 Current Source Inverter 229
9.8 Isolated Bidirectional DC–DC Converter 231
9.8.1 Basic Principle and Steady State Operations 231
9.8.1.1 Heavy Load Conditions 232
9.8.1.2 Light Load Condition 234
9.8.1.3 Output Voltage 234
9.8.1.4 Output Power 236
9.8.2 Voltage Ripple 236
Contents

9.9 PWM Rectifier in HEVs 242

9.9.1 Rectifier Operation of Inverter 242

9.10 EV and PHEV Battery Chargers 243

9.10.1 Forward/Flyback Converters 244

9.10.2 Half-Bridge DC–DC Converter 245

9.10.3 Full-Bridge DC–DC Converter 245

9.10.4 Power Factor Correction Stage 246

9.10.4.1 Decreasing Impact on the Grid 246

9.10.4.2 Decreasing the Impact on the Switches 247

9.10.5 Bidirectional Battery Chargers 247

9.10.6 Other Charger Topologies 249

9.10.7 Contactless Charging 249

9.10.8 Wireless Charging 250

9.11 Modeling and Simulation of HEV Power Electronics 251

9.11.1 Device-Level Simulation 251

9.11.2 System-Level Model 252

9.12 Emerging Power Electronics Devices 253

9.13 Circuit Packaging 254

9.14 Thermal Management of HEV Power Electronics 254

9.15 Conclusions 257

References 257

10 Electric Machines and Drives in HEVs 261

10.1 Introduction 261

10.2 Induction Motor Drives 262

10.2.1 Principle of Induction Motors 262

10.2.2 Equivalent Circuit of Induction Motor 265

10.2.3 Speed Control of Induction Machine 267

10.2.4 Variable Frequency, Variable Voltage Control of Induction Motors 269

10.2.5 Efficiency and Losses of Induction Machine 270

10.2.6 Additional Loss in Induction Motors Due to PWM Supply 271

10.2.7 Field-Oriented Control of Induction Machine 278

10.3 Permanent Magnet Motor Drives 287

10.3.1 Basic Configuration of PM Motors 287

10.3.2 Basic Principle and Operation of PM Motors 290

10.3.3 Magnetic Circuit Analysis of IPM Motors 295

10.3.3.1 Unsaturated Motor 300

10.3.3.2 Saturated Motor 301

10.3.3.3 Operation Under Load 303

10.3.3.4 Flux Concentration 303

10.3.4 Sizing of Magnets in PM Motors 304

10.3.4.1 Input Power 306

10.3.4.2 Direct-Axis Armature Reaction Factor 306

10.3.4.3 Magnetic Usage Ratio and Flux Leakage Coefficient 306

10.3.4.4 Maximum Armature Current 307

10.3.4.5 Inner Power Angle 307
10.3.5 Eddy Current Losses in the Magnets of PM Machines 308
10.4 Switched Reluctance Motors 310
10.5 Doubly Salient Permanent Magnet Machines 311
10.6 Design and Sizing of Traction Motors 315
10.6.1 Selection of A and B 315
10.6.2 Speed Rating of the Traction Motor 316
10.6.3 Determination of the Inner Power 316
10.7 Thermal Analysis and Modeling of Traction Motors 316
10.7.1 The Thermal Resistance of the Air Gap, R_{ag} 317
10.7.2 The Radial Conduction Thermal Resistance of the Rotor Core, R_{rs} 318
10.7.3 The Radial Conduction Thermal Resistance of the Poles, R_{mr} 319
10.7.4 The Thermal Resistance of the Shaft, R_{shf} 319
10.7.5 The Radial Conduction Thermal Resistance of Stator Teeth, R_{st} 320
10.7.6 The Radial Conduction Thermal Resistance of the Stator Yoke, R_{sy} 320
10.7.7 The Conduction Thermal Resistance between the Windings and Stator, R_{ws} 320
10.7.8 Convective Thermal Resistance between Windings External to the Stator and Adjoining Air, R_{wa} 321
10.8 Conclusions 323
References 323

11 Electric Energy Sources and Storage Devices 333
11.1 Introduction 333
11.2 Characterization of Batteries 335
11.2.1 Battery Capacity 335
11.2.2 Energy Stored in a Battery 335
11.2.3 State of Charge in Battery (SOC) and Measurement of SOC 335
11.2.3.1 SOC Determination 336
11.2.3.2 Direct Measurement 336
11.2.3.3 Amp-hr Based Measurement 337
11.2.3.4 Some Better Methods 337
11.2.3.5 Initialization Process 338
11.2.4 Depth of Discharge (DOD) of a Battery 339
11.2.5 Specific Power and Energy Density 339
11.2.6 Ampere-Hour (Charge and Discharge) Efficiency 339
11.2.7 Number of Deep Cycles and Battery Life 340
11.2.8 Some Practical Issues About Batteries and Battery Life 341
11.2.8.1 Acronyms and Definitions 344
11.2.8.2 State of Health Issue in Batteries 348
11.2.8.3 Two-Pulse Load Method to Evaluate State of Health of a Battery 349
11.2.8.4 Battery Management Implementation 352
11.2.8.5 What to Do with All the Above Information 353
11.3 Comparison of Energy Storage Technologies 355
11.3.1 Lead Acid Battery 355
11.3.2 Nickel Metal Hydride Battery 356
11.3.3 Lithium-Ion Battery 356
11.4 Ultracapacitors 356
11.5 Electric Circuit Model for Batteries and Ultracapacitors 358
11.5.1 Battery Modeling 358
11.5.2 Electric Circuit Models for Ultracapacitors 359
11.6 Flywheel Energy Storage System 362
11.7 Fuel Cell Based Hybrid Vehicular Systems 364
11.7.1 Introduction to Fuel Cells 364
11.7.1.1 Types of Fuel Cells 364
11.7.2 System Level Applications 364
11.7.3 Fuel Cell Modeling 366
11.8 Summary and Discussion 368
References 368
Further Reading 369

12 Battery Modeling 371
12.1 Introduction 371
12.2 Modeling of Nickel Metal Hydride (NiMH) Battery 372
12.2.1 Chemistry of an NiMH Battery 372
12.3 Modeling of Lithium-Ion (Li-Ion) Battery 374
12.3.1 Chemistry in Li-Ion Battery 374
12.4 Parameter Estimation for Battery Models 375
12.5 Example Case of Using Battery Model in an EV System 377
12.6 Summary and Observations on Modeling and Simulation for Batteries 382
References 383
Further Reading 383

13 EV and PHEV Battery Charger Design 385
13.1 Introduction 385
13.2 Main Features of the LLC Resonant Charger 387
13.2.1 Analysis in the Time Domain 387
13.2.2 Operation Modes and Distribution Analysis 389
13.3 Design Considerations for an LLC Converter for a PHEV Battery Charger 393
13.4 Charging Trajectory Design 396
13.4.1 Key Design Parameters 396
13.4.2 Design Constraints 399
13.5 Design Procedures 401
13.6 Experimental Results 401
13.7 Conclusions 407
References 407

14 Modeling and Simulation of Electric and Hybrid Vehicles 409
14.1 Introduction 409
14.2 Fundamentals of Vehicle System Modeling 410
14.3 HEV Modeling Using ADVISOR 412
14.4 HEV Modeling Using PSAT 416
14.5 Physics-Based Modeling 416
 14.5.1 RCF Modeling Technique 417
 14.5.2 Hybrid Powertrain Modeling 418
 14.5.3 Modeling of a DC Machine 418
 14.5.4 Modeling of DC–DC Boost Converter 419
 14.5.5 Modeling of Vehicle Dynamics 420
 14.5.6 Wheel Slip Model 421
14.6 Bond Graph and Other Modeling Techniques 424
 14.6.1 Bond Graph Modeling for HEVs 424
 14.6.2 HEV Modeling Using PSIM 425
 14.6.3 HEV Modeling Using Simulor and V-Elph 427
14.7 Consideration of Numerical Integration Methods 428
14.8 Conclusion 428
References 428

15 HEV Component Sizing and Design Optimization 433
 15.1 Introduction 433
 15.2 Global Optimization Algorithms for HEV Design 434
 15.2.1 DIRECT 434
 15.2.2 Simulated Annealing 438
 15.2.2.1 Algorithm Description 438
 15.2.2.2 Tunable Parameters 439
 15.2.2.3 Flow Chart 440
 15.2.3 Genetic Algorithms 441
 15.2.3.1 Flow Chart 441
 15.2.3.2 Operators and Selection Method 441
 15.2.3.3 Tunable Parameters 443
 15.2.4 Particle Swarm Optimization 443
 15.2.4.1 Algorithm Description 443
 15.2.4.2 Flow Chart 444
 15.2.5 Advantages/Disadvantages of Different Optimization Algorithms 444
 15.2.5.1 DIRECT 444
 15.2.5.2 SA 445
 15.2.5.3 GA 445
 15.2.5.4 PSO 446
 15.3 Model-in-the-Loop Design Optimization Process 446
 15.4 Parallel HEV Design Optimization Example 447
 15.5 Series HEV Design Optimization Example 452
 15.5.1 Control Framework of a Series HEV Powertrain 454
 15.5.2 Series HEV Parameter Optimization 454
 15.5.3 Optimization Results 456
 15.6 Conclusion 459
References 459

16 Wireless Power Transfer for Electric Vehicle Applications 461
 16.1 Introduction 461
 16.2 Fundamental Theory 464
16.3 Magnetic Coupler Design 468
16.3.1 Coupler for Stationary Charging 469
16.3.2 Coupler for Dynamic Charging 471
16.4 Compensation Network 473
16.5 Power Electronics Converters and Power Control 475
16.6 Methods of Study 477
16.7 Additional Discussion 479
16.7.1 Safety Concerns 479
16.7.2 Vehicle to Grid Benefits 481
16.7.3 Wireless Communications 481
16.7.4 Cost 481
16.8 A Double-Sided LCC Compensation Topology and its Parameter Design 482
16.8.1 The Double-Sided LCC Compensation Topology 482
16.8.2 Parameter Tuning for Zero Voltage Switching 486
16.8.3 Parameter Design 491
16.8.4 Simulation and Experiment Results 495
16.8.4.1 Simulation Results 495
16.8.4.2 Experimental Results 497
16.9 An LCLC Based Wireless Charger Using Capacitive Power Transfer Principle 502
16.9.1 Circuit Topology Design 504
16.9.2 Capacitance Analysis 506
16.9.3 A 2.4 kW CPT System Design 506
16.9.4 Experiment 507
16.10 Summary 511
References 511

17 Vehicular Power Control Strategy and Energy Management 521
17.1 A Generic Framework, Definition, and Needs 521
17.2 Methodology to Implement 523
17.2.1 Methodologies for Optimization 528
17.2.2 Cost Function Optimization 531
17.3 Benefits of Energy Management 536
References 536
Further Reading 537

18 Commercialization and Standardization of HEV Technology and Future Transportation 539
18.1 What Is Commercialization and Why Is It Important for HEVs? 539
18.2 Advantages, Disadvantages, and Enablers of Commercialization 539
18.3 Standardization and Commercialization 540
18.4 Commercialization Issues and Effects on Various Types of Vehicles 541
18.5 Commercialization of HEVs for Trucks and Off-Road Applications 542
18.6 Commercialization and Future of HEVs and Transportation 543
Further Reading 543
19 A Holistic Perspective on Vehicle Electrification 545
19.1 Vehicle Electrification – What Does it Involve? 545
19.2 To What Extent Should Vehicles Be Electrified? 545
19.3 What Other Industries Are Involved or Affected in Vehicle Electrification? 547
19.4 A More Complete Picture Towards Vehicle Electrification 548
19.5 The Ultimate Issue: To Electrify Vehicles or Not? 551
Further Reading 553

Index 555