Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
<td>xxvii</td>
</tr>
<tr>
<td>Foreword</td>
<td>xxxii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xxxiv</td>
</tr>
<tr>
<td>About the Companion Website</td>
<td>xxxv</td>
</tr>
<tr>
<td>Part One INTRODUCTION TO PHOTOVOLTAICS</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Angèle Reinders, Wilfried van Sark, and Pierre Verlinden</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Introduction to Photovoltaic Solar Energy</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Properties of Irradiance</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.1 Photons</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.2 Solar Irradiance</td>
<td>7</td>
</tr>
<tr>
<td>1.1.2.3 Refraction, Reflection and Transmission</td>
<td>8</td>
</tr>
<tr>
<td>1.1.3 Structure of the Book</td>
<td>10</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>11</td>
</tr>
<tr>
<td>Constants</td>
<td>11</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>Part Two BASIC FUNCTIONAL PRINCIPLES OF PHOTOVOLTAICS</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Semiconductor Materials and their Properties</td>
<td>15</td>
</tr>
<tr>
<td>Angèle Reinders</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Semiconductor Materials</td>
<td>15</td>
</tr>
<tr>
<td>2.1.2 Crystalline Structures of Semiconductors</td>
<td>16</td>
</tr>
<tr>
<td>2.1.3 Energy Bands in Semiconductors</td>
<td>17</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>19</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>19</td>
</tr>
<tr>
<td>References</td>
<td>20</td>
</tr>
</tbody>
</table>
2.2 Doping, Diffusion, and Defects in Solar Cells

Pierre J. Verlinden

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2 Silicon Wafer Fabrication</td>
<td></td>
</tr>
<tr>
<td>2.2.2.1 Metallurgical-grade Silicon</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2.2 Purification of Silicon</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2.3 Silicon Feedstock</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3 Ingot Formation</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3.1 Mono-crystalline Ingots</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3.2 Multi-crystalline Ingots</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3.3 Slicing</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4 Doping and Diffusion</td>
<td>26</td>
</tr>
<tr>
<td>2.2.5 Defects in Silicon</td>
<td></td>
</tr>
<tr>
<td>2.2.5.1 Point Defects</td>
<td>29</td>
</tr>
<tr>
<td>2.2.5.2 Line Defects</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5.3 Planar Defects</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5.4 Volume Defects</td>
<td>30</td>
</tr>
</tbody>
</table>

List of Symbols 31
List of Acronyms 31
References 31

2.3 Absorption and Generation

Seth Hubbard

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>2.3.2 Generation of Electron Hole Pairs in Semiconductors</td>
<td></td>
</tr>
<tr>
<td>2.3.3 Absorption and Photogeneration</td>
<td>33</td>
</tr>
<tr>
<td>2.3.4 Absorption Coefficient for Direct and Indirect Bandgap Semiconductors</td>
<td></td>
</tr>
<tr>
<td>2.3.4.1 Direct Bandgap</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4.2 Indirect Bandgap</td>
<td>36</td>
</tr>
</tbody>
</table>

References 38

2.4 Recombination

Seth Hubbard

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>2.4.2 Radiative Recombination</td>
<td>40</td>
</tr>
<tr>
<td>2.4.3 Auger Recombination</td>
<td>41</td>
</tr>
<tr>
<td>2.4.4 Non-Radiative (Shockley-Read-Hall) Recombination</td>
<td>42</td>
</tr>
<tr>
<td>2.4.5 Surface, Interface and Grain Boundary Recombination</td>
<td></td>
</tr>
</tbody>
</table>

References 46

2.5 Carrier Transport

Seth Hubbard

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2 Drift Current</td>
<td>47</td>
</tr>
<tr>
<td>2.5.3 Diffusion Current</td>
<td>49</td>
</tr>
<tr>
<td>2.5.4 Total Current</td>
<td>50</td>
</tr>
</tbody>
</table>
2.5.5 Quasi-Fermi Levels and Current 50
2.5.6 Continuity Equations 51
2.5.7 Minority Carrier Transport Equations 52
References 53

2.6 PN Junctions and the Diode Equation 54
Seth Hubbard

2.6.1 Properties of a pn Homojunction 54
2.6.2 Ideal pn Diode in the Dark 58
2.6.3 Depletion Region Effects and the General Diode Equation 62
Acknowledgments 63
List of Symbols 63
List of Acronyms 65
References 66

Part Three CRYSTALLINE SILICON TECHNOLOGIES 67

3.1 Silicon Materials: Electrical and Optical Properties 69
Andreas Fell

3.1.1 Introduction 69
3.1.2 Electrical Properties 70
 3.1.2.1 Bandgap and Intrinsic Carrier Density 70
 3.1.2.2 Bandgap Narrowing 71
 3.1.2.3 Carrier Statistics 72
 3.1.2.4 Mobility 72
 3.1.2.5 Intrinsic Recombination 72
 3.1.2.6 The Shockley-Read Hall (SRH) Defect Recombination 74
 3.1.2.7 Metal Impurities 74
 3.1.2.8 SRH via Complexes 74
3.1.3 Optical Properties 75
 3.1.3.1 Complex Refractive Index $n + ik$ of Intrinsic Silicon 75
 3.1.3.2 Free Carrier Absorption (FCA) 75
3.1.4 Conclusion 76
List of Symbols 77
List of Acronyms 77
References 78

3.2 Silicon Solar Cell Device Structures 80
Andrew Blakers and Ngwe Zin

3.2.1 Introduction 80
3.2.2 Solar Cell Optics 81
3.2.3 Minimizing Electron-Hole Recombination 82
3.2.4 Minimizing Electrical Losses 83
3.2.5 Screen-Printed Silicon Solar Cells 83
3.2.6 Selective Emitter Solar Cells 84
3.2.7 PERC and PERL Solar Cells 85
3.2.8 Switching to Phosphorus-Doped Substrates 86
3.2.9 N-Type Rear Emitter Silicon Solar Cells
3.2.10 N-type Front Emitter Silicon Solar Cell
3.2.11 Efficiency Improvements for Industrial Solar Cells
 3.2.11.1 Passivation Schemes for Boron-Doped Emitter
3.2.12 Conclusion
References

3.3 Interdigitated Back Contact Solar Cells
Pierre Verlinden
3.3.1 Introduction
 3.3.1.1 A Different Concept for High-Efficiency Silicon Solar Cells
3.3.2 Different Types of IBC Solar Cells
 3.3.2.1 Front Surface Field Solar Cells
 3.3.2.2 Front Floating Emitter Solar Cells
 3.3.2.3 Point-Contact Solar Cells
 3.3.2.4 IBC Solar Cells for Concentrator Application
3.3.3 IBC Solar Cells for One-Sun Flat-Plate Modules
3.3.4 Conclusion
List of Symbols
List of Acronyms
References

3.4 Heterojunction Silicon Solar Cells
Wilfried van Sark
3.4.1 Basic Principles
3.4.2 a-Si:H/c-Si Cell Development
3.4.3 Key Issues in a-Si:H/c-Si Cells
 3.4.3.1 Surface Passivation
 3.4.3.2 Wafer Cleaning
 3.4.3.3 Texturing
3.4.4 Advantages Compared to c-Si Cells
List of Symbols
List of Acronyms
References

3.5 Surface Passivation and Emitter Recombination Parameters
Bram Hoex
3.5.1 Introduction
3.5.2 Surface Passivation Mechanisms
 3.5.2.1 Chemical and Field-Effect Passivation
 3.5.2.2 Passivation of Undiffused Silicon Surfaces
 3.5.2.3 Passivation of Diffused Silicon Surfaces
3.5.3 Commonly Used Surface Passivating Films
 3.5.3.1 Silicon Nitride (SiN$_x$)
 3.5.3.2 Silicon Oxide (SiO$_x$)
 3.5.3.3 Aluminum Oxide (AlO$_x$)
 3.5.3.4 Titanium Oxide (TiO$_x$)
3.5.4 Conclusion
List of Symbols
List of Acronyms
References
3.6 Passivated Contacts
Martin Hermle

3.6.1 Introduction

3.6.2 Theory of Passivated Contacts

3.6.3 Experimentally Realized Passivated Contacts

3.6.3.1 Silicon Heterojunction

3.6.3.2 Conductor-Insulator-Semiconductor (CIS) Based Passivated Contacts

3.6.4 Conclusion

3.7 Light Management in Silicon Solar Cells
Zachary Holman and Mathieu Boccard

3.7.1 Introduction

3.7.2 Theory and Experiment

3.7.3 Front-Surface Reflection

3.7.4 Parasitic Absorption

3.7.5 Light Trapping

3.7.6 Conclusion

3.8 Numerical Simulation of Crystalline Silicon Solar Cells
Pietro Altermatt

3.8.1 Introduction

3.8.2 Why Numerical Simulations?

3.8.3 Commonly Used Software for the Numerical Simulation of Si Solar Cells

3.8.4 General Simulation Approach

3.8.5 Detailed Numerical Simulation of an mc-Si Solar Cell

3.8.6 Conclusion

3.9 Advanced Concepts
Martin Green

3.9.1 Introduction

3.9.2 Near-Term Advanced Options

3.9.3 Longer-Term Advanced Options

3.9.4 Conclusion

List of Symbols

List of Acronyms

References
Part Five THIN FILM SILICON-BASED PV TECHNOLOGIES 213

5.1 Amorphous and Nanocrystalline Silicon Solar Cells 215
Etienne Moulin, Jan-Willem Schüttauf, and Christophe Ballif

- **5.1.1 Introduction** 215
- **5.1.2 Amorphous and Nano-Crystalline Solar Technology** 216
 - **5.1.2.1 General Aspects** 216
 - **5.1.2.2 Key Technological Steps Towards Highest Efficiencies in Research and Production** 217
 - **5.1.2.3 Unique Potential for Up-scalability of the a-Si:H and nc-Si:H Technology** 219
- **5.1.3 Thin Poly-crystalline and Mono-crystalline Silicon on Glass** 220
- **5.1.4 Perspectives for Thin Silicon Solar Technology** 222
- **5.1.5 Conclusion** 222

List of Symbols 223

References 224

5.2 Thin Crystalline Silicon Solar Cells on Glass 226
Onno Gabriel, Daniel Amkreutz, Jan Haschke, Bernd Rech, and Rutger Schlatmann

- **5.2.1 Introduction** 226
- **5.2.2 Solar Cells Based on Liquid-Phase Crystallized Silicon on Glass** 228
 - **5.2.2.1 Energy Sources for LPC** 229
 - **5.2.2.2 Substrates, Interlayer and Absorber Deposition** 230
 - **5.2.2.3 Morphological, Chemical and Electronic Properties** 231
- **5.2.3 Cell Concepts for Thin Crystalline Silicon Absorbers** 232
- **5.2.4 Future Outlook** 234
- **5.2.5 Conclusion** 234

Acknowledgments 235

List of Symbols and Acronyms 235

References 236

5.3 Light Management in Crystalline and Thin Film Silicon Solar Cells 238
Franz Haug

- **5.3.1 Introduction** 238
- **5.3.2 Light Scattering Interfaces** 240
- **5.3.3 Parasitic Losses** 242
- **5.3.4 Conclusion** 244

List of Symbols 244

List of Acronyms 245

References 245
5.4 New Future Concepts 248
Jan-Willem Schüttauf, Etienne Moulin, and Christophe Ballif
5.4.1 Introduction 248
5.4.2 Thin Film Silicon Triple-Junction Solar Cells 249
5.4.3 Thin Film Silicon Quadruple-Junction Solar Cells 250
5.4.4 Further Improvements in Thin Film Crystalline Silicon Solar Cells 251
5.4.5 Conclusion 252
List of Symbols 253
References 253

Part Six ORGANIC PHOTOVOLTAICS 255
6.1 Solid-State Organic Photovoltaics 257
Bernard Kippelen
6.1.1 Introduction 257
6.1.2 Definition 257
6.1.3 Brief History 259
6.1.4 Organic Semiconductors 260
6.1.5 Processing of Organic Semiconductors 261
6.1.6 Physics of Organic Solar Cells 261
6.1.7 State-of-the-Art and Current Trends 262
6.1.8 Conclusion 264
Acknowledgments 265
Acronyms 265
References 265

6.2 Hybrid and Dye-Sensitized Solar Cells 267
Woojun Yoon
6.2.1 Introduction 267
6.2.2 Current Status of Hybrid and Dye-Sensitized Solar Cell Performance 268
6.2.3 Hybrid Quantum Dot Solar Cells 270
6.2.4 Silicon-Organic Hybrid Solar Cells 271
6.2.5 Dye-Sensitized Solar Cells 273
6.2.6 Conclusion 275
References 275

6.3 Perovskite Solar Cells 277
Samuel D. Stranks and Henry J. Snaith
6.3.1 Introduction 277
6.3.2 Organic-Inorganic Perovskites for Photovoltaics 277
6.3.2.1 Tunability of the Crystal Structure 277
6.3.2.2 Evolution from Dye-Sensitized Solar Cells 278
6.3.2.3 Emergence of a New Thin Film Technology 280
6.3.3 Deposition Methods 280
6.3.3.1 One-Step Depositions 281
6.3.3.2 Two-Step Depositions 281
6.3.4 Enabling Properties and Operation 282
 6.3.4.1 Low-Loss Systems 282
 6.3.4.2 Electronic Properties 283
 6.3.4.3 Device Operation 284
6.3.5 Ongoing Challenges 285
 6.3.5.1 Lead-free Alternatives 285
 6.3.5.2 Hysteresis 285
 6.3.5.3 Thermal and Operational Stability 287
6.3.6 Conclusion 288
References 289

6.4 Organic PV Module Design and Manufacturing 292
Veronique S. Gevaerts
6.4.1 Introduction 292
 6.4.1.1 From Cells to Modules 292
 6.4.1.2 Advantages of R2R Production 293
 6.4.1.3 Module Design for Organic PV 293
6.4.2 Important Module Parameters 295
 6.4.2.1 Cell Size 295
 6.4.2.2 Series Connection 295
 6.4.2.3 Barrier Requirements 295
6.4.3 Wet Processing Technologies 296
 6.4.3.1 Slot-Die Coating 297
 6.4.3.2 Inkjet Printing 297
 6.4.3.3 Spray Coating 297
 6.4.3.4 Other Techniques and Comparisons 298
6.4.4 Interconnections 299
 6.4.4.1 Tiled Coating 300
 6.4.4.2 In-Process Scribing 300
 6.4.4.3 Back-end (Laser) Processing 300
6.4.5 Future Outlook 301
List of Acronyms 301
References 302

Part Seven CHARACTERIZATION AND MEASUREMENTS METHODS 303

7.1 Methods and Instruments for the Characterization of Solar Cells 305
Halden Field
7.1.1 Introduction 305
7.1.2 External Quantum Efficiency 305
 7.1.2.1 Apparatus 305
 7.1.2.2 Calibration 306
 7.1.2.3 Using Reflectance Data to Determine Internal Quantum Efficiency 307
 7.1.2.4 Alternative Optical Configurations, Components, and Features 308
 7.1.2.5 QE Measurement Data 308
 7.1.2.6 Determining Solar Cell Current for a Particular Light Source 309
7.1.3 Energy Conversion Efficiency

7.1.3.1 I-V Curve Introduction

7.1.3.2 Illumination for I-V Curves

7.1.3.3 I-V Curve Measurement Apparatus: Light Sources

7.1.3.4 I-V Curve Measurement Apparatus: Temperature Control

7.1.3.5 I-V Curve Measurement Apparatus: Electrical Measurement

7.1.3.6 Calibration

7.1.3.7 Comparing \(J_{sc} \) from QE and I-V Measurements

7.1.3.8 I-V Curves for Series and Shunt Resistance Measurements

7.1.4 Spectral Mismatch

7.1.5 Conclusion

List of Symbols

List of Acronyms

References

7.2 Photoluminescence and Electroluminescence Characterization in Silicon Photovoltaics

Thorsten Trupke

7.2.1 Introduction

7.2.1.1 Electroluminescence Versus Photoluminescence

7.2.2 Theory

7.2.2.1 The Generalized Planck Equation

7.2.2.2 Implied Voltage and Excess Carrier Density from Luminescence

7.2.3 Applications

7.2.3.1 Spectral Luminescence Measurements

7.2.3.2 Optical Material and Device Properties from PL

7.2.3.3 Quantum Efficiency from EL

7.2.3.4 Quantitative Analysis of Luminescence Intensities

7.2.4 Luminescence Imaging

7.2.4.1 PL Imaging on Bricks and Ingots

7.2.4.2 PL Imaging on Wafers

7.2.4.3 PL and EL Imaging on Finished Solar Cells

7.2.4.4 EL Imaging on Modules and Systems

7.2.4.5 Inspection of PV Systems

7.2.5 Conclusion

Acknowledgments

List of Symbols

List of Acronyms

References

7.3 Measurement of Carrier Lifetime, Surface Recombination Velocity, and Emitter Recombination Parameters

Henner Kampwerth

7.3.1 Introduction

7.3.2 Carrier Lifetime

7.3.3 Measurement of the Carrier Densities and Generation Rate

7.3.3.1 Photoconductance (PC)

7.3.3.2 Photoluminescence (PL)
7.3.3 Open Circuit Voltage Analysis 342
7.3.4 Calculation of the Effective Lifetime 342
 7.3.4.1 Quasi-Steady-State (QSS) Analysis 343
 7.3.4.2 Transient Analysis 343
7.3.5 Separation of the Surface Lifetime 344
 7.3.5.1 Absorption Variation 344
 7.3.5.2 Thickness Variation 344
 7.3.5.3 Reference Wafer 345
 7.3.5.4 High Injection Scenario 346
7.3.6 Calculation of the Surface Recombination Velocity and Emitter Recombination Current 346
 7.3.6.1 Surface Recombination Velocity S 346
 7.3.6.2 Emitter Recombination Current J_0e 346
7.3.7 Conclusion 347
List of Symbols 347
List of Acronyms 348
References 348

7.4 In-situ Measurements, Process Control, and Defect Monitoring 350
Angus Rockett
7.4.1 Introduction 350
7.4.2 Monitoring of Vapor Phase Film Growth 351
 7.4.2.1 Temperature 351
 7.4.2.2 Flux 353
7.4.3 Optical Properties 355
7.4.4 Electrical Behavior 359
7.4.5 Conclusion 359
List of Acronyms 360
References 360

7.5 PV Module Performance Testing and Standards 362
Geoffrey S. Kinsey
7.5.1 Introduction 362
7.5.2 Indoor Testing 364
7.5.3 Outdoor Testing 366
7.5.4 Sandia Photovoltaic Array Performance Model 367
7.5.5 Conclusion 368
List of Symbols 368
List of Acronyms 368
References 369

Part Eight III-Vs AND PV CONCENTRATOR TECHNOLOGIES 371

8.1 III-V Solar Cells – Materials, Multi-Junction Cells – Cell Design and Performance 373
Frank Dimroth
8.1.1 Historical Overview and Background of III-V Solar Cells 373
8.1.2 Minimizing Optical and Electrical Losses in III-V Solar Cells 376
8.1.3 Monolithic III-V Multi-junction Cell Architectures
8.1.4 Conclusion
Acknowledgments
List of Acronyms
References

8.2 New and Future III-V Cells and Concepts
Simon Fafard
8.2.1 Introduction
8.2.2 Summary of Requirements
 8.2.2.1 Design Considerations
 8.2.2.2 Challenges
 8.2.2.3 Design Rules
8.2.3 New and Future Cells and Concepts
 8.2.3.1 Dilute-Nitride and Wafer-Bonded Cells
 8.2.3.2 Metamorphic (MM and IMM) Cells
 8.2.3.3 Self-Assembled Quantum Dot Cells
 8.2.3.4 Thin Cells with Light Trapping and Photonic Confinement
 8.2.3.5 Photovoltaic Phototransducers with 75% Conversion Efficiencies
 8.2.3.6 Cells with Duplicated Junctions
 8.2.3.7 Cells with Through Semiconductor Vias
 8.2.3.8 Virtual Substrate Approach for New Cell Designs
 8.2.3.9 Cell Designs Based on Mechanical Stacking or on Multi-Terminals
8.2.4 Conclusion
List of Acronyms and Symbols
References

8.3 High Concentration PV Systems
Karin Hinzer, Christopher E. Valdivia, and John P.D. Cook
8.3.1 Introduction
8.3.2 Optics
 8.3.2.1 Primary Optical Elements
 8.3.2.2 Secondary Optical Elements
 8.3.2.3 Optical Material Considerations
 8.3.2.4 Angular Response
8.3.3 Trackers
 8.3.3.1 Pointing Accuracy
 8.3.3.2 Re-acquisition Time
 8.3.3.3 Control Systems
8.3.4 Performance Evaluation and Fault Detection
8.3.5 Cost Optimization
8.3.6 Assembly and Reliability
 8.3.6.1 Reliability of Optics Attaches and Optical Encapsulants
8.3.7 Receiver Assembly and Thermal Management
8.3.7.1 Cell-Carrier Attach 405
8.3.7.2 Carrier-Chassis Attach 406
8.3.7.3 Verification 406
8.3.8 Housing 406
8.3.8.1 Mechanical Adhesives 407
8.3.8.2 Off-Axis Beam Damage 407
8.3.9 Certification and Test Method Standards 407
8.3.10 Future Directions 408
List of Acronyms 408
References 409

8.4 Operation of CPV Power Plants: Energy Prediction 411
Geoffrey S. Kinsey
8.4.1 Introduction 411
8.4.2 Performance Models 412
8.4.3 Performance Standards 414
8.4.4 Prediction vs. Measurement 415
8.4.5 Conclusion 418
List of Acronyms 418
References 418

8.5 The Luminescent Solar Concentrator (LSC) 420
Michael Debije
8.5.1 Introduction 420
8.5.2 Challenges for the Deployment of the LSC 421
8.5.2.1 Internal losses in LCS 422
8.5.2.2 Losses from the Waveguide Surfaces 424
8.5.3 The Future of the LSC 426
8.5.3.1 The Materials 426
8.5.3.2 Alternative Applications 427
8.5.3.3 Change in Approach 428
List of Symbols 428
List of Acronyms 428
References 429

Part Nine SPACE TECHNOLOGIES 431

9.1 Materials, Cell Structures, and Radiation Effects 433
Rob Walters
9.1.1 Introduction 433
9.1.2 Radiation Response Mechanisms 434
9.1.3 Effect of Radiation on Space Solar Cells 435
9.1.4 Effect of Radiation on Multijunction Space Solar Cells 438
9.1.5 Correlating Radiation Damage 439
9.1.6 Conclusion 442
List of Symbols and Units 442
References 442
9.2 Space PV Systems and Flight Demonstrations
Phillip Jenkins

9.2.1 Introduction 444
9.2.2 The Building Block of the Solar Array: The Cell with Interconnect and Cover Glass 445
9.2.3 System Considerations 446
9.2.4 Solar Array Interactions with the Space Environment 446
9.2.5 Space Solar Array Research and Development Trends 448
9.2.5.1 Solar Array Structures 448
9.2.5.2 Orbital ATK, UltraFlex Array 448
9.2.5.3 Next Generation Solar Array (NGSA) 449
9.2.5.4 Roll-Out Solar Array (ROSA) 450
9.2.6 Conclusion 451
Acknowledgments 453
List of Acronyms 453
References 454

9.3 A Vision on Future Developments in Space Photovoltaics
David Wilt

9.3.1 Current Status and Near-Term Challenges/Opportunities 455
9.3.2 Near-Term Technologies to Address Challenges 457
9.3.2.1 Advanced Solar Cell Technologies 457
9.3.2.2 Modularity 458
9.3.2.3 Automated Panel and Blanket Manufacturing 459
9.3.2.4 Advanced Solar Arrays 459
9.3.3 Far-Term Power Needs and Technology Options 459
List of Symbols 461
List of Acronyms 461
References 462

Part Ten PV MODULES AND MANUFACTURING

10.1 Manufacturing of Various PV Technologies
Alison Lennon and Rhett Evans

10.1.1 Introduction 465
10.1.2 Manufacturing of Screen-Printed p-Type Silicon Cells 465
10.1.2.1 Surface Texturing 466
10.1.2.2 Junction Formation 467
10.1.2.3 Emitter Isolation 468
10.1.2.4 Antireflection Coating 469
10.1.2.5 Screen Printing and Firing of Metal Electrodes 470
10.1.3 Advanced p-Type Cell Technologies 472
10.1.4 Higher Efficiency n-Type Technologies 473
10.1.5 Conclusion 473
Acknowledgements 474
List of Abbreviations 474
References 474
10.2 Encapsulant Materials for PV Modules

Michael Kempe

10.2.1 Introduction 478
10.2.2 Types of Encapsulant Materials 478
10.2.3 Polymer Light Transmittance 482
10.2.4 UV Durability 483
10.2.5 Resistivity 485
10.2.6 Moisture Ingress Prevention 486
10.2.7 Conclusion 488
Acknowledgments 488
List of Symbols 488
List of Acronyms 488
References 489

10.3 Reliability and Durability of PV Modules

Sarah Kurtz

10.3.1 Introduction 491
10.3.1.1 Importance and Challenge of PV Module Reliability and Durability 491
10.3.1.2 Challenge of Determining Reliability and Service Lifetime 492
10.3.2 PV Module Durability, Quality, and Reliability Issues 492
10.3.2.1 Electrical Circuit Failures 494
10.3.2.2 Encapsulant Discoloration and Delamination 496
10.3.2.3 Corrosion 498
10.3.2.4 Potential-Induced Degradation 498
10.3.2.5 Thin Film Module Failure/Degradation Mechanisms 498
10.3.3 Strategy for Improving PV Reliability 499
10.3.3.1 Applying Today’s Knowledge 499
10.3.3.2 Creating Qualification Standards that Differentiate Use Environments 499
10.3.3.3 Addressing Quality Control and Manufacturability 499
10.3.3.4 Creating a Standard for Service Life Predictions 500
10.3.4 Conclusion 500
Acknowledgments 500
References 501

10.4 Advanced Module Concepts

Pierre Verlinden

10.4.1 Introduction 502
10.4.2 Double-Glass Modules 503
10.4.3 Anti-Reflection Coated Glass 504
10.4.4 Half-cell Modules 504
10.4.5 Light Capturing Ribbon 505
10.4.6 Light Reflective Film 506
10.4.7 Smart Wire and Multi-Busbars 507
10.4.8 Smart PV Modules 507
10.4.9 Conclusion 508
List of Symbols 508
List of Acronyms 508
References 509

Part Eleven PV SYSTEMS AND APPLICATIONS 511

11.1 Grid-Connected PV Systems 513
Greg J. Ball

11.1.1 Introduction 513
 11.1.1.1 System Design Basics 514
11.1.2 Grid-Connected System Types 515
 11.1.2.1 PV on Buildings and Structures 515
11.1.3 Performance 521
 11.1.3.1 Maximizing Energy Capture 521
 11.1.3.2 Designing for Financial Return 523
11.1.4 Safety and Fire Protection 523
 11.1.4.1 Overcurrent Protection 524
 11.1.4.2 Grounding and Ground Fault Protection 524
 11.1.4.3 Arc Fault Protection 526
 11.1.4.4 Safety of the Public 526
 11.1.4.5 Safety of the Emergency Personnel 527
11.1.5 Conclusion 527

Acknowledgments 527
List of Acronyms 528
References 529

11.2 Inverters, Power Optimizers, and Microinverters 530
Chris Deline

11.2.1 Introduction 530
11.2.2 Power Conversion 530
 11.2.2.1 Practical Converter Considerations 532
 11.2.2.2 Wide Band Gap Components 533
11.2.3 DC Maximum Power Point Tracking 534
11.2.4 Inverter Efficiency 535
 11.2.4.1 CEC vs European Efficiency 535
11.2.5 Auxiliary Functions 536
11.2.6 Conclusion 536
List of Symbols 537
List of Acronyms 537
References 538

11.3 Stand-Alone and Hybrid PV Systems 539
Matthias Vetter and Georg Bopp

11.3.1 Introduction 539
11.3.2 Solar Pico Systems 539
11.3.3 Solar Home Systems 540
11.3.4 Hybrid PV Systems for Stand-Alone Applications 541
 11.3.4.1 Technical Applications 541
 11.3.4.2 Residential Applications 544
11.3.5 PV Diesel Mini-Grids 544
 11.3.5.1 Systems Without Storage 545
 11.3.5.2 Systems with Storage 545
 11.3.5.3 DC Coupled Systems 546
 11.3.5.4 AC Coupled Systems 547
 11.3.5.5 DC/AC Mixed Solutions 548
11.3.6 Battery Storage 549
11.3.7 Conclusion 551
References 552

11.4 PV System Monitoring and Characterization 553
Wilfried van Sark, Atse Louwen, Odysseas Tsafarakis, and Panos Moraitis
11.4.1 Introduction 553
11.4.2 Monitoring Practice 555
11.4.3 Monitoring Examples 558
 11.4.3.1 Normal Operation 558
 11.4.3.2 Shading 558
 11.4.3.3 Statistical Analysis 560
11.4.4 Conclusion 561
Acknowledgments 561
List of Symbols 561
List of Acronyms 562
References 562

11.5 Energy Prediction and System Modeling 564
Joshua S. Stein
11.5.1 Introduction 564
11.5.2 Irradiance and Weather Inputs 565
11.5.3 Plane of Array Irradiance 566
11.5.4 Shading, Soiling, Reflection, and Spectral Losses 567
 11.5.4.1 Shading Losses 567
 11.5.4.2 Soiling Losses 568
 11.5.4.3 Reflection Losses 568
 11.5.4.4 Spectral Mismatch Losses 569
 11.5.4.5 Effective Irradiance 569
11.5.5 Cell Temperature 569
11.5.6 Module IV Models 570
 11.5.6.1 Equivalent Circuit Diode Models 570
 11.5.6.2 Fixed-Point Models 570
11.5.7 DC-DC Maximum Power Point Tracking and DC Losses 571
11.5.8 DC to AC Conversion 572
11.5.9 AC Losses 573
11.5.10 Modeling of Stand-Alone PV Systems 573
 11.5.10.1 Direct-Drive Water Pumping PV System 573
 11.5.10.2 Stand-Alone PV system with Battery Storage and Inverter 574

11.5.11 Conclusion 574
List of Symbols and Acronyms 575
References 577

11.6 Building Integrated Photovoltaics 579
Michiel Ritzen, Zeger Vroon, and Chris Geurts
11.6.1 Introduction 579
11.6.2 BAPV vs BIPV 580
11.6.3 BIPV Design 581
11.6.4 BIPV Building Aspects, Codes and Regulations 586
11.6.5 Outlook 587
List of Acronyms 588
References 588

11.7 Product Integrated Photovoltaics 590
Angèle Reinders and Georgia Apostolou
11.7.2 Application Areas of Product Integrated Photovoltaics 591
11.7.3 Selected Items for Product Integrated Photovoltaics 593
 11.7.3.1 System Design and Energy Balance 593
 11.7.3.2 Environmental Impact 594
 11.7.3.3 User Interaction 595
11.7.4 Conclusion 598
List of Acronym 598
References 598

Part Twelve **PV DEPLOYMENT IN DISTRIBUTION GRIDS** 601

12.1 PV Systems in Smart Energy Homes: PowerMatching City 603
Albert van den Noort
12.1.1 Introduction 603
12.1.2 Technology 604
 12.1.2.1 Photovoltaic Panels 605
 12.1.2.2 Hybrid Heat Pumps 605
 12.1.2.3 Micro Combined Heat and Power Units (MicroCHP) 606
12.1.3 Matching Supply and Demand 607
12.1.4 New Energy Services 607
12.1.5 Results and Lessons Learned 608
12.1.6 Conclusion 610
List of Acronym 610
References 611
12.2 New Future Solutions: Best Practices from European PV Smart Grid Projects 612
 Gianluca Fulli and Flavia Gangale
12.2.1 Introduction 612
12.2.2 Insights from the JRC Smart Grid Inventory 613
12.2.3 Main Solutions Investigated by the Projects in the JRC Inventory 614
12.2.4 Conclusion 618
List of Acronyms 619
References 619

Part Thirteen SUPPORTING METHODS AND TOOLS 621

13.1 The Economics of PV Systems 623
 Matthew Campbell
13.1.1 Introduction 623
13.1.2 Levelized Cost of Electricity (LCOE) 624
13.1.3 PV System Cost 625
13.1.4 System Energy Production 627
13.1.5 Cost of Capital 629
13.1.6 System Life 630
13.1.7 Annual Operating Costs 631
13.1.8 PV LCOE and Grid Parity 632
13.1.9 Conclusion 633
List of Acronyms 633
References 633

13.2 People’s Involvement in Residential PV and their Experiences 634
 Barbara van Mierlo
13.2.1 Introduction 634
13.2.2 Residents Purchasing and Owning a PV System 635
13.2.3 Residents Commissioning a House Renovation 637
13.2.4 People Receiving a PV System 638
13.2.5 Owners Using a PV System 638
13.2.6 Citizens Participating in Collective Initiatives 640
13.2.7 Synthesis and Conclusion 641
References 644

13.3 Life Cycle Assessment of Photovoltaics 646
 Vasilis Fthenakis
13.3.1 Introduction 646
13.3.2 Methodology 646
13.3.3 Cumulative Energy Demand (CED) during the Life of a PV System 647
 13.3.3.1 Energy Payback Time (EPBT) 648
 13.3.3.2 Energy Return on Investment (EROI) 649
 13.3.3.3 Greenhouse Gas (GHG) Emissions and Global Warming Potential (GWP) 649
References 649
13.3.4 Results 650

13.3.4.1 Energy Payback Time and Energy Return on Investment 650

13.3.4.2 Greenhouse Gas Emissions 651

13.3.4.3 Toxic Gas Emissions 652

13.3.5 Conclusion 655

References 656

13.4 List of International Standards Related to PV 658

Pierre Verlinden and Wilfried van Sark

13.4.1 Introduction 658

13.4.2 IEC Standards Overview 659

13.4.3 Underwriters’ Laboratories (UL) Standards 666

13.4.4 The SEMI Standards 666

Acknowledgements 671

References 671

Index 672