Contents

Preface xiii
About this book xv

1 Agent Technology in Modern Manufacturing 1
 1.1 Introduction 1
 1.2 Agent and Multi-Agent System 1
 1.2.1 Agent 2
 1.2.2 Multi-Agent System 4
 1.3 Agent Technologies in Manufacturing Systems 7
 1.3.1 Contemporary Manufacturing Systems 7
 1.3.2 Agents in Production Planning and Control Systems 8
 1.3.3 The Existing Requirements 10
 1.4 Book Organization 11
 1.4.1 Purpose of the Book 11
 1.4.2 Scope of the Book 12
 1.4.3 Content of the Book 12
References 14

2 The Technical Foundation of a Multi-Agent System 21
 2.1 Introduction 21
 2.2 The Structure of an Agent 21
 2.2.1 Thinking Agent 23
 2.2.2 Reactive Agent 26
 2.2.3 Hybrid Agent 28
 2.3 The Structure of a Multi-Agent System 29
 2.3.1 The Environment of a Multi-Agent System 29
 2.3.2 The Structure of a Multi-Agent System 30
Contents

2.4 Modeling Methods of a Multi-Agent System 34
2.4.1 The Behavior Model of a Multi-Agent System 34
2.4.2 The Running Model of a Multi-Agent System 35
2.5 The Communication and Interaction Model of a Multi-Agent System 37
2.6 The Communication Protocol for a Multi-Agent System 39
2.6.1 Communication Languages for an Agent 40
2.6.2 The Communication Ontology for an Agent 42
2.7 The Interaction Protocol for a Multi-Agent System 43
2.7.1 Classification of Interaction Protocols 43
2.7.2 Description of Interaction Protocols 45
2.7.3 The Collaboration-Based Interaction Protocol 47
2.7.4 The Negotiation-Based Interaction Protocol 48
2.8 Conclusion 50

References 50

3 Multi-Agent-Based Production Planning and Control 55
3.1 Introduction 55
3.2 Manufacturing Systems 56
3.2.1 Concept 56
3.2.2 Classification 57
3.3 Production Planning and Control 61
3.3.1 Production Planning and Control Activities 61
3.3.2 Production Planning and Control Mode 64
3.3.3 Production Planning and Control Systems 66
3.3.4 Hybrid Push-Pull Production Planning and Control System 68
3.4 Multi-Agent-Based Push-Pull Production Planning and Control System (MAP4CS) 71
3.4.1 Mapping Methods 72
3.4.2 Functions of a Hybrid Push-Pull Production Planning and Control System 73
3.4.3 Structures of a MAP4CS 77
3.4.4 The Running Model of a MAP4CS 80
3.4.5 Behavior Models of a MAP4CS 82
3.4.6 The Interactive Model of a MAP4CS 85
3.5 Conclusion 90

References 91
4 Multi-Agent-Based Production Planning for Distributed Manufacturing Systems 95
4.1 Introduction 95
4.2 Production Planning for Distributed Manufacturing Systems 96
4.2.1 Distributed Manufacturing Systems 96
4.2.2 Features of Distributed Manufacturing Systems 99
4.2.3 Production Planning Methods for Distributed Manufacturing Systems 102
4.3 Multi-Agent-Based Production Planning in Distributed Manufacturing Systems 106
4.3.1 A Production Planning Model for Distributed Manufacturing Systems 107
4.3.2 Production Planning in MASs 112
4.3.3 The Running Model of a Multi-Agent-Based Production Planning System 116
4.4 Agents in Multi-Agent Production Planning Systems 118
4.4.1 Order Demand Management Agent 118
4.4.2 Cooperative Planning Agent 120
4.4.3 Critical Resource Capacity Management Agent 121
4.5 Contract Net Protocol-Based Production Planning Optimization Method 123
4.5.1 Contract Net Protocol 123
4.5.2 Contract Net Protocol-Based Collaborative Production Planning Algorithm 126
4.5.3 Case Study 130
4.6 Bid Auction Protocol-Based Production Planning Optimization Method 133
4.6.1 Bid Auction Protocol 134
4.6.2 The Bid Auction Protocol-Based Negotiating Production Planning Algorithm 135
4.6.3 Case Study 138
4.7 Conclusion 139
References 140

5 Multi-Agent-Based Production Scheduling for Job Shop Manufacturing Systems 143
5.1 Introduction 143
5.2 Production Scheduling in Job Shop Manufacturing Systems 144
5.2.1 Job Shop Manufacturing Systems 144
5.2.2 Production Scheduling in Job Shop Manufacturing Systems 146
5.2.3 The Related Literature Review 148
5.3 Multi-Agent Double Feedback–Based Production Scheduling in Job Shop Manufacturing Systems 153
5.3.1 Principles of Double Feedback Scheduling Strategy 153
5.3.2 The Architecture of the Multi-Agent Double Feedback–Based Production Scheduling System 154
5.3.3 The Running Model for the Multi-Agent Double Feedback–Based Production Scheduling 155
5.4 Agents in the Multi-Agent Double Feedback–Based Scheduling System 158
5.4.1 Task Management Agent 159
5.4.2 Collaborative Scheduling Agent 160
5.4.3 Resource Capacity Management Agent 161
5.5 Positive Feedback–Based Production Scheduling in Job Shop Manufacturing Systems 162
5.5.1 Problem Description 163
5.5.2 Multi-Agent Positive Feedback Scheduling System Based on Contract Net Protocol 167
5.5.3 Positive Feedback Production Scheduling Algorithm Based on the Hierarchical Genetic Algorithm 168
5.5.4 Case Study 174
5.6 Negative Feedback–Based Production Rescheduling in Job Shop Manufacturing Systems 177
5.6.1 Problem Description 177
5.6.2 Multi-Agent Negative Feedback Rescheduling System Based on Ant Colony Auction Protocol 179
5.6.3 Ant Colony Algorithm–Based Negative Feedback Rescheduling Approach 181
5.6.4 Case Study 188
5.7 Conclusion 188
References 190

6 Multi-Agent-Based Production Scheduling in Re-Entrant Manufacturing Systems 197
6.1 Introduction 197
6.2 Production Scheduling in Re-Entrant Manufacturing Systems 198
6.2.1 Re-Entrant Manufacturing Systems 198
6.2.2 Production Scheduling in Re-Entrant Manufacturing Systems 201
6.2.3 The Related Literature Review 204
6.3 Multi-Agent-Based Hierarchical Adaptive Production Scheduling in Re-Entrant Manufacturing Systems 208
6.3.1 Hierarchical Adaptive Production Scheduling Strategy 208
6.3.2 The Architecture of the Multi-Agent Hierarchical Adaptive Production Scheduling System 210
6.3.3 The Running Model for a Multi-Agent Hierarchical Adaptive Production Scheduling System 212
6.4 Agents in a Multi-Agent Hierarchical Adaptive Production Scheduling System 212
6.4.1 Task Management Agent 214
6.4.2 Collaborative Scheduling Agent 215
6.4.3 Resource Capacity Management Agent 217
6.5 Hierarchical Production Scheduling in Re-Entrant Manufacturing Systems 218
6.5.1 Problem Description 218
6.5.2 Contact Net Protocol based Production Scheduling in the System Layer 222
6.5.3 GPGP-CN Protocol Based Production Scheduling in the Machine Layer 226
6.5.4 Case Study 238
6.6 Adaptive Rescheduling in Re-Entrant Manufacturing Systems 244
6.6.1 Problem Description 244
6.6.2 Rescheduling Strategy 247
6.6.3 FNN-Based Rescheduling 248
6.6.4 Case Study 253
6.7 Conclusion 253
References 258

7 Multi-Agent-Based Production Control 263
7.1 Introduction 263
7.2 Multi-Agent Production Control System 264
7.2.1 Requirements of Production Control Process 264
7.2.2 The Architecture of a Multi-Agent Production Control System 265
7.2.3 The Running Model for Multi-Agent Production Control Systems 268

7.3 Agents in Multi-Agent Production Control Systems 271

7.3.1 Collaborative Task Management Agent 271
7.3.2 Machine Management Agent 273
7.3.3 Material Management Agent 274
7.3.4 Production Monitoring Agent 275
7.3.5 Warning Management Agent 276
7.3.6 Performance Analysis Agent 277
7.3.7 Quality Management Agent 278
7.3.8 Production Process Tracking and Tracing Agent 280

7.4 Technologies and Methods for Multi-Agent Production Control Systems 283

7.4.1 XML-Based Production Monitoring 283
7.4.2 Differential Manchester Encoding Rule-Based Warning Management 284
7.4.3 Material Identification Technology for Production Process Tracking and Tracing 287

7.5 Conclusion 294

References 295

8 Multi-Agent-Based Material Data Acquisition 297

8.1 Introduction 297
8.2 RFID Technology 297
8.2.1 Development of RFID Technologies 297
8.2.2 RFID Technology Standard 301
8.3 Agent-Based Material Data Acquisition System 306
8.3.1 Requirement Analysis of Material Data Acquisition 306
8.3.2 Multi-Agent RFID-Based Material Data Acquisition Structure 307
8.3.3 The Running Model of a Multi-Agent Material Data Acquisition System 309

8.4 Agents in Multi-Agent RFID-Based Material Data Acquisition Systems 312
8.4.1 RFID Middleware Agent 312
8.4.2 RFID Reader Agent 322
8.4.3 RFID Tag Agent 322
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Multi-Agent RFID-Based Material Data Acquisition Systems</td>
<td>326</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Hardware and Configuration</td>
<td>326</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Material Data Process and Publish</td>
<td>327</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>329</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>332</td>
</tr>
</tbody>
</table>

9	Multi-Agent-Based Equipment Data Acquisition	333
9.1	Introduction	333
9.2	Basics of OPC Technology	334
9.2.1	Development of OPC Technology	334
9.2.2	OPC Technology Overview	335
9.3	Agent-Based Equipment Data Acquisition System	340
9.3.1	Requirement Analysis of Equipment Data Acquisition	340
9.3.2	The MAS Structure of the OPC-Based Equipment Data Acquisition System	341
9.3.3	The Running Model of the Equipment Data Acquisition MAS	345
9.4	Agents in the Multi-Agent OPC-Based Equipment Data Acquisition System	347
9.4.1	OPC Agent	347
9.4.2	OPC Server Agent	349
9.4.3	OPC Client Agent	352
9.5	Implementation of a Multi-Agent OPC-Based System	355
9.5.1	System Hardware and System Network	355
9.5.2	Data Integration Based on OPC Technology	356
9.6	Conclusion	361
References		361

10	The Prototype of a Multi-Agent-Based Production Planning and Control System	363
10.1	Introduction	363
10.2	Architecture of a Prototype System	363
10.2.1	The Software Architecture	363
10.2.2	The Hardware Architecture	366
10.3	Agent Packages and Communication in a Prototype System	366
10.3.1 The Agent Package Method 368
10.3.2 The Communication Implementation Model of Agents 370
10.3.3 The Message Classification of Agents 372
10.3.4 Realization of the Communication Mechanism of Agents 374
10.4 The Manufacturing System Simulation in a Prototype System 375
10.4.1 The Manufacturing System Simulation 376
10.4.2 The Information Interaction Logic Architecture between the Prototype System and the Simulation Model 381
10.5 Software Implementation and Application of a Prototype System 383
10.5.1 Function Design of a Prototype System 383
10.5.2 The Running Process of a Prototype System 386
10.5.3 Production Planning in Distributed Manufacturing Systems 388
10.5.4 Production Scheduling in Job Shop Manufacturing Systems 390
10.5.5 Production Scheduling in Re-Entrant Manufacturing Systems 392
10.5.6 Production Control in the Manufacturing Process 395
10.6 Conclusion 399
References 399

Index 401