CONTENTS

LIST OF CONTRIBUTORS xvii

PREFACE xxi

PART 1 1,2-MIGRATIONS 1

1 Pinacol and Semipinacol Rearrangements in Total Synthesis 3

1.1 Introduction, 3
1.2 Pinacol Reaction, 4
 1.2.1 Background and Introduction, 4
 1.2.2 Stereochemistry of the Pinacol Rearrangement, 6
 1.2.3 Preparation of Substrates for the Pinacol Rearrangement, 7
 1.2.4 Applications of the Pinacol Reaction in Complex Molecule Synthesis, 7
1.3 Semipinacol Rearrangement, 15
 1.3.1 Background and Introduction, 15
 1.3.2 Mechanism of the Semipinacol Rearrangement, 17
 1.3.3 Selected Variants of Semipinacol Rearrangements, 17
 1.3.4 Key Features of the Semipinacol Rearrangement, 18
 1.3.5 Examples of Semipinacol Rearrangements in Total Synthesis, 19
1.4 Conclusion, 30

References, 32
2 Baeyer–Villiger (BV) Oxidation/Rearrangement in Organic Synthesis 35

2.1 Introduction, 35
2.2 Mechanism, 35
2.3 Synthetic Applications, 37
 2.3.1 Oxidation of Linear Ketones to Esters, 37
 2.3.2 Oxidation of Aldehydes to Esters, 42
 2.3.3 Oxidation of Cyclic Ketones to Lactones, 42
 2.3.4 Asymmetric BV Oxidation/Rearrangement, 48
 2.3.5 Oxidation of \(\alpha \)-Diketones to Anhydrides, 53
2.4 Summary and Outlook, 55
References, 55

3 The Wolff Rearrangement: Tactics, Strategies and Recent Applications in Organic Synthesis 59

3.1 Introduction, 59
3.2 Tactics and Strategies via the Wolff Rearrangement, 60
 3.2.1 Methylene Carboxylic Acid Derivatives (Arndt–Eistert Reaction), 60
 3.2.2 One-Carbon Ring Contraction of Cyclic \(\alpha \)-Diazoketones, 61
 3.2.3 Reactions of Ketenes and \(\alpha \)-Oxo-Ketenes, 61
3.3 Mechanistic Features and Selectivity Issues of the Wolff Rearrangement, 63
3.4 Preparation of \(\alpha \)-Diazocarbonyl Compounds, 64
 3.4.1 Acylation of Diazoalkanes, 65
 3.4.2 Diazotransfer Reactions, 65
 3.4.3 Alkyne Cycloaddition, 66
3.5 Recent Synthetic Applications of the Wolff Rearrangement, 67
 3.5.1 Wolff Rearrangements Leading to Ketene Intermediates, 67
 3.5.2 Wolff Rearrangements Leading to \(\alpha \)-Oxo-Ketene Intermediates, 73
3.6 Conclusion and Outlook, 80
References, 81

4 Alkyl and Acyl Azide Rearrangements 85

4.1 Introduction, 85
4.2 Alkyl Azide Rearrangements, 86
4.3 Acyl Azide Rearrangements, 98
4.4 Hofmann Rearrangement, 102
4.5 Lossen Rearrangement, 104
4.6 Conclusion, 107
References, 108
5 Beckmann Rearrangements and Fragmentations in Organic Synthesis

5.1 Introduction, 111
 5.1.1 Beckmann Rearrangement, 112
 5.1.2 Beckmann Fragmentation, 115
 5.1.3 Photo-Beckmann Rearrangement, 117

5.2 Strategic Planning: A Historical Perspective, 118

5.3 Recent Applications Toward the Synthesis of Natural Products, 121
 5.3.1 Toward the Total Synthesis of Pinnaic Acid and Halichlorine, 121
 5.3.2 Access to the Core of Mersicarpine, 123
 5.3.3 Formal Synthesis of Gephyrotoxin 287C, 124
 5.3.4 First Asymmetric Total Synthesis of (+)-Sparteine, 126
 5.3.5 Synthesis of the Chloropentane Core of Palau’amine, 128
 5.3.6 The Total Synthesis of (−)-Elegansidiol, 128

5.4 Access to Diverse Scaffolds via the Beckmann Reaction, 129
 5.4.1 Diterpene Hydrocarbons, 129
 5.4.2 Monoterpene-Related Synthesis, 133
 5.4.3 Furopyran Synthesis, 133
 5.4.4 Synthesis of a Pyrazine Imide, 134

5.5 Formation of Heterocyclic Scaffolds, 136
 5.5.1 Oxadiazoles, 136
 5.5.2 Synthesis of Benzisoxazoles and Benzoxazoles, 138
 5.5.3 Isatins, 138
 5.5.4 N-Imidoylbenzotriazoles, 139

5.6 Synthesis of Functional Groups, 140
 5.6.1 Amidines, 140
 5.6.2 Thioamides, 141
 5.6.3 Synthesis of DNA-Photocleaving Agents, 142

5.7 Summary and Outlook, 144

References, 145

6 Brook Rearrangement

6.1 Introduction, 151

6.2 Mechanism, 152

6.3 Methods for Generation of α-Silyl Alkoxides, 153

6.4 Synthetic Reactions Using Brook Rearrangements in the Reactions of Acylsilanes with Nucleophiles, 154
 6.4.1 Preparation of Acylsilanes, 154
 6.4.2 Reaction of Acylsilanes with Nucleophiles, Either of Which Contains an α-Leaving Group, 155
6.4.3 Reaction of Acylsilanes with Nucleophiles, in Which Generated Carbanions Can Be Stabilized by Conjugating Groups, 157
6.4.4 Use of Ketone Enolates as Nucleophiles Containing an Electron-Accepting Moiety, 163
6.5 Synthetic Reactions Using Brook Rearrangements Triggered by Deprotonation of α-Silyl Alcohols, 166
6.6 Synthetic Reactions Using Brook Rearrangements Triggered by Addition of Silylmetallic Reagents, 169
6.7 Synthetic Reactions Using Brook Rearrangements in α-Silyl Alkoxides Generated via Regioselective β-Ring-Opening of α,β-Epoxysilanes by a Nucleophile, 172
6.8 Synthetic Reactions Using Brook Rearrangements in α-Silyl Alkoxides Generated by a Base-Induced Ring-Opening of α,β-Epoxysilanes, 173
6.9 Conclusion, 176
References, 178

PART II 1,2-MIGRATIONS VIA THREE-MEMBERED RINGS 183

7 The Quasi-Favorskii Rearrangement 185
 7.1 Introduction, 185
 7.1.1 The Favorskii Rearrangement, 185
 7.1.2 The Quasi-Favorskii Rearrangement, 189
 7.2 Retrons of the Quasi-Favorskii Rearrangement, 191
 7.3 Mechanistic Considerations in the Quasi-Favorskii Rearrangement, 192
 7.4 The Preparation of Substrates for the Quasi-Favorskii Rearrangement, 193
 7.5 Applications of the Quasi-Favorskii Rearrangement in Synthesis, 199
 7.5.1 Methodology, 199
 7.5.2 Natural Products, 205
 7.5.3 Unnatural Products, 215
 7.6 Conclusions and Prospects, 220
References, 222

8 The Ramberg–Bäcklund Reaction 227
 8.1 Introduction, 227
 8.2 Methods to Synthesize Sulfones as RBR Precursors, 229
 8.3 Variations of the RBR, 231
 8.4 Mechanistic Evaluation of the RBR, 233
8.5 Strategic Considerations Relevant to the Use of the RBR in Synthesis, 234
8.6 Utility, Scope, and Limitations of the RBR, 236
 8.6.1 (Sterically Crowded) Acyclic Alkenes, 236
 8.6.2 Acyclic Trisubstituted Alkenes, 239
 8.6.3 Polyunsaturation, 240
 8.6.4 Strained Cyclic Alkenes, 242
8.7 Recent Applications of the RBR in the Synthesis of Complex Target Structures, 246
 8.7.1 Fawcettidine, 246
 8.7.2 Cylindrocyclophanes A and F, 247
 8.7.3 Hirsutellones A–C, 249
 8.7.4 Aigialomycin D, 251
8.8 Concluding Remarks, 254
Acknowledgments, 256
References, 256

9 Applications of Di-π-Methane and Related Rearrangement Reactions in Chemical Synthesis 261
 9.1 Introduction: The Basic Process and its Variants, 261
 9.2 Mechanistic Features and Competing Reactions, 265
 9.3 Structural Requirements of Substrates and Matters of Regio- and Stereochemistry, 271
 9.3.1 Basic Structural Requirements, 271
 9.3.2 Matters of Regioselectivity, 273
 9.3.3 Matters of Stereoselectivity, 275
 9.4 Synthetic Routes to Substrates and Applications in Synthesis, 277
 9.5 Outlook, 284
References, 285

PART III 1,3-TRANSPOSITIONS 289

10 Payne Rearrangement 291
 10.1 Background on the Payne Rearrangement, 291
 10.1.1 Payne Rearrangement, 291
 10.1.2 Aza-Payne Rearrangement, 293
 10.1.3 Thia-Payne Rearrangement, 295
 10.2 Synthetic Applications of 2,3-Epoxy Alcohols, 295
 10.2.1 Construction of Requisite Starting Materials for Payne Rearrangement, 295
 10.2.2 Product Structures Accessible by Way of Payne Rearrangement, 297
10.3 Utilization of the Payne Rearrangement for the Preparation of Fluorine-Containing Compounds, 307
 10.3.1 Payne Rearrangement for Trifluorinated Compounds, 308
 10.3.2 Ring Opening of CF₃-Containing Epoxy Alcohols by Nitrogen Nucleophiles, 312

10.4 Conclusion, 317
References, 318

11 Vinylcyclopropane–Cyclopentene Rearrangement 323
 11.1 Introduction, 323
 11.2 Thermal VCP–CP Rearrangement, 324
 11.3 Acid-Mediated VCP–CP Rearrangement, 328
 11.4 Mechanisms, 330
 11.4.1 Mechanism of the Thermal Vinylcyclopentene Rearrangement, 330
 11.4.2 Mechanism of the Acid-Mediated VCP–CP Rearrangement, 333
 11.5 Heteroatom-Containing Analogues of the VCP–CP Rearrangement, 334
 11.5.1 Mechanism, 335
 11.6 Applications in Synthesis, 336
 11.7 Photochemical VCP–CP Rearrangement, 340
 11.7.1 Mechanism, 343
 11.7.2 Applications in Synthesis, 344
 11.8 Metal-Catalyzed VCP–CP Rearrangement, 346
 11.8.1 Rh-Catalyzed VCP–Cyclopentene Rearrangement, 347
 11.8.2 Mechanism, 347
 11.8.3 Pd-Catalyzed VCP–Cyclopentene Rearrangement, 348
 11.8.4 Mechanism, 350
 11.8.5 Ni-Catalyzed VCP–Cyclopentene Rearrangement, 351
 11.8.6 Mechanism, 353
 11.9 Heteroatom Variants of the Metal-Catalyzed VCP–CP Rearrangement, 354
 11.9.1 Mechanism, 356
 11.9.2 Applications in Synthesis, 357
 11.10 Summary and Outlook, 359
 References, 360

12 Ferrier Carbocyclization Reaction 363
 12.1 Introduction, 363
 12.2 General Discussion and Mechanistic Features, 365
 12.2.1 Reaction Conditions for the Ferrier Carbocyclization Reaction, 366
12.2.2 Mechanism and Stereoselectivity of the Ferrier Carbocyclization Reaction, 370

12.3 Synthetic Strategies Based on the Ferrier Carbocyclization Reaction, 373
 12.3.1 Inositol and Aminocyclitol Synthesis, 373
 12.3.2 Combination of Ferrier Carbocyclization and Three-Component Coupling Reaction, 374
 12.3.3 Combination of Ferrier Carbocyclization and Sigmatropic Rearrangement, 375
 12.3.4 Enol-Acetate Version of the Ferrier Carbocyclization Reaction, 377

12.4 Methodologies for Assembling the Ferrier Carbocyclization Reaction Substrates, 377

12.5 Applications of the Ferrier Carbocyclization Reaction in Natural Product Synthesis, 380
 12.5.1 Preparation of an Aminocyclitol: Synthesis of Hygromycin A, 380
 12.5.2 Construction of a Polycyclic Alkaloid: Synthesis of Lycoricidine, 381
 12.5.3 Three-Component Coupling Reaction: Synthesis of (−)- and (+)-Actinoboline, 383
 12.5.4 Sigmatropic Rearrangement with Chirality Transfer (1): Synthesis of Galanthamine, 387
 12.5.5 Sigmatropic Rearrangement with Chirality Transfer (2): Synthesis of Rapamycin, 388
 12.5.6 Cascade Sigmatropic Rearrangement: Synthesis of Morphine, 390
 12.5.7 Rearrangement of Enol Acetates (1): Synthesis of an Inositol Tetrakis(phosphate), 394
 12.5.8 Rearrangement of Enol Acetates (2): Synthesis of Tetrodotoxin, 395

12.6 Conclusion, 397

References, 398

PART IV [3,3]- AND [2,3]-SIGMATROPIC REARRANGEMENTS 401

13 The Claisen Rearrangement 403

13.1 Introduction, 403
 13.1.1 Fundamentals of the Claisen Rearrangement Reaction, 403
 13.1.2 Functional Group Versatility: Claisen Rearrangement Reaction Variants, 405
 13.1.3 Stereochemistry, 405
CONTENTS

13 Strategic Planning for the Claisen Rearrangement Reaction, 407
 13.2.1 Identification of Structural Elements, 408
13.3 Mechanistic Features of the Claisen Rearrangement Reaction, 409
 13.3.1 Diastereoselectivity: Acyclic Substrates, 409
 13.3.2 Diastereoselectivity: Cyclic Substrates, 412
 13.3.3 Reactivity: Effect of Substrate Substitution, 414
 13.3.4 Reactivity: Choice of Claisen Variant, 417
13.4 Methodologies for Synthesis of Claisen Rearrangement Substrates, 417
 13.4.1 Substrates Possessing Vinylic Ethers, 417
 13.4.2 Substrates Possessing Ketene Acetals and Ketene Aminals, 420
13.5 Applications of the Claisen Rearrangement Reaction in Target-Oriented Synthesis, 421
 13.5.1 Cananodine, 421
 13.5.2 Basiliolides, 422
 13.5.3 Ene–Diynes in Bergman Cyclization Reactions, 424
 13.5.4 Azadirachtin, 424
13.6 Conclusions, 426
References, 427

14 [3,3]-Sigmatropic Rearrangements with Heteroatom–Heteroatom Bonds 431

14.1 Introduction, 431
14.2 [3,3]-Sigmatropic Rearrangements of N–O Bonds, 434
 14.2.1 Synthesis of Benzofurans from O-Aryloxime Ethers, 434
 14.2.2 Rearrangements of O-Vinyl Oximes to Pyrroles, 436
 14.2.3 Rearrangements of O-Vinyl-N-Arylhydroxylamines to Indoles, 2-Amino-2′-Hydroxy-1,1′Biaryls, and α-Arylated Carbonyl Compounds, 437
 14.2.4 α-Oxygenation Using [3,3]-Rearrangements of O-Protected Oximes and O-Vinyl Hydroxamates, 441
14.3 [3,3]-Sigmatropic Rearrangements of N–N Bonds, 445
 14.3.1 Piloty–Robinson Pyrrole Synthesis, 445
 14.3.2 The Use of Hydrazones for Enolate Coupling, 448
 14.3.3 Benzidine Rearrangement, 449
14.4 [3,3]-Rearrangements of N–N Bond Fragments that Eliminate N₂, 451
 14.4.1 Oxidant-Promoted N-Allyllic Hydrazone Rearrangements, 452
 14.4.2 Acid-Promoted N-Allyllic Hydrazone Rearrangements, 452
14.5 Summary, 454
References, 455
15 [2,3]-Rearrangements of Ammonium Zwitterions 459
15.1 Introduction, 459
15.2 [2,3]-Meisenheimer Rearrangement of Amine N-Oxides, 460
 15.2.1 General Discussion of [2,3]-Meisenheimer Rearrangement, 460
 15.2.2 Synthesis Strategies Based on [2,3]-Meisenheimer Rearrangement, 461
 15.2.3 Methodologies for Assembling Amine N-Oxide Substrates, 461
 15.2.4 Applications of [2,3]-Meisenheimer Rearrangements in Synthesis, 462
 15.2.5 Mechanistic Features Crucial for Synthetic Utility: Stereoselectivity, 467
15.3 [2,3]-Stevens Rearrangement of Ammonium Ylides, 479
 15.3.1 General Discussion of [2,3]-Stevens Rearrangement, 479
 15.3.2 Synthesis Strategies Based on [2,3]-Stevens Rearrangement, 479
 15.3.3 Methodologies for Assembling the Ammonium Ylide Substrates, 480
 15.3.4 Applications of [2,3]-Stevens Rearrangements in Synthesis, 483
 15.3.5 Mechanistic Features Crucial for Synthetic Utility: Stereoselectivity, 485
15.4 Conclusion and Outlook, 492
References, 493

16 Oxonium Ylide Rearrangements in Synthesis 497
16.1 Introduction, 497
 16.1.1 Oxonium Ylides: Generation and Rearrangement Reactions, 497
 16.1.2 Strategic Planning, 499
 16.1.3 Selectivity Aspects, 499
 16.1.4 Substrate Preparation, 506
16.2 Applications in Synthesis: Oxonium Ylide [2,3]-Sigmatropic Rearrangements, 507
 16.2.1 Tetrahydrofuran-Containing Targets, 507
 16.2.2 Benzofuranone-Containing Targets, 514
 16.2.3 Tetrahydropyran-Containing Targets, 516
 16.2.4 Reaction via Bicyclic Oxonium Ylides, 521
16.3 Applications in Synthesis: Oxonium Ylide [1,2]-Stevens Rearrangements, 528
 16.3.1 Dactylol, 532
 16.3.2 Tigiane/Daphnane Skeleton, 534
16.3.3 Zaragozic Acid Core, 534
16.4 Concluding Remarks, 535
References, 536

17 The [2,3]-Wittig Rearrangement

17.1 Introduction, 539
17.2 [2,3]-Wittig Rearrangement of Allyl Propargyl Ethers, 541
17.3 Factors Determining [2,3]-Wittig Versus [1,2]-Wittig Rearrangement, 544
17.4 Acyclic [2,3]-Wittig Rearrangement of Propargyl-Allyl Ethers, 547
17.5 [2,3]-Wittig–Still Rearrangement, 552
17.6 Asymmetric [2,3]-Wittig Rearrangement, 554
17.7 Aza-[2,3]-Wittig Rearrangement, 555
17.8 Other Wittig Rearrangements and Miscellaneous, 560
17.9 Conclusion, 565
References, 565

18 The Mislow–Evans Rearrangement

18.1 Introduction, 569

Part 1 Mechanistic Aspects and the [2,3] Nature of the Rearrangement, 571
18.2 Configurational Lability of Allylic Sulfoxides, 571
18.2.1 Racemization of S-Chiral Sulfoxides, 571
18.2.2 Opportunities for Dynamic Kinetic Resolution, 572
18.3 Deuterium Labeling to Track [2,3] Pathway, 573
18.4 Transition State Features, 573
18.4.1 Transition State Structure, 573
18.4.2 Antibody Catalysis, 575
18.5 Equilibrium Between Sulfoxide and Sulfenate, 576
18.5.1 Position of Equilibrium, 576
18.5.2 Conversion of Allylic Alcohols to Allylic Sulfoxides, 578
18.5.3 Thiophilic Capture of the Sulfenate Ester, 578
18.6 Chirality Transfer, 579
18.6.1 Carbon to Sulfur, 579
18.6.2 Sulfur to Carbon, 579

Part 2 Synthetic Considerations and Applications, 580
18.7 Alkene Stereoselectivity, 580
18.8 Diastereoface Selectivity in the Rearrangement, 583
18.8.1 Diastereoselective Applications, 583
18.8.2 Chemoselective Oxidation of Allylic Sulfides to Sulfoxides, 585
18.8.3 Influence of Sulfoxide Stereochemistry at Sulfur, 586
18.8.4 Additional Diastereoselective Examples, 590

18.9 Epimerizations via Mislow–Evans Rearrangement Sequences, 591
18.10 Vinyl Anion Synthons Accessible via Mislow–Evans Rearrangement, 593
18.10.1 Vinyl Anion Equivalents, 593
18.10.2 Dienal Vinyl Anion Synthon in a Double Mislow–Evans Process, 595

18.11 Sequential Processes Incorporating the Mislow–Evans Rearrangement, 598
18.11.1 Diels–Alder/Mislow–Evans, 598
18.11.2 Attempted 1,3-Dipolar Cycloaddition/Mislow–Evans, 601
18.11.3 Double Overman Rearrangement/Mislow–Evans, 602
18.11.4 Claisen Rearrangement/Mislow–Evans, 603
18.11.5 Aldol/Ireland–Claisen/Mislow–Evans, 606
18.11.6 Knoevenagel Condensation/Vinyl Sulfoxide Isomerization/Mislow–Evans, 607
18.11.7 Sulfenate-to-Sulfoxide Conversion and Olefination, 612
18.11.8 Generation of Sulfenate Anions for Pd-Mediated Cross-Coupling, 613

18.12 Heteroatom [2,3]-Rearrangement Variants, 614
18.12.1 Allylic Selenoxide [2,3]-Rearrangements, 614
18.12.2 Allylic Sulfimide Rearrangements, 616
18.12.3 Rearrangement of Allylic Nitro Compounds, 618
18.12.4 Allylic Halogen Oxide [2,3]-Rearrangements, 619

18.13 [2,3]-Rearrangements of Propargyl and Allenyl Sulfenates and Sulfoxides, 620

18.14 Conclusion, 622

References, 622

PART V IPSO REARRANGEMENTS

19 Smiles Rearrangements

19.1 Introduction, 629

19.2 Scope and Mechanistic Features, 632
19.2.1 Nature and Substitution of the Aryl Ring, 632
19.2.2 Properties of the Nucleophile and Leaving Group, 633
19.2.3 Chain Length of the Tether, 634

19.3 Application of Smiles Rearrangements, 635
19.3.1 Synthesis of Fused Heterocycles through Cascades Involving Smiles Rearrangements, 635
19.3.2 Julia–Kocienski and Related Reactions, 639
19.3.3 Ugi–Smiles Couplings, 646
19.3.4 Miscellaneous Use of the Smiles Rearrangement in
 Synthesis, 656
19.4 Conclusion, 657
 References, 658

20 Pummerer-Type Reactions as Powerful Tools in Organic Synthesis 661
20.1 Introduction, 661
20.2 Classical Pummerer Reaction, 662
 20.2.1 Mechanistic Considerations, 662
 20.2.2 Substrates, 663
 20.2.3 Applications of Classical Pummerer Rearrangement, 665
20.3 Vinylogous Pummerer Reaction, 674
20.4 Interrupted and Additive Pummerer Reactions, 680
20.5 Connective Pummerer Reaction, 687
20.6 Pummerer Rearrangement in Multiple-Reaction Processes, 693
20.7 Other Pummerer Rearrangements, 696
20.8 Summary and Outlook, 700
 References, 700

INDEX 703