## Contents

*List of Contributors* xiii
*Preface* xv

### Part I Overview

1 **Introduction**
   *Adrián Bonilla-Petriciolet and Gade Pandu Rangaiah*
   1.1 Optimization and Chemical Engineering 3
   1.2 Basic Definitions and Concepts of Multi-Objective Optimization 5
   1.3 Multi-Objective Optimization in Chemical Engineering 8
   1.4 Scope and Organization of the Book 9
   References 15

2 **Optimization of Pooling Problems for Two Objectives Using the \( \epsilon \)-Constraint Method**
   *Haibo Zhang and Gade Pandu Rangaiah*
   2.1 Introduction 17
   2.2 Pooling Problem Description and Formulations
      2.2.1 \( p \)-Formulation 19
      2.2.2 \( r \)-Formulation 21
   2.3 \( \epsilon \)-Constraint Method and IDE Algorithm 25
   2.4 Application to Pooling Problems 27
   2.5 Results and Discussion 28
   2.6 Conclusions 32
   Exercises 33
   References 33

3 **Multi-Objective Optimization Applications in Chemical Engineering**
   *Shivom Sharma and Gade Pandu Rangaiah*
   3.1 Introduction 35
   3.2 MOO Applications in Process Design and Operation 37
   3.3 MOO Applications in Petroleum Refining, Petrochemicals and Polymerization 57
Contents

3.4 MOO Applications in the Food Industry, Biotechnology and Pharmaceuticals 57
3.5 MOO Applications in Power Generation and Carbon Dioxide Emissions 66
3.6 MOO Applications in Renewable Energy 66
3.7 MOO Applications in Hydrogen Production and Fuel Cells 82
3.8 Conclusions 82

Acronyms 87
References 87

Part II Multi-Objective Optimization Developments

4 Performance Comparison of Jumping Gene Adaptations of the Elitist Non-dominated Sorting Genetic Algorithm 105
Shivom Sharma, Seyed Reza Nabavi and Gade Pandu Rangaiah

4.1 Introduction 105
4.2 Jumping Gene Adaptations 107
4.3 Termination Criterion 110
4.4 Constraint Handling and Implementation of Programs 112
4.5 Performance Comparison 114
4.5.1 Performance Comparison on Unconstrained Test Functions 114
4.5.2 Performance Comparison on Constrained Test Functions 121
4.6 Conclusions 124
Exercises 124
References 125

5 Improved Constraint Handling Technique for Multi-Objective Optimization with Application to Two Fermentation Processes 129
Shivom Sharma and Gade Pandu Rangaiah

5.1 Introduction 129
5.2 Constraint Handling Approaches in Chemical Engineering 131
5.3 Adaptive Constraint Relaxation and Feasibility Approach for SOO 132
5.4 Adaptive Relaxation of Constraints and Feasibility Approach for MOO 133
5.5 Testing of MODE-ACRFA 136
5.6 Multi-Objective Optimization of the Fermentation Process 139
5.6.1 Three-Stage Fermentation Process Integrated with Cell Recycling 139
5.6.2 Three-Stage Fermentation Process Integrated with Cell Recycling and Extraction 145
5.6.3 General Discussion 152
5.7 Conclusions 153
Acronyms 153
References 154
6 Robust Multi-Objective Genetic Algorithm (RMOGA) with Online Approximation under Interval Uncertainty 157
Weiwei Hu, Adeel Butt, Ali Almansoori, Shapour Azarm and Ali Elkamel

6.1 Introduction 157
6.2 Background and Definition 159
6.2.1 Multi-Objective Genetic Algorithm (MOGA) 160
6.2.2 Multi-Objective Robustness with Interval Uncertainty: Basic Idea 161
6.3 Robust Multi-Objective Genetic Algorithm (RMOGA) 163
6.3.1 Nested RMOGA 163
6.3.2 Sequential RMOGA 165
6.3.3 Comparison between Nested and Sequential RMOGA 167
6.4 Online Approximation-Assisted RMOGA 168
6.4.1 Steps in Approximation-Assisted RMOGA 168
6.4.2 Sampling 169
6.4.3 Metamodeling and Verification 170
6.4.4 Sample Selection and Filtering 171
6.5 Case Studies 172
6.5.1 Numerical Example 172
6.5.2 Oil Refinery Case Study 175
6.6 Conclusions 178
References 179

7 Chance Constrained Programming to Handle Uncertainty in Nonlinear Process Models 183
Kishalay Mitra

7.1 Introduction 183
7.2 Uncertainty Handling Techniques 184
7.3 Chance-Constrained Programming: Fundamentals 186
7.3.1 Calculation of \( P(h_k(x, \xi) \geq 0) \geq p \) \( (k = 1, \ldots, u) \) 192
7.3.2 Calculation of \( \max \{ \bar{f} \mid P \{ f(x, \xi) \geq \bar{f} \} \geq \alpha \} \) 193
7.4 Industrial Case Study: Grinding 193
7.4.1 Grinding Process and Modeling 193
7.4.2 Optimization Formulation 195
7.4.3 Results and Discussion 199
7.5 Conclusions 206
Nomenclature 209
Appendices 210
A.1 CCP for Normally Distributed Uncertain Parameters 210
A.2 Calculation of Mean and Variance for General Function 212
References 212
viii  Contents

8  Fuzzy Multi-Objective Optimization for Metabolic Reaction Networks by Mixed-Integer Hybrid Differential Evolution 217
Feng-Sheng Wang and Wu-Hsiung Wu

8.1  Introduction 217
8.2  Problem Formulation 219
  8.2.1  Primal Multi-Objective Optimization Problem 219
  8.2.2  Resilience Problem 221
8.3  Optimality 223
8.4  Mixed-Integer Hybrid Differential Evolution 228
  8.4.1  Algorithm 228
  8.4.2  Constraint Handling 231
8.5  Examples 233
8.6  Conclusions 240
Exercises 241
References 242

Part III  Chemical Engineering Applications 247

9  Parameter Estimation in Phase Equilibria Calculations Using Multi-Objective Evolutionary Algorithms 249
Sameer Punnapala, Francisco M. Vargas and Ali Elkamel

9.1  Introduction 249
9.2  Particle Swarm Optimization (PSO) 250
  9.2.1  Multi-Objective Particle Swarm Optimization (MO-PSO) 251
9.3  Parameter Estimation in Phase Equilibria Calculations 253
9.4  Model Description 253
  9.4.1  Vapor Liquid Equilibrium 254
  9.4.2  Heat of Mixing 255
9.5  Multi-Objective Optimization Results and Discussion 257
9.6  Conclusions 260
Nomenclature 260
Exercises 261
References 264

10  Phase Equilibrium Data Reconciliation Using Multi-Objective Differential Evolution with Tabu List 267
Adrián Bonilla-Petriciolet, Shivom Sharma and Gade Pandu Rangaiah

10.1  Introduction 267
10.2  Formulation of the Data Reconciliation Problem for Phase Equilibrium Modeling 270
  10.2.1  Data Reconciliation Problem 270
  10.2.2  Data Reconciliation for Phase Equilibrium Modeling 271
10.3  Multi-Objective Optimization using Differential Evolution with Tabu List 274
Contents ix

10.4 Data Reconciliation of Vapor-Liquid Equilibrium by MOO 277
  10.4.1 Description of the Case Study 277
  10.4.2 Data Reconciliation Results 278
10.5 Conclusions 287
Exercises 290
References 290

11 CO₂ Emissions Targeting for Petroleum Refinery Optimization 293
Mohammad A. Al-Mayyahi, Andrew F. A. Hoadley and Gade Pandu Rangaiah

11.1 Introduction 293
  11.1.1 Overview of the CDU 295
  11.1.2 Overview of the FCC 296
  11.1.3 Pinch Analysis 297
  11.1.4 Multi–Objective Optimization (MOO) 301
11.2 MOO-Pinch Analysis Framework to Target CO₂ Emissions 303
11.3 Case Studies 304
  11.3.1 Case Study 1: Direct Heat Integration 305
  11.3.2 Case Study 2: Total Site Heat Integration 310
11.4 Conclusions 315
Nomenclature 315
Exercises 317
Appendices 318
  A.1 Modeling of CDU and FCC 318
  A.2 Preliminary Results with Different Values for NSGA-II Parameters 320
  A.3 Pinch Analysis Techniques 320
  A.3.1 Composite Curves (CC) 322
  A.3.2 Grand Composite Curve (GCC) 326
  A.3.3 Total Site Profiles 326
References 331

12 Ecodesign of Chemical Processes with Multi-Objective Genetic Algorithms 335
Catherine Azzaro-Pantel, Adama Ouattara and Luc Pibouleau

12.1 Introduction 335
12.2 Numerical Tools 337
  12.2.1 Evolutionary Approach: Multi-Objective Genetic Algorithms 337
  12.2.2 Choice of the Best Solutions 337
12.3 Williams–Otto Process (WOP) Optimization for Multiple Economic and Environmental Objectives 338
  12.3.1 Process Modelling 338
  12.3.2 Optimization Variables 339
  12.3.3 Objectives for Optimization 340
  12.3.4 Problem Constraints 341
x  Contents

12.3.5 Implementation 341
12.3.6 Procedure Validation 341
12.3.7 Tri-Objective Optimization 343
12.3.8 Discussion 346

12.4 Revisiting the HDA Process 346
12.4.1 HDA Process Description and Modelling Principles 346
12.4.2 Optimization Variables 349
12.4.3 Objective Functions 350
12.4.4 Multi-Objective Optimization 354

12.5 Conclusions 361
Acronyms 363
References 364

13 Modeling and Multi-Objective Optimization of a Chromatographic System 369
Abhijit Tarafder

13.1 Introduction 369
13.2 Chromatography—Some Facts 371
13.3 Modeling Chromatographic Systems 373
13.4 Solving the Model Equations 376
13.5 Steps for Model Characterization 377
13.5.1 Isotherms and the Parameters 378
13.5.2 Selection of Isotherms 379
13.5.3 Experimental Steps to Generate First Approximation 382
13.6 Description of the Optimization Routine—NSGA-II 387
13.7 Optimization of a Binary Separation in Chromatography 387
13.7.1 Selection of the Objective Functions 387
13.7.2 Selection of the Decision Variables 388
13.7.3 Selection of the Constraints 389
13.8 An Example Study 390
13.8.1 Schemes of the Optimization Studies 390
13.8.2 Results and Discussion 393
13.9 Conclusions 396
References 397

14 Estimation of Crystal Size Distribution: Image Thresholding Based on Multi-Objective Optimization 399
Karthik Raja Periasamy and S. Lakshminarayanan

14.1 Introduction 399
14.2 Methodology 401
14.3 Image Simulation 402
14.3.1 Camera Model 402
14.3.2 Process Model 402
14.3.3 Assumptions 403
14.4 Image Preprocessing 404
14.5 Image Segmentation
  14.5.1 Image Thresholding Based on Single Objective Optimization 404
  14.5.2 Multi-Objective Optimization 406
  14.5.3 Problem Formulation 409
  14.5.4 Results and Discussion 410
14.6 Feature Extraction
  14.6.1 Results and Discussion 414
14.7 Future Work 417
14.8 Conclusions 418
Nomenclature 418
References 419

15 Multi-Objective Optimization of a Hybrid Steam Stripper-Membrane Process for Continuous Bioethanol Purification 423
Krishna Gudena, Gade Pandu Rangaiah and S. Lakshminarayanan

15.1 Introduction 423
15.2 Description and Design of a Hybrid Stripper-Membrane System 426
  15.2.1 Hybrid Stripper-Membrane System of Huang et al. 426
  15.2.2 Modified Design of the Hybrid Stripper-Membrane System 427
15.3 Mathematical Formulation and Optimization 431
  15.3.1 Problem Formulation 432
  15.3.2 Optimization Methodology for MOO Problems in Cases A and B 434
15.4 Results and Discussion 435
  15.4.1 Maximize Ethanol Purity ($f_{\text{purity}}$) and Minimize Operating Cost/kg of Bioethanol ($f_{\text{cost}}$) 435
  15.4.2 Minimize Ethanol Loss ($f_{\text{loss}}$) and also Operating Cost/kg of Bioethanol ($f_{\text{cost}}$) 439
  15.4.3 Detailed Analysis of a Selected Optimal Solution 440
15.5 Conclusions 445
Exercises 445
References 446

16 Process Design for Economic, Environmental and Safety Objectives with an Application to the Cumene Process 449
Shivom Sharma, Zi Chao Lim and Gade Pandu Rangaiah

16.1 Introduction 449
16.2 Review and Calculation of Safety Indices 451
  16.2.1 Integrated Inherent Safety Index (I2SI) 452
16.3 Cumene Process, its Simulation and Costing 455
16.4 I2SI Calculation for Cumene Process 459
  16.4.1 FEDR Calculation for Units Involving Physical Operations 459
  16.4.2 FEDR Calculation for Units Involving Chemical Reactions 460
  16.4.3 TDR Calculation 461
  16.4.4 Conversion of FEDR to FEDI, and TDR to TDI 462
Contents

16.5 Optimization using EMOO Program 462
16.6 Optimization for Two Objectives 464
   16.6.1 Tradeoff between DI and Material Loss 465
   16.6.2 Tradeoff between TCC and Material Loss 467
   16.6.3 Tradeoff between DI and TCC 467
16.7 Optimization for EES Objectives 469
16.8 Conclusions 471
Exercises 472
Appendices 472
A.1 Penalty Calculation for FEDR 472
A.2 Penalty Calculation for TDR 474
A.3 3-D Plots for Optimization of EES Objectives 475
References 476

17 New PI Controller Tuning Methods Using Multi-Objective Optimization 479
   Allan Vandervoort, Jules Thibault and Yash Gupta
   17.1 Introduction 479
   17.2 PI Controller Model 480
   17.3 Optimization Problem 481
   17.4 Pareto Domain 481
      17.4.1 Dominated and Non-dominated Solutions 482
      17.4.2 Few Methods for Approximating the Pareto Domain 483
      17.4.3 Application of Principal Component Analysis to the Grid Search Approach 484
   17.5 Optimization Results 488
   17.6 Controller Tuning 490
      17.6.1 Method 1 490
      17.6.2 Method 2 491
   17.7 Application of the Tuning Methods 491
      17.7.1 First-Order Plus Dead Time System 491
      17.7.2 Fourth-Order Plus Dead Time System 495
      17.7.3 Application to a Process with a First-Order Disturbance 497
   17.8 Conclusions 498
Nomenclature 499
Exercises 500
References 500

Index 503