SECTION I

Introduction: The Nature and Significance of Uncertainty in River Restoration
Uncertainty in River Restoration

John Lemons¹ and Reginald Victor²

¹Department of Environmental Studies, University of New England, USA
²Center for Environmental Studies and Research, Department of Biology, Sultan Qaboos University, Sultanate of Oman

1.1 INTRODUCTION

As we are well aware, rivers fundamentally shape the planet and human life. Both ancient and modern societies have developed and flourished in the proximity of rivers and this trend has continued till modern times. Nienhuis and Leuven (2001) summarize how humans have spatially and temporally altered rivers over a 6000-year period by various anthropogenic activities. For example, intensive use of European rivers started over 500 years ago leading to the loss of their ecological integrity (Smits et al., 2000). Some rivers were altered for navigation, flood control, agriculture and reclamation of land for urban development, while most were used as chutes for waste disposal including sewage, thermal effluents and both nontoxic and toxic chemicals; some rivers were also routinely dredged to facilitate the transport and storage of timber, while others were heavily fished (Ward and Stanford, 1979; De Wall et al., 1995; Eiseitova and Biggs, 1995).

Large river systems (stream order >8) all over the world have been extensively dammed for hydroelectric power, recreation, flood control and to divert water to support agriculture. Impacts of large dams include the loss of fisheries and the ecological collapse of the entire river regime (Balon and Coche, 1974; Rzoska, 1976; Obeng, 1981). Extensive series of levees built along large rivers have caused major losses of ecosystem structure and function. Along the Mississippi River, the largest river in North America, levees threaten federal plans to protect endangered species (EPA, 2004). The effects of impounding small rivers (stream order 4–8) are even more drastic. In some West African small rivers entire fish communities had changed due to impoundment and the ecological perturbations extended for considerable distances downstream (Victor and Tetteh, 1988; Victor and Meye, 1994; Victor and Onomivbori, 1996). Gopal (2003) describes how rivers in arid and semi-arid regions in Asia are being degraded due to overexploitation of natural resources, salinization, pollution and introduction of exotic species.

Just as rivers have undergone alteration, so too have there been efforts to restore them in order to provide benefits to the environment and/or human health, as this book attests (see also MacMahon and Holl, 2001). Obviously, scientific research contributes to river restoration by: providing reliable and needed explanatory or heuristic knowledge and understanding of restoration problems; helping to identify and define new research needs and directions through the acquisition of factual information; and informing policy and decision making (Caldwell, 1996).

A major premise of this book is that to be sustainable, river restoration projects need to effectively recreate a rivers’ functional characteristics taking into account the dynamic geomorphic characteristics. While many restoration projects have benefited environmental and/or human health, understudied sources of uncertainty limit confidence in predicting the outcomes of restoration activities and programs. Specific examples of uncertainty in river restoration discussed in this book include those inherent in: river management processes; the planning and design phases of restoration projects; hydraulic and hydrological aspects of restoration; water quantity issues; identifying appropriate ecological characteristics and predicting their...
responses in restoration designs; and the construction and post-construction phases of restoration projects. The sources of uncertainties include: lack of scientific and other information; limitations of analytical methods and tools; complexities of river systems; and needs to make value-laden judgments at all stages of river restoration problem identification, analysis and solution implementation.

Beginning in and since the early 1990s some philosophers, scientists and public policy experts concluded that the sources and implications of scientific and other uncertainty in environmental problem solving, including restoration, have been understudied and, as a consequence, not sufficiently taken into account by researchers, public policy makers and decision makers (Mayo and Hollander, 1991; Cranor, 1993; Shrader-Frechette and McCoy, 1993; Funtowicz and Ravetz, 1995; Lemons and Brown, 1995; Lemons, 1996; EEA, 2001; Kriebel et al., 2001; Tickner, 2002, 2003).

In agreeing with this conclusion, the objective in this chapter is therefore to first discuss various broad views about scientific uncertainty and indicate how and why these need to be taken into greater account by scientists, policy makers and decision makers. (Other chapters address uncertainty and analyze in more concrete detail how it interacts with the specific theories and practices of river restoration.). Discussion then focuses on what might constitute ‘good’ science when science is used to inform policy and decision making under conditions of scientific uncertainty. Value-laden sources and implications of uncertainty in river restoration are then discussed because they are both important but understudied. Discussion of the value-laden sources and implications of uncertainty is followed with: a brief discussion of some of the practical and policy implications of uncertainty in river restoration, and, finally, a brief case study of river restoration in order to communicate our views with a practical example. For reasons of brevity the case study communicates views about some, but not all, aspects of uncertainty in river restoration.

Parenthetically, here it is necessary to comment on definitions of ‘restoration’ when used in the context of river restoration. The field of restoration ecology suffers from a lack of conceptual clarity concerning its meaning, goals and objectives. Since about the mid-1980s, the field of river restoration has increasingly evolved in an attempt to better meet societies’ needs to more effectively repair damage to rivers (e.g., Cairns and Heckman, 1996; Karr and Chu, 1999; Cairns, 2001). The Society for Wetlands Scientists (SWS, 2000) defined restoration as ‘actions taken in a converted or degraded natural wetland that result in the re-establishment of ecological processes, function, and biotic/abiotic linkages and lead to a persistent, resilient system integrated within its landscape.’ In 2002, the Society for Ecological Restoration (SER, 2002) defined restoration as the ‘. . . process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed.’ Regardless of these definitions, the goals and objectives of river restoration are not clear.

Rolston (1988) believes that where possible ecosystems should be returned to their ‘natural’ or ‘original’ condition. Westra (1995) argues that restoration should focus on restoring ecosystems’ abilities to continue their ongoing change and development unconstrained by human interruptions past or present. The United States National Research Council (NRC, 1999) defined restoration as ‘the return of an ecosystem to a close approximation of its condition prior to disturbance.’ This definition was expanded by Cairns (2001), who asserted that the goal of restoration should be devoted to ‘returning damaged ecosystems to a condition that is structurally and functionally similar to the predisturbance state.’

Alternatively, others involved in the field of restoration ecology provide definitions for restoration that more explicitly focus on historical, social, cultural, political, aesthetic and moral aspects. For example, Sweeney (2000) argues that restoration should focus on the value-laden social and ethical perspectives regarding what constitutes a ‘restored’ ecosystem. Some others maintain that conservation and, by implication, restoration goals should take into account the views and practices of rural and indigenous people who depend on the ecosystems for their physical and cultural subsistence, and should also include scientific and nonscientific considerations (Gomez-Pompa and Kaus, 1992; Westra, 1995; Light and Higgs, 1996; Higgs, 1997; Chauhan, 2003). Regier (1995) proposes an abstract definition for restoration that is dependent on what people believe as fostering a state of ‘well-being.’

Obviously, lack of conceptual clarity about restoration introduces an element of uncertainty into restoration problem solving. In this chapter, while being mindful of the unresolved problems of conceptual clarity regarding ‘restoration’ other sources and implications of uncertainty and their relevance to river restoration are focused upon.

1.2 BROAD PHILOSOPHICAL VIEWS ABOUT SCIENTIFIC UNCERTAINTY

During the 19th century there was a high degree of confidence in the methods and tools of science and technology to increase understanding of the natural world and enable robust predictions of its future states. This confidence in science contributed to beliefs that ‘nature’ could be controlled and rendered useful to humankind (Latour, 1988).
Contributing to these beliefs were philosophers and scientists (so-called ‘logical positivists’) who proposed that an important goal of science should focus on formulating hypotheses and conducting observations to test them, developing an understanding of processes and linkages among variables, and developing conclusions and predictions about which there is a high degree of confidence. More specifically, the logical positivistic view of science assumes that: knowledge is founded on experience; concepts and generalizations only represent the particulars from which they have been abstracted; meaning is grounded in observation; the sciences are unified according to the methodology of the natural sciences and the ideal pursued in knowledge is the form of mathematically formulated universal science deducible from the smallest number of possible axioms; and values are not facts grounded in observation and therefore cannot be included as a part of scientific knowledge. One the one hand, while logical positivism has influenced the thinking of modern scientists public policy makers, and decision makers, on the other it does not enjoy wide support from contemporary scientific philosophers (Hull, 1974).

Scientists typically are conservative insofar as they provisionally reject a null hypothesis only if the probability of making a type I error is five percent or less (Cranor, 1993; Lemons et al., 1997). This scientific conservatism is consistent with the logical positivist goal of developing conclusions about which there is a high degree of confidence. With respect to the use of science as a basis for public policy and decision making, there are those who hold that scientific methods and tools are capable of yielding information about which there is a high degree of scientific confidence and, therefore, it is this information and not more speculative information that should be used as the basis for policy and decision making (Peters, 1991; Sunstein, 2002). This latter view is a component of the methodology of the natural sciences and the ideal pursued in knowledge is the form of mathematically formulated universal science deducible from the smallest number of possible axioms; and values are not facts grounded in observation and therefore cannot be included as a part of scientific knowledge. One the one hand, while logical positivism has influenced the thinking of modern scientists public policy makers, and decision makers, on the other it does not enjoy wide support from contemporary scientific philosophers (Hull, 1974).

Despite the high degree of confidence held by some people in scientific methods, confidence in the power of science to understand and predict natural phenomena has been undermined by general relativity theories, quantum theories and chaos theories (Brown, 1987). Rorty (1979) notes that there is no evidence that science develops better and more accurate ‘mirrors’ with which to view nature. In his classic work, Kuhn (1962) describes how on the one hand the level of confidence in models used by members of the scientific community increases with evidence that supports the underlying hypotheses of the models, and on the other the scientists’ use of the models cannot be expected to produce consistently better and cumulatively more truthful descriptions of the way the world works. According to Kuhn, the reason is because predictive successes of scientific theories do not guarantee their metaphysical accuracy because ‘paradigm shifts’ subsequently change scientists’ views of nature. Other critics have pointed out that so-called scientific truths of historical periods are social constructs influenced by the dominant cultural and political powers of those periods (Briggs and
1995; Lemons, 1996; EEA, 2001; Kriebel Shrader-Frechette and McCoy, 1993; Lemons and Brown, a high degree of scientific confidence (Cranor, 1993; conclusions about the problems cannot be made with scientific uncertainty regarding environment and human knowledge (Sirageldin, 2002).

More practically speaking, scientific institutions as well as individual scientists increasingly hold the view that scientific uncertainty regarding environment and human health problems is so pervasive and value laden that many conclusions about the problems cannot be made with a high degree of scientific confidence (Cranor, 1993; Shrader-Frechette and McCoy, 1993; Lemons and Brown, 1995; Lemons, 1996; EEA, 2001; Kriebel et al., 2001; Tickner, 2002, 2003). This view is based on empirical studies focusing on: exposure to radiation from nuclear facilities and nuclear waste; managing large-scale ecosystems such as the Florida Everglades, agricultural lands, marine and freshwater oil spills; biodiversity protection and management of biological reserves; ocean dumping of sewage sludge; sulfur dioxide and protection of human lungs to remote lake restoration; antifouling paints on ships (e.g. tributyltin); estuarine eutrophication; protection and management of marine fisheries; extrapolating from toxicological responses in laboratory systems to both human health and to the responses of natural systems; management of fresh water resources; benzene in occupational settings; the use and health impacts of asbestos; risks from polychlorinated biphenyls (PCBs); halocarbons and the ozone layer; diethylstilbestrol (DES) and long-term consequences of prenatal exposure; human health effects of lead in the environment; methyl tertiary-butyl ether (MBTE) in petrol as a substitute for lead; chemical contamination in the Great Lakes; hormones as growth promoters in animals used for food; and global climate change.

1.3 WHAT IS ‘GOOD’ SCIENCE UNDER CONDITIONS OF UNCERTAINTY?

Here, the question discussed is: What is ‘good’ science when science is used in trying to solve river restoration problems under conditions of scientific uncertainty?

A traditional and commonly accepted goal of science is that the probabilities of adding speculative information to the body of scientific knowledge should be minimal (Hull, 1974; Peters, 1991). For this reason, scientists typically are conservative insofar as they provisionally reject a null hypothesis if there is a five percent or less chance of rejecting it when it is true; this criterion is known as a normal standard of scientific proof or so-called ‘ninety-five percent confidence rule.’ With respect to the science used to inform certain types of river restoration policies and decisions, an example of a null hypothesis is that there is no effect on rivers or their resources from existing or proposed human activities. A type I error is to accept a false positive result, that is, to conclude that there is harm to rivers or their resources when in fact there is none. A type II error is to accept a false negative result, that is, to conclude there is no harm when in fact there is.

Many environmental laws and regulations place the burden of proof for demonstrating harm to the environment or human health on government regulatory agencies or others attempting to demonstrate harm from development activities and, often, the standard that is used to meet the burden of proof test is the normal standard of scientific proof (Brown, 1995). When this standard is adopted as a basis for environmental decisions the scientific uncertainty that pervades many environmental problems means that the burden of proof usually will not be met, despite the fact that some information or even the weight of evidence might indicate the existence of harm to the environment or human health. Consequently, in public policy and decision making if the data show that some factor or perturbation has had an effect on the environment or human health but, say, only at the 70–90% confidence level the null hypothesis that there is no effect from the factor or perturbation is accepted. In such cases there is a tendency by decision makers and others to assume not only that there was not enough evidence to reject the null hypothesis but that there was no effect when, in fact, the experimental design or test could have been too weak or the data too variable or too close for an effect to be demonstrated even if there had been one (a type II error).

Minimizing a type II error requires the statistical power of a research design or hypothesis test to be calculated. In contrast to confidence, which is designed to minimize type I error, power depends on the magnitude of the hypothesized change to be detected, the sample variance, the number of replicates and the significance value. The power of a test is the probability of rejecting a null hypothesis when it is in fact false and should be rejected. The larger the detected change, the larger is the power. In situations where the detected changes are relatively small, statistical power is increased by increased sampling size but this involves additional costs, research facilities and time. Analysis of variance in assessing threats to environmental and human health problems shows that the number of samples required to yield a power of 0.95 increases rapidly if changes smaller than 50% of the standard deviation are to be detected (Cranor, 1993). If the sample size stays the same the probability of a type I error is increased if the probability of a type II error is decreased. A practical
been trying to save three species of endangered fish by water management in the basin, federal biologists have called for diversions of water from irrigation into the basin to reduce the frequency of fish kills during low water periods (over 30,000 Chinook salmon died during a fish kill in 2002) (Service, 2003). As would be expected, a recommendation to reduce the amount of water available for irrigation met with strong opposition by ranchers and farmers in the basin. However, failure of the biologists to meet normal scientific standards of proof demonstrating that releasing more water into the basin would help the fish has been cited by the United States Department of Interior (DOI) in its recent refusal to restrict the amount of water farmers can remove from waterways in the basin (NRC, 2004). It is important to understand that the DOI was not criticizing the scientists for doing poor science; rather, it concluded that the normal standard of proof was not met. The DOI noted that factors such as nutrient runoff from natural sources as well as farms and ranches, algae blooms and dams that restrict access to fishes’ spawning grounds complicate and in fact might preclude demonstrating the relation of water flow into the basin and the health of the fish populations with a higher degree of scientific confidence.

The question of how to protect endangered species in the Klamath Basin and manage water resources raises a fundamental dilemma that those involved in river restoration have to confront. On the one hand, traditional scientific norms call for making conclusions on information about which there is a high degree of confidence. In the Klamath Basin example, adhering to traditional scientific norms constrains decisions to protect endangered fish under conditions of uncertainty but, at the same time, in the absence of decisions to protect endangered fish the threats continue. In this type of situation, when science is used for public policy and decision making, scientists might wish to consider whether and to what extent they should be more comfortable with making conclusions based on the weight of evidence rather than based solely or primarily on high levels of confidence, especially since public policy decisions are not based simply upon probabilistic considerations but rather involve making discrete and explicit choices among specific alternatives, including those with political, economic and ethical ramifications (Bella et al., 1994; Lemons et al., 1997). Admittedly, this could create a tension between doing ‘good’ science as traditionally defined because scientists would be making more speculative conclusions; however, in their attempt to make science rigorous in the sense of not wanting to add speculation to the body of scientific knowledge as required by the scientific profession the regulatory questions for which the studies are done may be frustrated.

1.4 VALUE-LADEN DIMENSIONS OF SCIENCE AND UNCERTAINTY

In addition to the policy and management problems that arise from the use of traditional scientific norms for making conclusions in river restoration, other value-laden dimensions of science and policy both contribute to uncertainty and raise complicated questions about how it should be handled in public policy.

Westra and Lemons (1995) and Lemons (1996) contain papers analyzing both philosophical and scientific concepts used to inform ecological restoration science and practice. The concepts are diverse and include basing restoration on: ecosystems’ abilities to function successfully in a way deemed satisfactory by society; ecosystems’ abilities to maintain a balanced, integrated, adaptive community of organisms having species composition, diversity and functional organization comparable to that of ‘natural’ habits of the region; ecosystems’ abilities to regenerate themselves and withstand anthropogenic stress; and ecosystems’ abilities to approach optimum capacity for ecological succession development options. One problem with all these definitions is that they are incomplete, general and qualitative insofar as they fail to provide precise principles that would make them operational.

In his analysis of value-laden issues in restoration for ecological as opposed to primarily or exclusively economic development goals, Cairns (2003) focuses on several types of problems. Firstly, some restoration projects are carried out on habitats different in kind from those altered or destroyed. For example, an upland forest may be destroyed in order to partially restore river systems and wetlands that once occupied a particular lowland area. Despite the fact that restoration of rivers and/or wetlands has ecological value, sacrificing a relatively undamaged habitat to restore another kind may cause unanticipated ecological change or harm. Secondly, with few exceptions most river and other ecological restoration projects are done to support the anthropocentric commodity or utilitarian values they offer humans and this poses conflicts with restoration goals for nonanthropocentric reasons. Thirdly,
River restoration has uncertain outcomes because of unpredictable events like floods or droughts, and because of the limitations of the methods and tools of science to predict long-term outcomes. Fourthly, restoration efforts focusing on single species or ecosystem attributes might eliminate those species that had initially colonized disturbed areas and were at the same time able to tolerate anthropocentric stress. However, restoration projects might result in the displacement of species tolerant to human activities with those less tolerant, at least in the short term. Fifthly, ecological restoration often takes place with species that tolerate anthropocentric stress and the ultimate succession processes and states will be human dominated or dependent. Most likely, a return to indigenous species would require continual intervention by researchers and environmental decision makers on behalf of their re-establishment. While science is not determinative to how the issues are resolved, robust scientific information is needed to help inform satisfactory policy judgments.

Mayo and Hollander (1991), Cranor (1993), Shrader-Frechette and McCoy (1993) and Lemons and Brown (1995) analyzed how and why numerous value-laden judgments, evaluations, assumptions and inferences are embedded in scientific methods pertaining to the study and management of ecosystems, including geophysical and other water resources. For example, people have to decide the ecosystem parameters that are more important to base judgments on, often with little or no empirical information available. Assumptions have to be made, often without direct empirical evidence, whether ecosystem parameters should be considered independently or synergistically, and whether threshold values for environmental or health impacts exist and, if so, what such values should be. In addition, a lack of empirical data cannot be separated entirely from practical limitations imposed on environmental scientists. Decision makers require information in a relatively short period and at reasonable cost. These factors constrain the focus of most restoration studies to the short term, relatively small spatial areas and measurement of a relatively small number of samples and parameters. Further, the above commentators conclude that many of the value-laden dimensions of scientific methodology and information not only are not fully recognized by scientists, policy and decision makers, but that the failure to sufficiently recognize the value-laden dimensions of science casts serious doubts about even the best and most thorough scientific and technical studies used to inform decisions about problems such as river restoration. In other words, unless the value-laden dimensions of scientific studies are disclosed the positions of decision makers will appear to be justified on value-neutral scientific reasoning and will appear to be more certain than warranted when, in fact, the positions will be based, in part, on often controversial and conflicting values of scientists and decision makers (see also Fleck, 1979).

One of the most common ways in which value issues are hidden in public policy concerning issues such as river restoration develops out of the expectation that technical analysts can isolate and apply the facts under dispute in a manner consistent with policy directives or legislative mandates. This separation of facts and values is highly problematic. For example, consider the use of safety factors in river water quality regulations as a means of extra protection for human or environmental health. Implicit in the choice of safety factors is an asymmetric cost function with health costs rising more steeply than costs for over-treatment. Implicit in the magnitude of a safety factor are significant uncertainties in health impacts and a steeper cost function for health effects from under-treatment than for over-treatment. When these issues remain implicit in the use of safety factors (as they typically are) the real issues of knowledge and uncertainty are obscured for decision makers and the public. Often, these issues remain implicit or hidden because safety factors and cost factors are described in quantitative terms pertaining to risks or cost–benefit calculations. This increases the likelihood of the misuse of conclusions by decision makers who do not understand the basis for deriving safety factors (Brown, 1987).

1.5 Practical and Policy Aspects of Uncertainty

Cairns (2001) analyzed how most complex environmental problems transcend the capabilities of any single discipline but at the same time and all too often research teams are not sufficiently interdisciplinary to deal adequately with the problems. In addition, problem solving often does not provide a balanced mix of academicians, public policy and decision makers, representatives from private industry or business and nongovernmental organizations. As a result, the framing of problems and their solution is too often fragmented and ineffectual and biased towards one or a few disciplinary approaches or stakeholder groups (Nienhuis and Leuven, 2001; Benyamine, 2002).

Some scientists and policy makers involved in environmental problem solving have argued for synthesizing analyses and alternatives to solutions of environmental resource problems (Lubchenco et al., 1991; Bella et al., 1994; Lemons and Brown, 1995; Caldwell, 1996). In practice, at least three levels of synthesis may be identified. The first is conceptual synthesis and occurs when the diverse and often disparate elements of a problem situation are pulled together intuitively, then tested and integrated.
to form a coherent research design. Following analysis of
the problem and identification of its causes and conse-
quences, a second level of synthesis involves delineation
of the findings of the scientific research. A third level of
synthesis can occur when research findings are evaluated
and consolidated in deciding a course of action by
decision makers.

Despite the need for greater synthesis of research
methods and information, synthesis itself introduces addi-
tional value-laden dimensions and uncertainties into envi-
rionmental problem solving. Caldwell (1996) and Brown
(1995) discuss how decision makers must synthesize a
policy (in part) from the scientific information available
even when the information often is incomplete. When
science is used to inform policy decisions such decisions
also include economic, legal, administrative and cultural
parameters and, therefore, are based on human values
and judgments. Benyamine (2002) discusses how dis-
agreements about scientific theories that are used as a
basis for informing public policy and decision making
become entangled with economic, legal and ideological
issues. Sometimes, the disagreements remain largely con-
fined to the scientific community, while at other times the
public knows about them. When scientists and/or decision
makers know the underlying theoretical bases for dis-
agreements, this knowledge can influence the scientific
arguments about the disagreements. However, some con-
fl icting arguments and their underlying theoretical support
can be under recognized or little understood by the non-
scientific communities as well as by scientists whose spe-
cialized fields are outside the discipline where debates
about theories are taking place. When this happens, con-
fl icting scientific arguments will not have much influence
on the disagreements.

There is debate within the scientific and public policy
communities regarding approaches to deal with uncertain-
ties (Bradshaw and Borchers, 2000). For example, one
approach might be to attempt to increase scientific confi-
dence by increasing scientific conﬁ rmation of hypotheses.
In this way, scientists can decrease uncertainty sufﬁ ciently
to allow more precise estimates of risk for policy and
decision makers. A second approach might be to increase
the knowledge of sources of uncertainty by enhancing
education and communication between scientists, policy
and decision makers and the general public. A beneﬁ t of
this approach is that when scientists and decision makers
are involved with the public there is greater opportunity
for consensus building and less risk of legal challenges
from disaffected stakeholders. A third approach might be
to foster the view that scientiﬁ c uncertainty should be
regarded in public policy and decision making as it is
within the scientiﬁ c community, namely, as information
for hypothesis building and testing. Consequently, calls
for faster and more ‘certain’ scientiﬁ c conclusions to
informed public policy and decision making would be tem-
pered with a better understanding of the limitations and
capabilities of science to provide information about which
there is a high degree of conﬁ dence.

Still another approach might be for society to require
procedural rules for making decisions under conditions
of scientiﬁ c uncertainty to take into account conﬂ icting
points of view, possible consequences to welfare, as well
as various ethical and legal obligations such as those
involving free informed consent and due process (Shrader-
Frechette, 1996). This approach could include greater use
of the precautionary principle by helping to ensure that
when there is substantial scientiﬁ c uncertainty about the
risks and beneﬁ ts of a proposed activity, policy decisions
should be made in a way that errs on the side of caution
with respect to the environment and the health of the
public (Kriebel et al., 2001; Tickner, 2003).

1.6 CASE STUDY OF SCIENTIFIC
UNCERTAINTY IN RIVER RESTORATION

The example discussed here is based on ecological studies
conducted from 1980–1989 in a small (4th order), black
water West African river, the River Ikpoba ﬂ owing through
Benin City, Southern Nigeria (Victor and Dickson, 1985;
Victor and Ogbeibu, 1985, 1986, 1991; Victor and Tetteh,
1988; Ogbeibu and Victor, 1989; Victor and Brown, 1990;
Victor and Meye, 1994; Victor and Onomivbori, 1996;
Victor, 1998). The stretch of river studied was affected by
a variety of urban perturbations such as damming, water
extraction, point and nonpoint source pollution, sand
dredging and agriculture. As a result of government
policies and directives mandating river clean-up activities,
there was a rare opportunity to study river restoration by
recovery processes. Scientiﬁ c results of this study were
published in the series of publications listed above and
provide one of the bases of our focus on uncertainties
associated with the restoration process.

The first logical step was to investigate recovery pro-
cesses. Geomorphologic changes of the river channel and
the entire riparian corridor inﬂ uenced by urban develop-
ment could not be reversed (e.g. the presence of a dam,
water extraction for human consumption) and therefore
complete restoration would not be possible. Removal of
human inﬂ uences where possible would permit recovery,
but the rates limiting recovery in different sections would
not only depend on the type of inﬂ uence (e.g. sand extrac-
tion, car washing), but would also be complicated by
natural events such as ﬂ oods. Thus the optimum threshold
for the recovery process in this study at various sections
of the river continuum was unpredictable and uncertain. Other significant uncertainties were: the role of early recolonizing species affecting the trajectory of recovery; the successional sequence of species re-establishing; and the establishment of appropriate abiotic conditions and the establishment of previously non-existing non-native species like the water hyacinth.

The next group of uncertainties was related to the analysis and synthesis of data. Removal of a particular human influence (e.g. discharge of untreated sewage) in one section significantly increased the presence of a parameter, say i (P < 0.05), showing that this parameter was a good indicator of recovery. But the same parameter did not increase significantly in an adjacent section with a similar problem (P > 0.05) showing its uncertain predictive status. Graphical examination of associations between specific human influences (e.g. removal of detergent contamination) and biological parameters like taxa richness and abundance showed positive relationships, but statistically these relationships as evaluated by Pearson’s r or Spearman’s r, were not significant (P > 0.05). Thus, correlation matrices generated for evaluating relationships between the removal of perturbation influences and the recovery of both biotic and abiotic parameters were difficult to interpret. Interpretation using traditional statistical norms and acceptable levels of significance were ecologically and rationally highly problematic.

Further uncertainties arose while considering the temporal and spatial scale of the recovery process. The recovery process was happening in an urban setting with a new land use matrix, far different from pristine or semipristine natural conditions that previously existed. Therefore, comparison of the restored river sections to that of ‘undisturbed’ sections upstream was not valid and new baseline standards had to be established for future monitoring. Even these were extremely site specific with very limited potential for use in other sections of the study stretch. Because of the uncertainties involved, the scale needed for managing temporal and spatial variability in restoration was not apparent. ‘Rules of thumb’ based on value judgments had to be made to evaluate recovery in specific sections of the river stretch with specific types of perturbations. The magnitude of uncertainties involved render the combination of tools used here (e.g. sampling duration, sampling frequencies, choice of methods, size of samples, analytical models) inadequate to evaluate recovery processes in other rivers of similar stream order, larger rivers with higher stream order and even the same river 100 km downstream where its stream order is >8.

Implementation and analysis of monitoring were also wrought with uncertainties. For example, five different sections of the river stretch were monitored for restoration by recovery. Each section was characterized by its own set of physical and biological parameters that were good indicators of recovery at the time of the study. Due to limitations of funding, personnel and the required cost effectiveness of the monitoring program, proposals had to identify common parameters that would monitor the overall health of the study stretch in the long term. As discussed earlier, uncertainties associated with the analysis and synthesis of data did not permit the ready identification of common parameters. Even if there was an agreement on using different sets of parameters for different sections of the stretch, there was no certainty that these parameters (e.g. BOD, nitrate–N, fish diversity) will continue to serve as good indicators of recovery in the long term. It was also possible that a parameter considered trivial and not included in the monitoring program (e.g. dissolved organic matter, haptobenthos) may become important in the long term, which in itself cannot be defined clearly. ‘Long term’ in this case at least did not refer to an indefinite period and envisaged monitoring programs were not relatively open-ended, as often is the case in countries with limited resources. Policy and decision makers considered what seemed to be a comprehensive proposal for monitoring in the view of scientists as not being practical.

Policy questions concerning river restoration in the geopolitical context were plagued with more uncertainties than scientific questions. The political climate of the study area at that time was unstable and government changed hands frequently. For example, one government downgraded the priority given to environmental issues, such as river restoration, by the previous government if personal interests and political expediency demanded it. Assuming no change in policies with change in governments, there were uncertainties concerning funding tools that would ensure the long term success of restoration, design of legislation to accommodate river restoration without compromising sustainable development and coordination of policies and legislation to devise strategies for river restoration in a broader context of the administrative region (e.g. district, state, country). The management of restored or recovered river as a water resource for domestic use, agriculture, fisheries and recreation was not considered intentionally. For scientific uncertainty concerning water resources management, see Canter (1996).

1.7 CONCLUSION

Scientific and other uncertainty is pervasive in environmental problem solving, and river restoration is no exception. When the traditional scientific standard of proof is used as a basis for river restoration decisions, the scientific
uncertainty that pervades many restoration problems means that the standard usually will not be met, despite the fact that some information or even the weight of evidence might indicate the existence of harm and therefore the need for restoration. A high degree of confidence in river restoration science, as in other sciences, unfortunately seems to hinge on conventional statistical decision rules such as when, for example, river monitoring during restoration strives to detect human-influenced factors that caused deviations from baseline conditions. The major concern here will be ecological change and not how large or small the P-values are (Yoccoz, 1991; Stewart-Oaten, 1996). Most statistical decision rules are too simplistic and misleading insofar as their assumptions lack of statistical significance means lack of environmental significance (Karr and Chu, 1999). According to Yoccoz (1991), Kriebel et al. (2001), and Lemons et al. (1997) ecologists tend to over-use tests of significance and restoration ecologists are no exception to this rule. Karr and Chu (1999) suggest that it would be wiser to decide what is ecologically relevant first and then use hypothesis testing to detect ecologically relevant effects; the use of other statistical tools such as power analysis and decision theory also is recommended (Hilborn, 1997).

Cairns and Heckman (1996) state that restoration ecology in general ‘is a bridge between the social and natural sciences.’ In this chapter it has been shown that it is impossible to separate scientific and policy questions in restoration ecology and this, in and of itself, introduces uncertainty into what otherwise might be viewed as value-neutral or ‘objective’ scientific conclusions.

As discussed more generally in this chapter and shown more specifically in the case study section, scientific research is both value-laden and is used to support politically-driven river restoration policies and decision making (see also Shrader-Frechette, 1994). For example, historical or descriptive research is intended to reveal or explain the dynamics of a given policy and to explore its origin and evolution. Prescriptive or advocacy research defends a conclusion or possibly even a preconceived policy, and also is characterized by publicized disputes among, e.g., scientists. Decision-informing or predictive research typically is financed by grants or contracts leading to conclusions supportive of a predetermined policy preference, sponsor bias, or predilections within a research peer group. Consequently, the focus of this research does not attempt to analyze all feasible alternative policy choices and the probable consequences. Because the focus of this research is on applicability for a particular policy its findings are presented in the form of propositions upon which decisions can be made. The efficacy of the policy towards which the research is focused depends on the validity, reliability and persuasiveness of the research and the extent of political public receptivity.

It is important to clearly distinguish between the use of methods and tools of science to understand the phenomena of nature and the acquisition of scientific information about a restoration issue and the setting of policy; but in practice, there is not always an unambiguous demarcation. Policy makers set agendas that determine the questions that are asked of scientists; scientists formulate hypotheses in ways limited by their tools and their imaginations and disciplinary conventions. Consequently, the information they provide to the policy makers is limited and socially determined to a degree and therefore there is a complicated feedback relation between the discoveries of science and the setting of policy. While attempting to be objective and focus on understanding river restoration phenomena, scientists and other researchers should be aware of the policy uses of their work and of their social responsibility to carryout science that protects the environment and human health (Kriebel et al., 2001). In trying to fulfill this responsibility, scientific and other uncertainty needs to be taken into greater account.

The discussion of some of the value-laden decisions and judgments scientists and other researchers make is not a criticism. Rather, the issue is discussed because a failure to recognize the existence of the value-laden dimensions of science casts serious doubt about even the best and most thorough of scientific and technical studies used to inform decisions about river restoration. In other words, unless the value-laden dimensions of scientific and technical studies used to derive information are disclosed, the positions of policy makers and decision makers will appear to be justified on objective or value-neutral scientific reasoning when, in fact, they will be based in part on often controversial or conflicting values of scientists themselves.

REFERENCES


