Contents

Ignition xv

Abbreviations and Notation xxiii

PART I COUNTERPARTY CREDIT RISK, COLLATERAL AND FUNDING

1 Introduction 3
 1.1 A Dialogue on CVA 3
 1.2 Risk Measurement: Credit VaR 3
 1.3 Exposure, CE, PFE, EPE, EE, EAD 5
 1.4 Exposure and Credit VaR 7
 1.5 Interlude: \(P \) and \(Q \) 7
 1.6 Basel 8
 1.7 CVA and Model Dependence 9
 1.8 Input and Data Issues on CVA 10
 1.9 Emerging Asset Classes: Longevity Risk 11
 1.10 CVA and Wrong Way Risk 12
 1.11 Basel III: VaR of CVA and Wrong Way Risk 13
 1.12 Discrepancies in CVA Valuation: Model Risk and Payoff Risk 14
 1.13 Bilateral Counterparty Risk: CVA and DVA 15
 1.14 First-to-Default in CVA and DVA 17
 1.15 DVA Mark-to-Market and DVA Hedging 18
 1.16 Impact of Close-Out in CVA and DVA 19
 1.17 Close-Out Contagion 20
 1.18 Collateral Modelling in CVA and DVA 21
 1.19 Re-Hypothecation 22
 1.20 Netting 22
 1.21 Funding 23
 1.22 Hedging Counterparty Risk: CCDS 25
 1.23 Restructuring Counterparty Risk: CVA-CDOs and Margin Lending 26
viii Contents

2 Context 31
 2.1 Definition of Default: Six Basic Cases 31
 2.2 Definition of Exposures 32
 2.3 Definition of Credit Valuation Adjustment (CVA) 35
 2.4 Counterparty Risk Mitigants: Netting 37
 2.5 Counterparty Risk Mitigants: Collateral 38
 2.5.1 The Credit Support Annex (CSA) 39
 2.5.2 The ISDA Proposal for a New Standard CSA 40
 2.5.3 Collateral Effectiveness as a Mitigant 40
 2.6 Funding 41
 2.6.1 A First Attack on Funding Cost Modelling 42
 2.6.2 The General Funding Theory and its Recursive Nature 42
 2.7 Value at Risk (VaR) and Expected Shortfall (ES) of CVA 43
 2.8 The Dilemma of Regulators and Basel III 44

3 Modelling the Counterparty Default 47
 3.1 Firm Value (or Structural) Models 47
 3.1.1 The Geometric Brownian Assumption 47
 3.1.2 Merton’s Model 48
 3.1.3 Black and Cox’s (1976) Model 50
 3.1.4 Credit Default Swaps and Default Probabilities 54
 3.1.5 Black and Cox (B&C) Model Calibration to CDS: Problems 55
 3.1.6 The AT1P Model 57
 3.1.7 A Case Study with AT1P: Lehman Brothers Default History 58
 3.1.8 Comments 60
 3.1.9 SBTV Model 61
 3.1.10 A Case Study with SBTV: Lehman Brothers Default History 62
 3.1.11 Comments 64
 3.2 Firm Value Models: Hints at the Multiname Picture 64
 3.3 Reduced Form (Intensity) Models 65
 3.3.1 CDS Calibration and Intensity Models 66
 3.3.2 A Simpler Formula for Calibrating Intensity to a Single CDS 70
 3.3.3 Stochastic Intensity: The CIR Family 72
 3.3.4 The Cox-Ingersoll-Ross Model (CIR) Short-Rate Model for r 72
 3.3.5 Time-Inhomogeneous Case: CIR++ Model 74
 3.3.6 Stochastic Diffusion Intensity is Not Enough: Adding Jumps. The JCIR(++) Model 75
 3.3.7 The Jump-Diffusion CIR Model (JCIR) 76
 3.3.8 Market Incompleteness and Default Unpredictability 78
 3.3.9 Further Models 78
 3.4 Intensity Models: The Multiname Picture 78
 3.4.1 Choice of Variables for the Dependence Structure 78
 3.4.2 Firm Value Models? 80
 3.4.3 Copula Functions 80
 3.4.4 Copula Calibration, CDOs and Criticism of Copula Functions 86
PART II PRICING COUNTERPARTY RISK: UNILATERAL CVA

4 Unilateral CVA and Netting for Interest Rate Products 89
 4.1 First Steps towards a CVA Pricing Formula 89
 4.1.1 Symmetry versus Asymmetry 90
 4.1.2 Modelling the Counterparty Default Process 91
 4.2 The Probabilistic Framework 92
 4.3 The General Pricing Formula for Unilateral Counterparty Risk 94
 4.4 Interest Rate Swap (IRS) Portfolios 97
 4.4.1 Counterparty Risk in Single IRS 97
 4.4.2 Counterparty Risk in an IRS Portfolio with Netting 100
 4.4.3 The Drift Freezing Approximation 102
 4.4.4 The Three-Moments Matching Technique 104
 4.5 Numerical Tests 106
 4.5.1 Case A: IRS with Co-Terminal Payment Dates 106
 4.5.2 Case B: IRS with Co-Starting Resetting Date 108
 4.5.3 Case C: IRS with First Positive, Then Negative Flow 108
 4.5.4 Case D: IRS with First Negative, Then Positive Flows 109
 4.5.5 Case E: IRS with First Alternate Flows 113
 4.6 Conclusions 120

5 Wrong Way Risk (WWR) for Interest Rates 121
 5.1 Modelling Assumptions 122
 5.1.1 G2++ Interest Rate Model 122
 5.1.2 CIR++ Stochastic Intensity Model 123
 5.1.3 CIR++ Model: CDS Calibration 124
 5.1.4 Interest Rate/Credit Spread Correlation 126
 5.1.5 Adding Jumps to the Credit Spread 126
 5.2 Numerical Methods 127
 5.2.1 Discretization Scheme 128
 5.2.2 Simulating Intensity Jumps 128
 5.2.3 “American Monte Carlo” (Pallavicini 2006) 128
 5.2.4 Callable Payoffs 128
 5.3 Results and Discussion 129
 5.3.1 WWR in Single IRS 129
 5.3.2 WWR in an IRS Portfolio with Netting 129
 5.3.3 WWR in European Swaptions 130
 5.3.4 WWR in Bermudan Swaptions 130
 5.3.5 WWR in CMS Spread Options 132
 5.4 Contingent CDS (CCDS) 132
 5.5 Results Interpretation and Conclusions 133

6 Unilateral CVA for Commodities with WWR 135
 6.1 Oil Swaps and Counterparty Risk 135
 6.2 Modelling Assumptions 137
 6.2.1 Commodity Model 137
 6.2.2 CIR++ Stochastic-Intensity Model 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Forward versus Futures Prices</td>
<td>140</td>
</tr>
<tr>
<td>6.3.1</td>
<td>CVA for Commodity Forwards without WWR</td>
<td>141</td>
</tr>
<tr>
<td>6.3.2</td>
<td>CVA for Commodity Forwards with WWR</td>
<td>142</td>
</tr>
<tr>
<td>6.4</td>
<td>Swaps and Counterparty Risk</td>
<td>142</td>
</tr>
<tr>
<td>6.5</td>
<td>UCVA for Commodity Swaps</td>
<td>144</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Counterparty Risk from the Payer’s Perspective: The Airline Computes Counterparty Risk</td>
<td>145</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Counterparty Risk from the Receiver’s Perspective: The Bank Computes Counterparty Risk</td>
<td>148</td>
</tr>
<tr>
<td>6.6</td>
<td>Inadequacy of Basel’s WWR Multipliers</td>
<td>148</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusions</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>Unilateral CVA for Credit with WWR</td>
<td>153</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction to CDSs with Counterparty Risk</td>
<td>153</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The Structure of the Chapter</td>
<td>155</td>
</tr>
<tr>
<td>7.2</td>
<td>Modelling Assumptions</td>
<td>155</td>
</tr>
<tr>
<td>7.2.1</td>
<td>CIR++ Stochastic-Intensity Model</td>
<td>156</td>
</tr>
<tr>
<td>7.2.2</td>
<td>CIR++ Model: CDS Calibration</td>
<td>157</td>
</tr>
<tr>
<td>7.3</td>
<td>CDS Options Embedded in CVA Pricing</td>
<td>158</td>
</tr>
<tr>
<td>7.4</td>
<td>UCVA for Credit Default Swaps: A Case Study</td>
<td>160</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Changing the Copula Parameters</td>
<td>160</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Changing the Market Parameters</td>
<td>164</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusions</td>
<td>164</td>
</tr>
<tr>
<td>8</td>
<td>Unilateral CVA for Equity with WWR</td>
<td>167</td>
</tr>
<tr>
<td>8.1</td>
<td>Counterparty Risk for Equity Without a Full Hybrid Model</td>
<td>167</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Calibrating AT1P to the Counterparty’s CDS Data</td>
<td>168</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Counterparty Risk in Equity Return Swaps (ERS)</td>
<td>169</td>
</tr>
<tr>
<td>8.2</td>
<td>Counterparty Risk with a Hybrid Credit-Equity Structural Model</td>
<td>172</td>
</tr>
<tr>
<td>8.2.1</td>
<td>The Credit Model</td>
<td>172</td>
</tr>
<tr>
<td>8.2.2</td>
<td>The Equity Model</td>
<td>174</td>
</tr>
<tr>
<td>8.2.3</td>
<td>From Barrier Options to Equity Pricing</td>
<td>176</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Equity and Equity Options</td>
<td>179</td>
</tr>
<tr>
<td>8.3</td>
<td>Model Calibration and Empirical Results</td>
<td>180</td>
</tr>
<tr>
<td>8.3.1</td>
<td>BP and FIAT in 2009</td>
<td>181</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Uncertainty in Market Expectations</td>
<td>186</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Further Results: FIAT in 2008 and BP in 2010</td>
<td>188</td>
</tr>
<tr>
<td>8.4</td>
<td>Counterparty Risk and Wrong Way Risk</td>
<td>191</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Deterministic Default Barrier</td>
<td>193</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Uncertainty on the Default Barrier</td>
<td>198</td>
</tr>
<tr>
<td>9</td>
<td>Unilateral CVA for FX</td>
<td>205</td>
</tr>
<tr>
<td>9.1</td>
<td>Pricing with Two Currencies: Foundations</td>
<td>206</td>
</tr>
<tr>
<td>9.2</td>
<td>Unilateral CVA for a Fixed-Fixed CCS</td>
<td>210</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Approximating the Volatility of Cross Currency Swap Rates</td>
<td>216</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Parameterization of the FX Correlation</td>
<td>218</td>
</tr>
</tbody>
</table>
9.3 Unilateral CVA for Cross Currency Swaps with Floating Legs 224
9.4 Why a Cross Currency Basis? 226
 9.4.1 The Approach of Fujii, Shimada and Takahashi (2010) 227
 9.4.2 Collateral Rates versus Risk-Free Rates 228
 9.4.3 Consequences of Perfect Collateralization 229
9.5 CVA for CCS in Practice 230
 9.5.1 Changing the CCS Moneyness 234
 9.5.2 Changing the Volatility 235
 9.5.3 Changing the FX Correlations 235
9.6 Novations and the Cost of Liquidity 237
 9.6.1 A Synthetic Contingent CDS: The Novation 238
 9.6.2 Extending the Approach to the Valuation of Liquidity 241
9.7 Conclusions 243

PART III ADVANCED CREDIT AND FUNDING RISK PRICING

10 New Generation Counterparty and Funding Risk Pricing 247
 10.1 Introducing the Advanced Part of the Book 247
 10.2 What We Have Seen Before: Unilateral CVA 249
 10.2.1 Approximation: Default Bucketing and Independence 250
 10.3 Unilateral Debit Valuation Adjustment (UDVA) 250
 10.4 Bilateral Risk and DVA 251
 10.5 Undesirable Features of DVA 253
 10.5.1 Profiting From Own Deteriorating Credit Quality 253
 10.5.2 DVA Hedging? 253
 10.5.3 DVA: Accounting versus Capital Requirements 254
 10.5.4 DVA: Summary and Debate on Realism 255
 10.6 Close-Out: Risk-Free or Replacement? 256
 10.7 Can We Neglect the First-to-Default Time? 257
 10.7.1 A Simplified Formula without First-to-Default: The Case of an
 Equity Forward 258
 10.8 Payoff Risk 258
 10.9 Collateralization, Gap Risk and Re-Hypothecation 259
 10.10 Funding Costs 262
 10.11 Restructuring Counterparty Risk 263
 10.11.1 CVA Volatility: The Wrong Way 263
 10.11.2 Floating Margin Lending 264
 10.11.3 Global Valuation 265
 10.12 Conclusions 266

11 A First Attack on Funding Cost Modelling 269
 11.1 The Problem 269
 11.2 A Closer Look at Funding and Discounting 271
 11.3 The Approach Proposed by Morini and Prampolini (2010) 272
 11.3.1 The Borrower’s Case 273
 11.3.2 The Lender’s Case 274
11.3.3 The Controversial Role of DVA: The Borrower 275
11.3.4 The Controversial Role of DVA: The Lender 276
11.3.5 Discussion 277
11.4 What Next on Funding? 278

12 Bilateral CVA–DVA and Interest Rate Products 279
12.1 Arbitrage-Free Valuation of Bilateral Counterparty Risk 281
12.1.1 Symmetry versus Asymmetry 285
12.1.2 Worsening of Credit Quality and Positive Mark-to-Market 285
12.2 Modelling Assumptions 286
12.2.1 G2++ Interest Rate Model 286
12.2.2 CIR++ Stochastic Intensity Model 288
12.2.3 Realistic Market Data Set for CDS Options 289
12.3 Numerical Methods 290
12.4 Results and Discussion 291
12.4.1 Bilateral VA in Single IRS 292
12.4.2 Bilateral VA in an IRS Portfolio with Netting 296
12.4.3 Bilateral VA in Exotic Interest Rate Products 301
12.5 Conclusions 302

13 Collateral, Netting, Close-Out and Re-Hypothecation 305
13.1 Trading Under the ISDA Master Agreement 306
13.1.1 Mathematical Setup and CBVA Definition 306
13.1.2 Collateral Delay and Dispute Resolutions 308
13.1.3 Close-Out Netting Rules 308
13.1.4 Collateral Re-Hypothecation 309
13.2 Bilateral CVA Formula under Collateralization 310
13.2.1 Collecting CVA Contributions 310
13.2.2 CBVA General Formula 312
13.2.3 CCVA and CDVA Definitions 312
13.3 Close-Out Amount Evaluation 313
13.4 Special Cases of Collateral-Inclusive Bilateral Credit Valuation Adjustment 314
13.5 Example of Collateralization Schemes 315
13.5.1 Perfect Collateralization 315
13.5.2 Collateralization Through Margining 316
13.6 Conclusions 316

14 Close-Out and Contagion with Examples of a Simple Payoff 319
14.1 Introduction to Close-Out Modelling and Earlier Work 319
14.1.1 Close-Out Modelling: Context 319
14.1.2 Legal Documentation on Close-Out 320
14.1.3 Literature 320
14.1.4 Risk-Free versus Replacement Close-Out: Practical Consequences 321
Table of Contents

14. Classical Unilateral and Bilateral Valuation Adjustments
- 14.2 Classical Unilateral and Bilateral Valuation Adjustments 322
- 14.3 Bilateral Adjustment and Close-Out: Risk-Free or Replacement? 323
- 14.4 A Quantitative Analysis and a Numerical Example
 - 14.4.1 Contagion Issues 326
- 14.5 Conclusions 329

15. Bilateral Collateralized CVA and DVA for Rates and Credit 331
- 15.1 CBVA for Interest Rate Swaps
 - 15.1.1 Changing the Margining Frequency 332
 - 15.1.2 Inspecting the Exposure Profiles 334
 - 15.1.3 A Case Where Re-Hypothecation is Worse than No Collateral at All 335
 - 15.1.4 Changing the Correlation Parameters 336
 - 15.1.5 Changing the Credit Spread Volatility 337
- 15.2 Modelling Credit Contagion
 - 15.2.1 The CDS Price Process 340
 - 15.2.2 Calculation of Survival Probability 341
 - 15.2.3 Modelling Default-Time Dependence 344
- 15.3 CBVA for Credit Default Swaps
 - 15.3.1 Changing the Copula Parameters 345
 - 15.3.2 Inspecting the Contagion Risk 347
 - 15.3.3 Changing the CDS Moneyness 347
- 15.4 Conclusions 349

16. Including Margining Costs in Collateralized Contracts 351
- 16.1 Trading Under the ISDA Master Agreement
 - 16.1.1 Collateral Accrual Rates 352
 - 16.1.2 Collateral Management and Margining Costs 353
- 16.2 CBVA General Formula with Margining Costs
 - 16.2.1 Perfect Collateralization 356
 - 16.2.2 Futures Contracts 357
- 16.3 Changing the Collateralization Currency
 - 16.3.1 Margining Cost in Foreign Currency 357
 - 16.3.2 Settlement Liquidity Risk 358
 - 16.3.3 Gap Risk in Single-Currency Contracts with Foreign-Currency Collaterals 359
- 16.4 Conclusions 359

17. Funding Valuation Adjustment (FVA)? 361
- 17.1 Dealing with Costs of Funding
 - 17.1.1 Central Clearing, CCPs and this Book 362
 - 17.1.2 High Level Features 362
 - 17.1.3 Single-Deal (Micro) vs. Homogeneous (Macro) Funding Models 363
 - 17.1.4 Previous Literature on Funding and Collateral 364
 - 17.1.5 Including FVA along with Credit and Debit Valuation Adjustment 365
 - 17.1.6 FVA is not DVA 365
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td>Collateral- and Funding-Inclusive Bilateral Valuation Adjusted Price</td>
<td>366</td>
</tr>
<tr>
<td>17.3</td>
<td>Funding Risk and Liquidity Policies</td>
<td>367</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Funding, Hedging and Collateralization</td>
<td>367</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Liquidity Policies</td>
<td>368</td>
</tr>
<tr>
<td>17.4</td>
<td>CBVA Pricing Equation with Funding Costs (CFBVA)</td>
<td>372</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Iterative Solution of the CFBVA Pricing Equation</td>
<td>373</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Funding Derivative Contracts in a Diffusion Setting</td>
<td>374</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Implementing Hedging Strategies via Derivative Markets</td>
<td>377</td>
</tr>
<tr>
<td>17.5</td>
<td>Detailed Examples</td>
<td>378</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Funding with Collateral</td>
<td>378</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Collateralized Contracts Priced by a CCP</td>
<td>379</td>
</tr>
<tr>
<td>17.5.3</td>
<td>Dealing with Own Credit Risk: FVA and DVA</td>
<td>380</td>
</tr>
<tr>
<td>17.5.4</td>
<td>Deriving Earlier Results on FVA and DVA</td>
<td>381</td>
</tr>
<tr>
<td>17.6</td>
<td>Conclusions: FVA and Beyond</td>
<td>382</td>
</tr>
<tr>
<td>18</td>
<td>Non-Standard Asset Classes: Longevity Risk</td>
<td>385</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction to Longevity Markets</td>
<td>385</td>
</tr>
<tr>
<td>18.1.1</td>
<td>The Longevity Swap Market</td>
<td>385</td>
</tr>
<tr>
<td>18.1.2</td>
<td>Longevity Swaps: Collateral and Credit Risk</td>
<td>386</td>
</tr>
<tr>
<td>18.1.3</td>
<td>Indexed Longevity Swaps</td>
<td>390</td>
</tr>
<tr>
<td>18.1.4</td>
<td>Endogenous Credit Collateral and Funding-Inclusive Swap Rates</td>
<td>390</td>
</tr>
<tr>
<td>18.2</td>
<td>Longevity Swaps: The Payoff</td>
<td>391</td>
</tr>
<tr>
<td>18.3</td>
<td>Mark-to-Market for Longevity Swaps</td>
<td>394</td>
</tr>
<tr>
<td>18.4</td>
<td>Counterparty and Own Default Risk, Collateral and Funding</td>
<td>397</td>
</tr>
<tr>
<td>18.5</td>
<td>An Example of Modelling Specification from Biffis et al. (2011)</td>
<td>401</td>
</tr>
<tr>
<td>18.6</td>
<td>Discussion of the Results in Biffis et al. (2011)</td>
<td>404</td>
</tr>
<tr>
<td>19</td>
<td>Conclusions and Further Work</td>
<td>409</td>
</tr>
<tr>
<td>19.1</td>
<td>A Final Dialogue: Models, Regulations, CVA/DVA, Funding and More</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>423</td>
</tr>
</tbody>
</table>