Preface xiii
Acknowledgments xv
About the Authors xvii

CHAPTER 1
Concepts of Probability 1
1.1 Introduction 1
1.2 Basic Concepts 2
1.3 Discrete Probability Distributions 2
1.3.1 Bernoulli Distribution 3
1.3.2 Binomial Distribution 3
1.3.3 Poisson Distribution 4
1.4 Continuous Probability Distributions 5
1.4.1 Probability Distribution Function, Probability Density Function, and Cumulative Distribution Function 5
1.4.2 The Normal Distribution 8
1.4.3 Exponential Distribution 10
1.4.4 Student’s t-distribution 11
1.4.5 Extreme Value Distribution 12
1.4.6 Generalized Extreme Value Distribution 12
1.5 Statistical Moments and Quantiles 13
1.5.1 Location 13
1.5.2 Dispersion 13
1.5.3 Asymmetry 13
1.5.4 Concentration in Tails 14
1.5.5 Statistical Moments 14
1.5.6 Quantiles 16
1.5.7 Sample Moments 16
1.6 Joint Probability Distributions 17
1.6.1 Conditional Probability 18
1.6.2 Definition of Joint Probability Distributions 19
CONTENTS

1.6.3 Marginal Distributions 19
1.6.4 Dependence of Random Variables 20
1.6.5 Covariance and Correlation 20
1.6.6 Multivariate Normal Distribution 21
1.6.7 Elliptical Distributions 23
1.6.8 Copula Functions 25

1.7 Probabilistic Inequalities 30
1.7.1 Chebyshev’s Inequality 30
1.7.2 Fréchet-Hoeffding Inequality 31

1.8 Summary 32

CHAPTER 2
Optimization

2.1 Introduction 35
2.2 Unconstrained Optimization 36
2.2.1 Minima and Maxima of a Differentiable Function 37
2.2.2 Convex Functions 40
2.2.3 Quasiconvex Functions 46

2.3 Constrained Optimization 48
2.3.1 Lagrange Multipliers 49
2.3.2 Convex Programming 52
2.3.3 Linear Programming 55
2.3.4 Quadratic Programming 57

2.4 Summary 58

CHAPTER 3
Probability Metrics

3.1 Introduction 61
3.2 Measuring Distances: The Discrete Case 62
3.2.1 Sets of Characteristics 63
3.2.2 Distribution Functions 64
3.2.3 Joint Distribution 68

3.3 Primary, Simple, and Compound Metrics 72
3.3.1 Axiomatic Construction 73
3.3.2 Primary Metrics 74
3.3.3 Simple Metrics 75
3.3.4 Compound Metrics 84
3.3.5 Minimal and Maximal Metrics 86

3.4 Summary 90
3.5 Technical Appendix 90
Contents

3.5.1 Remarks on the Axiomatic Construction of Probability Metrics 91
3.5.2 Examples of Probability Distances 94
3.5.3 Minimal and Maximal Distances 99

CHAPTER 4

Ideal Probability Metrics 103

4.1 Introduction 103
4.2 The Classical Central Limit Theorem 105
 4.2.1 The Binomial Approximation to the Normal Distribution 105
 4.2.2 The General Case 112
 4.2.3 Estimating the Distance from the Limit Distribution 118
4.3 The Generalized Central Limit Theorem 120
 4.3.1 Stable Distributions 120
 4.3.2 Modeling Financial Assets with Stable Distributions 122
4.4 Construction of Ideal Probability Metrics 124
 4.4.1 Definition 125
 4.4.2 Examples 126
4.5 Summary 131
4.6 Technical Appendix 131
 4.6.1 The CLT Conditions 131
 4.6.2 Remarks on Ideal Metrics 133

CHAPTER 5

Choice under Uncertainty 139

5.1 Introduction 139
5.2 Expected Utility Theory 141
 5.2.1 St. Petersburg Paradox 141
 5.2.2 The von Neumann–Morgenstern Expected Utility Theory 143
 5.2.3 Types of Utility Functions 145
5.3 Stochastic Dominance 147
 5.3.1 First-Order Stochastic Dominance 148
 5.3.2 Second-Order Stochastic Dominance 149
 5.3.3 Rothschild-Stiglitz Stochastic Dominance 150
 5.3.4 Third-Order Stochastic Dominance 152
 5.3.5 Efficient Sets and the Portfolio Choice Problem 154
 5.3.6 Return versus Payoff 154
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Probability Metrics and Stochastic Dominance</td>
<td>157</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
<td>161</td>
</tr>
<tr>
<td>5.6</td>
<td>Technical Appendix</td>
<td>161</td>
</tr>
<tr>
<td>5.6.1</td>
<td>The Axioms of Choice</td>
<td>161</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Stochastic Dominance Relations of Order n</td>
<td>163</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Return versus Payoff and Stochastic Dominance</td>
<td>164</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Other Stochastic Dominance Relations</td>
<td>166</td>
</tr>
</tbody>
</table>

CHAPTER 6

Risk and Uncertainty

6.1 Introduction | 171 |
6.2 Measures of Dispersion | 174 |
6.2.1	Standard Deviation	174
6.2.2	Mean Absolute Deviation	176
6.2.3	Semistandard Deviation	177
6.2.4	Axiomatic Description	178
6.2.5	Deviation Measures	179
6.3 Probability Metrics and Dispersion Measures	180	
6.4 Measures of Risk	181	
6.4.1	Value-at-Risk	182
6.4.2	Computing Portfolio VaR in Practice	186
6.4.3	Backtesting of VaR	192
6.4.4	Coherent Risk Measures	194
6.5 Risk Measures and Dispersion Measures	198	
6.6 Risk Measures and Stochastic Orders	199	
6.7 Summary	200	
6.8 Technical Appendix	201	
6.8.1	Convex Risk Measures	201
6.8.2	Probability Metrics and Deviation Measures	202

CHAPTER 7

Average Value-at-Risk

7.1 Introduction | 207 |
7.2 Average Value-at-Risk | 208 |
7.3 AVaR Estimation from a Sample | 214 |
7.4 Computing Portfolio AVaR in Practice | 216 |
7.4.1	The Multivariate Normal Assumption	216
7.4.2	The Historical Method	217
7.4.3	The Hybrid Method	217
7.4.4	The Monte Carlo Method	218
7.5 Backtesting of AVaR | 220 |
CONTENTS

9.7 Technical Appendix 304
 9.7.1 Deviation Measures and r.d. Metrics 305
 9.7.2 Remarks on the Axioms 305
 9.7.3 Minimal r.d. Metrics 307
 9.7.4 Limit Cases of $\mathcal{L}_p^*(X, Y)$ and $\Theta_p^*(X, Y)$ 310
 9.7.5 Computing r.d. Metrics in Practice 311

CHAPTER 10
Performance Measures 317

 10.1 Introduction 317
 10.2 Reward-to-Risk Ratios 318
 10.2.1 RR Ratios and the Efficient Portfolios 320
 10.2.2 Limitations in the Application of Reward-to-Risk Ratios 324
 10.2.3 The STARR 325
 10.2.4 The Sortino Ratio 329
 10.2.5 The Sortino-Satchell Ratio 330
 10.2.6 A One-Sided Variability Ratio 331
 10.2.7 The Rachev Ratio 332
 10.3 Reward-to-Variability Ratios 333
 10.3.1 RV Ratios and the Efficient Portfolios 335
 10.3.2 The Sharpe Ratio 337
 10.3.3 The Capital Market Line and the Sharpe Ratio 340
 10.4 Summary 343
 10.5 Technical Appendix 343
 10.5.1 Extensions of STARR 343
 10.5.2 Quasiconcave Performance Measures 345
 10.5.3 The Capital Market Line and Quasiconcave Ratios 353
 10.5.4 Nonquasiconcave Performance Measures 356
 10.5.5 Probability Metrics and Performance Measures 357

Index 361