Contents

Preface xiii
List of Contributors xvii
List of Abbreviations xix

1 Multivariate Images, Hyperspectral Imaging: Background and Equipment 1
Paul L. M. Geladi, Hans F. Grahn and James E. Burger

1.1 Introduction 1
1.2 Digital Images, Multivariate Images and Hyperspectral Images 1
1.3 Hyperspectral Image Generation 5
 1.3.1 Introduction 5
 1.3.2 Point Scanning Imaging 6
 1.3.3 Line Scanning Imaging 7
 1.3.4 Focal Plane Scanning Imaging 8
1.4 Essentials of Image Analysis Connecting Scene and Variable Spaces 9
References 14

2 Principles of Multivariate Image Analysis (MIA) in Remote Sensing, Technology and Industry 17
Kim H. Esbensen and Thorbjørn T. Lied

2.1 Introduction 17
 2.1.1 MIA Approach: Synopsis 18
2.2 Dataset Presentation 18
 2.2.1 Master Dataset: Rationale 18
 2.2.2 Montmorency Forest, Quebec, Canada: Forestry Background 19
2.3 Tools in MIA
2.3.1 MIA Score Space Starting Point 21
2.3.2 Colour-slice Contouring in Score Cross-plots: a 3-D Histogram 24
2.3.3 Brushing: Relating Different Score Cross-plots 24
2.3.4 Joint Normal Distribution (or Not) 26
2.3.5 Local Models/Local Modelling: a Link to Classification 27

2.4 MIA Analysis Concept: Master Dataset Illustrations 28
2.4.1 A New Topographic Map Analogy 28
2.4.2 MIA Topographic Score Space Delineation of Single Classes 31
2.4.3 MIA Delineation of End-member Mixing Classes 33
2.4.4 Which to Use? When? How? 38
2.4.5 Scene-space Sampling in Score Space 39

2.5 Conclusions 40
References 41

3 Clustering and Classification in Multispectral Imaging for Quality Inspection of Postharvest Products 43
Jacco C. Noordam and Willie H. A. M. van den Broek

3.1 Introduction to Multispectral Imaging in Agriculture 43
3.1.1 Measuring Quality 43
3.1.2 Spectral Imaging in Agriculture 44

3.2 Unsupervised Classification of Multispectral Images 46
3.2.1 Unsupervised Classification with FCM 46
3.2.2 FCM Clustering 47
3.2.3 cFCM Clustering 48
3.2.4 csiFCM 49
3.2.5 Combining Spectral and Spatial Information 51
3.2.6 sgFCM Clustering 52

3.3 Supervised Classification of Multispectral Images 54
3.3.1 Multivariate Image Analysis for Training Set Selection 55
3.3.2 FEMOS 57
3.3.3 Experiment with a Multispectral Image of Pine and Spruce Wood 58
3.3.4 Clustering with FEMOS Procedure 60
3.4 Visualization and Coloring of Segmented Images and Graphs: Class Coloring 62
3.5 Conclusions 64
References 65

4 Self-modeling Image Analysis with SIMPLISMA 69
Willem Windig, Sharon Markel and Patrick M. Thompson

4.1 Introduction 69
4.2 Materials and Methods 70
 4.2.1 FTIR Microscopy 70
 4.2.2 SIMS Imaging of a Mixture of Palmitic and Stearic Acids on Aluminum foil 71
 4.2.3 Data Analysis 73
4.3 Theory 73
4.4 Results and Discussion 75
 4.4.1 FTIR Microscopy Transmission Data of a Polymer Laminate 75
 4.4.2 FTIR Reflectance Data of a Mixture of Aspirin and Sugar 80
 4.4.3 SIMS Imaging of a Mixture of Palmitic and Stearic Acids on Aluminum Foil 80
4.5 Conclusions 85
References 87

5 Multivariate Analysis of Spectral Images Composed of Count Data 89
Michael R. Keenan

5.1 Introduction 89
5.2 Example Datasets and Simulations 92
5.3 Component Analysis 95
5.4 Orthogonal Matrix Factorization 96
 5.4.1 PCA and Related Methods 97
 5.4.2 PCA of Arbitrary Factor Models 102
 5.4.3 Maximum Likelihood PCA (MLPCA) 104
 5.4.4 Weighted PCA (WPCA) 105
 5.4.5 Principal Factor Analysis (PFA) 107
 5.4.6 Selecting the Number of Components 108
5.5 Maximum Likelihood Based Approaches 113
 5.5.1 Poisson Non-negative Matrix Factorization (PNNMF) 114
5.5.2 Iteratively Weighted Least Squares (IWLS) 117
5.5.3 NNMF: Gaussian Case (Approximate Noise) 118
5.5.4 Factored NNMF: Gaussian Case
 (Approximate Data) 119
5.5.5 Alternating Least Squares (ALS) 120
5.5.6 Performance Comparisons 121
5.6 Conclusions 124
Acknowledgements 125
References 125

6 Hyperspectral Image Data Conditioning and Regression
Analysis
James E. Burger and Paul L. M. Geladi

6.1 Introduction 127
6.2 Terminology 128
6.3 Multivariate Image Regression 128
 6.3.1 Regression Diagnostics 130
 6.3.2 Differences between Normal Calibration and
 Image Calibration 132
6.4 Data Conditioning 132
 6.4.1 Reflectance Transformation and Standardization 133
 6.4.2 Spectral Transformations 135
 6.4.3 Data Clean-up 137
 6.4.4 Data Conditioning Summary 138
6.5 PLS Regression Optimization 138
 6.5.1 Data Subset Selection 138
 6.5.2 Pseudorank Determination 139
6.6 Regression Examples 140
 6.6.1 Artificial Ternary Mixture 142
 6.6.2 Commercial Cheese Samples 146
 6.6.3 Wheat Straw Wax 149
6.7 Conclusions 150
Acknowledgements 152
References 152

7 Principles of Image Cross-validation (ICV): Representative
Segmentation of Image Data Structures
Kim H. Esbensen and Thorbjørn T. Lied

7.1 Introduction 155
7.2 Validation Issues 156
10 Multivariate Movies and their Applications in Pharmaceutical and Polymer Dissolution Studies

Jaap van der Weerd and Sergei G. Kazarian

10.1 Introduction

10.1.1 Introducing the Time Axis 222
10.1.2 Data Structure and Reduction 223
10.1.3 Compression of Spectra 224
10.1.4 Space Dimensions 227
10.1.5 Time Dimension 231
10.1.6 Simultaneous Compression of all Variables 235

10.2 Applications: Solvent Diffusion and Pharmaceutical Studies

10.2.1 Solvent Diffusion in Polymers 238
10.2.2 Optical and NMR Studies 242
10.2.3 Line Imaging 245
10.2.4 Global MIR Imaging Studies of Solvent Intake 246

10.3 Drug Release

10.3.1 ATR-FTIR Imaging 251

10.4 Conclusions

Acknowledgement 255
References 255

11 Multivariate Image Analysis of Magnetic Resonance Images: Component Resolution with the Direct Exponential Curve Resolution Algorithm (DECRA)

Brian Antalek, Willem Windig and Joseph P. Hornak

11.1 Introduction

11.2 DECRA Approach 264
11.3 DECRA Algorithm 269
11.4 1H Relaxation 270
11.5 T_1 Transformation 271
11.6 Imaging Methods 271
11.7 Phantom Images

11.7.1 T_2 Series 273
11.7.2 T_1 Series 277

11.8 Brain Images

11.8.1 T_2 Series 278
11.8.2 T_1 Series 281

11.9 Regression Analysis 282

11.10 Conclusions 285

References 285
12 Hyperspectral Imaging Techniques: an Attractive Solution for the Analysis of Biological and Agricultural Materials

Vincent Baeten, Juan Antonio Fernández Pierna and Pierre Dardenne

12.1 Introduction
12.2 Sample Characterization and Chemical Species Distribution
 12.2.1 Analysis of Fruit
 12.2.2 Analysis of Kernels
 12.2.3 Analysis of Food and Feed Mixtures
12.3 Detecting Contamination and Defects in Agro-food Products
 12.3.1 Detecting Contamination in Meat Products
 12.3.2 Detecting Contamination and Defects in Fruit
 12.3.3 Detecting Contamination and Defects in Cereals
 12.3.4 Detecting Contamination in Compound Feed
12.4 Other Agronomic and Biological Applications
12.5 Conclusion
References

13 Application of Multivariate Image Analysis in Nuclear Medicine: Principal Component Analysis (PCA) on Dynamic Human Brain Studies with Positron Emission Tomography (PET) for Discrimination of Areas of Disease at High Noise Levels

Pasha Razifar and Mats Bergström

13.1 Introduction
13.2 PET
 13.2.1 History
 13.2.2 Principles
 13.2.3 Scanning Modes in PET
 13.2.4 Analysis of PET Data/Images
13.3 PCA
 13.3.1 History
 13.3.2 Definition
 13.3.3 Pre-processing and Scaling
 13.3.4 Noise Pre-normalization
<table>
<thead>
<tr>
<th>13.4</th>
<th>Application of PCA in PET</th>
<th>322</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.1</td>
<td>SWPCA</td>
<td>323</td>
</tr>
<tr>
<td>13.4.2</td>
<td>VWPCA</td>
<td>326</td>
</tr>
<tr>
<td>13.4.3</td>
<td>MVWPCA</td>
<td>327</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusions</td>
<td>330</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Near Infrared Chemical Imaging: Beyond the Pictures</th>
<th>335</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. Neil Lewis, Janie Dubois, Linda H. Kidder and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kenneth S. Haber</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>335</td>
</tr>
<tr>
<td>14.2</td>
<td>Data Measurement</td>
<td>338</td>
</tr>
<tr>
<td>14.3</td>
<td>Selection of Samples and Acquisition Schemes</td>
<td>340</td>
</tr>
<tr>
<td>14.4</td>
<td>What, How Much and Where</td>
<td>343</td>
</tr>
<tr>
<td>14.5</td>
<td>Data Analysis and the Underlying Structure of the Data</td>
<td>344</td>
</tr>
<tr>
<td>14.6</td>
<td>Imaging with Statistically Meaningful Spatial Dimensions</td>
<td>348</td>
</tr>
<tr>
<td>14.7</td>
<td>Chemical Contrast</td>
<td>350</td>
</tr>
<tr>
<td>14.8</td>
<td>Measure, Count and Compare</td>
<td>355</td>
</tr>
<tr>
<td>14.9</td>
<td>Correlating Data to Sample Performance and/or Behavior: the Value of NIRCI Data</td>
<td>359</td>
</tr>
<tr>
<td>14.10</td>
<td>Conclusions</td>
<td>360</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>361</td>
</tr>
</tbody>
</table>

| Index | | 363 |