Index

a
absorption spectroscopy 62, 327, 694, 696, 778, 789, 805, 931
– ultraviolet–visible (UV–vis) 343–348
– X-ray absorption 358, 360
acoustic phonons 777
adatom 670, 750–754, 828, 851, 853, 857, 861, 862
– and rest atom model 847–849
adsorbate-induced reconstruction 493, 550.
 See also adsorbate-induced relaxation
adsorbate-induced relaxation
– surface relaxation change 550–551
– surface restructuring 551
– – reconstruction creation 551–552
– – reconstruction lifting and reconstruction switch 552–555
adsorbate states 660–661
adsorption 9–10
agreement factor 406
American Vacuum Society (AVS) 243
angle-resolved photoemission spectroscopy (ARPES) 63, 152, 186, 208, 605, 607, 627, 631
– for band mapping and Fermi surface mapping on surfaces 190–199
anisotropy 55–57
– magnetic, and magnetization distribution 724–726
– – dipolar/shape anisotropy and magnetocrystalline anisotropy 726–729
– – magnetization distribution imaging and magnetic domains at surfaces 734–737
– – magnetization distribution, magnetic domains, and domain walls at surfaces 732–733
– – thin films and surface magnetic determination and experimental determination 730–732
– Néel-type 728
– uniaxial 710, 724
annealing 89
antiphase domains 517
antisymmetry, of wave function 21
asymmetric dimer model (ADM) 45–46
asymmetric environment 4, 6
atomic basis 502
atomic force microscopy, (AFM). See scanning force microscopy (SFM)
atomic force microscopy, (AFM). See also National Institute of Standards and Technology (NIST), US and AES and XPS
Auger electron spectroscopy 177–179
Auger electron spectroscopy (AES) 154, 215–217.
 See also National Institute of Standards and Technology (NIST), US and AES and XPS
Auger yield 361
average t-matrix approximation (ATA) 135
Azimuthal angle scan 156, 165, 168, 284, 285, 405, 420, 562
– recoils and 291–295
– using shadow cone 290–291

b
backscattering correction factors (BCFs) 247–248
bake-out procedure 81
ballistic electron emission microscopy (BEEM) 436
band gap 819
band narrowing 61
band structures and Bloch functions 561–565
basis sets and electron–ion interactions 25–26
Bessel function 112
Bethe–Salpeter (BS) equation 643
bias enhanced nucleation (BEN) 900
biomolecules, at metal surfaces 334–343
Bloch’s theorem 24
Bloch equations, optical 265, 266
Bloch law 721
Bloch walls 733, 734
blocking 300
body-centered cubic 14–15
Boltzmann equation 219
bond-breaking reconstructions 490, 527, 534, 536–543
bond counting picture 823, 825, 827
bond-creating reconstructions 490, 534, 536–543
Born–Oppenheimer approximation 18, 21
boundary value analysis method 320
Bragg component 414, 416, 418, 421
Bragg condition 109
Bragg peaks 109, 187
Bravais lattice 14, 497, 498, 499–500
– real space and 105
Bravais–Miller indices 495
bridge bond 45, 857
Brillouin light scattering 716
bulk phonon dispersion 790
bulk states 648–649
bulk X-ray crystallography 376–378, 410

calcite 463–464
Cartesian components 104
characteristic frequencies. See group
frequencies
charge-coupled devices (CCDs) 345
charge density wave (CDW) 624, 629, 630
chemically disordered metallic compounds 528–530
chemically ordered metallic compounds 527–528
chemical ordering 492
chemical reconstruction 492
chemical shift 169–171
chemical superstructure 492
chemical tensor LEED 134–135
chemical vapor deposition (CVD) 893, 897, 898, 899, 901, 902, 906
closed-loop refrigerators 90
cohesive energies 15–16
coincidence lattice 116, 518–519
cold-cathode gauges 86
commensurate superlattice. See coincidence lattice
Common Data Processing System 243
complex molecule adsorption, at surfaces 330–331
complex molecules, RAS of 355–357
compound semiconductors 530–532
compression pumps. See gas transfer pumps
condensed phase DFT calculations 24–26
conductance 78, 79
conduction band minimum (CBM) 906
confined electron spectroscopy 668
Connes advantage 323
constant-current mode 428
constant-height mode 428, 450
contact potential difference (CPD) 452
crystal, schematic 3
crystalline solids 13–15
– bonding and
– elemental covalent solid cohesive properties 35–37
– metal cohesive properties 31–33
– metals 26–27
– semiconductors and covalent bonding 33–35
cryogenic pumps 84
cryostats 90
cryosorption pump 83, 84
– simple metals and jellium 28–29
– transition metals and tight binding 29–31
– bond types 16–18
– cohesive energies 15–16
– density functional theory (DFT)
– approximations for exchange and
correlation 21–24
– condensed phase calculations 24–26
– theoretical framework 18–21
– surface electronic structure 57, 67
– Jellium surfaces 57–61
– surface states 63–65
– transition metal surfaces 61–63
– surface energies 66
– anisotropy 55–57
– cohesive energies and 53–55
– experimental considerations 49–52
– theoretical considerations 52–53
– surface structure 37–39, 66
– – surface reconstruction 40–49
– – surface relaxation 39–40
crystallographic directions 495
– crystallographic two-dimensional point groups 500–502
crystal truncation rods 379–382
Curie temperature 681, 717, 723
dangling bonds 5, 6, 44, 89, 534, 823, 837, 851
Debye model 792
Debye–Waller factor 112, 388
delocalization, of electrons 26
density functional theory (DFT)
– approximations for exchange and correlation 21–24
– condensed phase calculations 24–26
– local density approximation (LDA) and 568–570
– theoretical framework 18–21
density matrix formalism 265
density of states (DOS) 27, 433, 683, 684, 685, 700, 705, 711
depth distribution function (DDF) 218–222
detuning. See frequency shift
Dewar-Chatt-Duncanson (DCD) model 331
diamond surfaces 15
– low index surface atomic and electronic structure 902
– diamond (100) surface 902–909
– diamond (110) surface 914–916
– diamond (111) surface 909–914
– hydrocarbon contaminants and surface core level shifts 916–917
– reconstructions and surface states 917–918
– from negative to positive electron affinity 918–927
– preparation 901–902
– properties 889–896
– synthesis from gas phase 897–901
– yield spectroscopy 927–936
differential cross sections (DCSs) 239
diffraction rods 379, 381, 387, 388, 389–392, 394, 396, 422
dimer-adatom-stacking (DAS) 437, 758
dimerisation 827, 829, 831, 832, 833–834, 837–844, 846, 853, 858, 859, 866, 869
dipolar/shape anisotropy and magnetocrystalline anisotropy 726–729
dipolar coupling 327
dipole–dipole interaction 683
dipole scattering 783
dipole selection rules 158
Dirac-Hartree-Fock (DHF) 239
disordered magnetic moments 718
displacive reconstruction 490
– at constant layer density 41
double diffraction spots 129
double scattering 283, 284–286
double toroidal analyzer 277
down atom 837
dynamical scattering 114–115
– of atom 119–123
effective attenuation length (EAL) 222, 223, 224, 233–238
effective negative electron affinity 919
elastic-backscattering probability 226
elastic interband scattering 658–659
elastic intraband scattering 659–660
elastic-peak electron spectroscopy (EPES) experiments 226, 227, 228
elastic scattering 105
electric dipole 59
electrochemical scanning tunneling microscope (ECSTM) 431, 443, 444
electron attenuation 93
electron capture spectroscopy (ECS) 693
electron–defect interaction 653–655, 672–673
electron–defect scattering 638
electron-density difference map 410
electron dynamics, at surfaces 637–640
– electron–defect interaction 672–673
– electron–electron interaction
– – image-potential states 671
– – Shockley surface states 670–671
– electron–phonon interaction 671–672
– energy-resolved measurements
– – photoemission lineshape analysis 663–667
– – scanning tunneling spectroscopy 667–668
– – spatially-resolved measurements 668–669
– – scattering patterns at steps 669–670
– – scattering patterns in adatom arrays 670
– theoretical description 641
– electron–defect interaction 653–655
– electron–electron interaction 641–649
– electron–phonon interaction 649–652
electron dynamics, at surfaces (contd.)
 – time-resolved measurements
 – – adsorbate states 660–661
 – – hot electrons lifetimes 662–663
 – – image-potential states 655–660
 – – semiconductor surface states 661–662
 – – Shockley surface states 655
 – semiconductor surface states 661–662
 – – image-potential states 655–660
 – – Shockley surface states 655
 – – semiconductor surface states 661–662
 – – electron dynamics, of colloidal systems 347
Electron Effective-Attenuation-Length Database 220, 235
Electron Elastic-Scattering Cross-Section Database (SRD 64) 220, 239
electron–electron Coulomb repulsion 21
electron–electron interaction
 – bulk states 648–649
 – electron self-energy 646–647
 – GW method 642–643
 – GW + T method 643
 – homogeneous electron gas 647
 – image-potential states 671
 – screened interaction 643–646
 – Shockley surface states 670–671
 – surface states 647–648
electron–electron scattering 637–638
electron energy loss spectroscopy (EELS) 753, 754
electron gas model (EGM) 648
electronic band structure 564
electronic structures, surface-specific 8
Electron Inelastic-Mean-Free-Path Database 227
electron–nuclei interaction 20
electron–phonon coupling 666–667
electron–phonon interaction 649–652, 671–672
electron–phonon scattering 638
electron–phonon system 200
electron scattering 783. See also low-energy electron diffraction (LEED)
electron self-energy 646–647
electron spectroscopy for chemical analysis (ESCA) 152
electron transfer 638
electron transport 220, 239, 248
elemental covalent solid cohesive properties 35–37
elemental metals
 – multilayer relaxation 520–524
 – registry shifts 524–525
elemental semiconductor surfaces 525–527, 815–816
 – bulk properties
 – – bulk electronic properties 818–823
 – – covalent bonding and crystal lattice 816–818
 – stepped surfaces 863–864
 – – Si(001) surface 864–873
 – surface phonons 873–877
 – surface photovoltage 883–884
 – surface states and band bending 879–883
 – surface structure
 – – basic considerations 823, 825–828
 – – Jahn–Teller instability 828–831
 – – Si(001) surface structure 831–844
 – – Si(001)-(2×1) surface electronic structure 857–859
 – – Si(111) and Ge(111) surface structure 844–855
 – – Si(111)-(2×1) surface electronic structure 859–860
 – – Si(111)-(7×7) surface electronic structure 860–863
 – work function 878
Eliashberg function 650, 651
empirical DFT functionals 22
energy band 563
energy-resolved spectroscopy 256–258
equation of state (EOS) 15–16
ethylene adsorption, low-temperature 331–334
evanescent adsorption 127
even modes 811
Ewald-sphere construction
 – – for normal incidence of primary beam 106
 – – for two different electron energies 105
Ewald summation 457
exchange-correlational functional 21–24
exchange splitting 718
extended X-ray adsorption fine structure (EXAFS) 357–358, 360, 361
external potential 20
extreme high vacuum (XHV) conditions 73
f
Fabry–Perot resonator 444
face-centered cubic (fcc) 15
facilitated dewetting 467
Fermi’s golden rule 156, 359
Fermi energy 572
Fermi level pinning 881
ferromagnetic resonance (FMR) 715
ferromagnets 681, 684
Fick’s law of diffusion 748
field effect transistors (FETs) 893
<table>
<thead>
<tr>
<th>Index</th>
<th>945</th>
</tr>
</thead>
<tbody>
<tr>
<td>field emission microscope (FEM)</td>
<td>748</td>
</tr>
<tr>
<td>field ion microscope (FIM)</td>
<td>749</td>
</tr>
<tr>
<td>first Brillouin zone</td>
<td>563</td>
</tr>
<tr>
<td>first principles theory</td>
<td>55</td>
</tr>
<tr>
<td>flotation</td>
<td>10</td>
</tr>
<tr>
<td>flow cryostats</td>
<td>430</td>
</tr>
<tr>
<td>fluorescence yield</td>
<td>361</td>
</tr>
<tr>
<td>force–distance curve</td>
<td>446</td>
</tr>
<tr>
<td>force theorem</td>
<td>729</td>
</tr>
<tr>
<td>forward focusing</td>
<td>180</td>
</tr>
<tr>
<td>Fourier filtering</td>
<td>375</td>
</tr>
<tr>
<td>Fourier-transform (FT) IR spectrometers</td>
<td>322</td>
</tr>
<tr>
<td>fractional coordinates</td>
<td>377</td>
</tr>
<tr>
<td>fractional-order rods. See superstructure rods</td>
<td></td>
</tr>
<tr>
<td>Franck–Condon principle</td>
<td>174, 175</td>
</tr>
<tr>
<td>– envelope function and</td>
<td>176</td>
</tr>
<tr>
<td>free-electron final-state approximation</td>
<td>192</td>
</tr>
<tr>
<td>Frenkel–Kontorova model</td>
<td>759</td>
</tr>
<tr>
<td>frequency shift</td>
<td>450</td>
</tr>
<tr>
<td>Friedel oscillations</td>
<td>565–568, 748</td>
</tr>
<tr>
<td>– consequences of</td>
<td>570–582</td>
</tr>
<tr>
<td>Friedel’s rule</td>
<td>378</td>
</tr>
<tr>
<td>frozen orbital state</td>
<td>157</td>
</tr>
<tr>
<td>Fuchs–Klewer phonon</td>
<td>801</td>
</tr>
<tr>
<td>full-potential linearized augmented plane-wave (FP-LAPW) method</td>
<td>26, 687, 700</td>
</tr>
<tr>
<td>gas capture pumps</td>
<td>83</td>
</tr>
<tr>
<td>gas exposure</td>
<td>76–78</td>
</tr>
<tr>
<td>gas transfer pumps</td>
<td>83</td>
</tr>
<tr>
<td>gauge</td>
<td>85–86</td>
</tr>
<tr>
<td>GAUSSIAN software package</td>
<td>313</td>
</tr>
<tr>
<td>generalized gradient approximation (GGA)</td>
<td>23, 31, 33, 36, 52</td>
</tr>
<tr>
<td>geometrical tensor LEED</td>
<td>131–133</td>
</tr>
<tr>
<td>geometric reconstruction, of clean surfaces</td>
<td>532</td>
</tr>
<tr>
<td>– bond-breaking and bond-creating reconstruction</td>
<td></td>
</tr>
<tr>
<td>–– compound surfaces</td>
<td>542–543</td>
</tr>
<tr>
<td>–– elemental surfaces</td>
<td>536–542</td>
</tr>
<tr>
<td>– elemental surface displacive reconstruction</td>
<td>532–536</td>
</tr>
<tr>
<td>Gibbs surface free energy (G*)</td>
<td>49</td>
</tr>
<tr>
<td>glide symmetry</td>
<td>502, 503, 504</td>
</tr>
<tr>
<td>grazing incident X-ray scattering (GIXS)</td>
<td>754</td>
</tr>
<tr>
<td>ground-state electronic wave function</td>
<td>20</td>
</tr>
<tr>
<td>group frequencies</td>
<td>313</td>
</tr>
<tr>
<td>GW + T method</td>
<td>643</td>
</tr>
<tr>
<td>GW method</td>
<td>641, 642–643</td>
</tr>
<tr>
<td>Hamiltonian</td>
<td>18, 19, 20</td>
</tr>
<tr>
<td>Hankel function</td>
<td>120</td>
</tr>
<tr>
<td>hard X-ray photoemission spectroscopy (HAXPES)</td>
<td>186</td>
</tr>
<tr>
<td>Hartree energy</td>
<td>21</td>
</tr>
<tr>
<td>Hartree–Fock approximation (HFA)</td>
<td>620</td>
</tr>
<tr>
<td>Heisenberg model</td>
<td>681, 718</td>
</tr>
<tr>
<td>helium atom scattering (HAS)</td>
<td>749, 754, 778, 784–788</td>
</tr>
<tr>
<td>Hellmann–Feynman theorem</td>
<td>580, 581</td>
</tr>
<tr>
<td>hemispherical energy analyzer</td>
<td>277</td>
</tr>
<tr>
<td>herring bone reconstruction</td>
<td>42</td>
</tr>
<tr>
<td>herringbone reconstruction</td>
<td>438, 534</td>
</tr>
<tr>
<td>Hertz–Knudsen formula</td>
<td>77</td>
</tr>
<tr>
<td>heterogeneous catalysis</td>
<td>10</td>
</tr>
<tr>
<td>hexagonal close packed (hcp)</td>
<td>15</td>
</tr>
<tr>
<td>hex phases</td>
<td>42</td>
</tr>
<tr>
<td>highly oriented pyrolytic graphite (HOPG)</td>
<td>89</td>
</tr>
<tr>
<td>high pressure high temperature (HPHT)</td>
<td>897</td>
</tr>
<tr>
<td>high-resolution electron energy-loss spectroscopy (HREELS)</td>
<td>175, 756, 778, 779–784, 807</td>
</tr>
<tr>
<td>high-resolution low-energy electron diffraction (HRLEED)</td>
<td>750</td>
</tr>
<tr>
<td>hindered rotations</td>
<td>316</td>
</tr>
<tr>
<td>hindered translations</td>
<td>316</td>
</tr>
<tr>
<td>Hohenberg–Kohn theorem</td>
<td>20</td>
</tr>
<tr>
<td>Hooke’s law</td>
<td>447</td>
</tr>
<tr>
<td>hot-cathode gauges</td>
<td>86</td>
</tr>
<tr>
<td>hot electrons lifetimes</td>
<td>662–663</td>
</tr>
<tr>
<td>hot filament chemical vapor deposition (HFCVD)</td>
<td>898</td>
</tr>
<tr>
<td>hybrid functionals</td>
<td>23–24</td>
</tr>
<tr>
<td>hybridization</td>
<td>34</td>
</tr>
<tr>
<td>– energy</td>
<td>34</td>
</tr>
<tr>
<td>hybridized orbitals</td>
<td>816</td>
</tr>
<tr>
<td>hydrocarbon adsorption, at metal surfaces</td>
<td>331</td>
</tr>
<tr>
<td>hydrogen bonding</td>
<td>17</td>
</tr>
<tr>
<td>H₂-dissociation</td>
<td>615–616</td>
</tr>
<tr>
<td>ideal gas</td>
<td>74, 75–76</td>
</tr>
<tr>
<td>ideal surface</td>
<td>823</td>
</tr>
<tr>
<td>image charge</td>
<td>253, 254</td>
</tr>
<tr>
<td>image-potential states</td>
<td>253–256, 590–592, 655–657, 671</td>
</tr>
<tr>
<td>– elastic interband scattering</td>
<td>658–659</td>
</tr>
<tr>
<td>– elastic intraband scattering</td>
<td>659–660</td>
</tr>
<tr>
<td>– momentum dependence of lifetimes</td>
<td>657–658</td>
</tr>
</tbody>
</table>
impact collision ion scattering spectrometry 287
impact-collision ion scattering spectroscopy (ICISS) 755
impact scattering 783
importance, of surfaces and interfaces 9–12
incommensurate superlattice 116, 519–520
indirect exchange coupling 682
inelastic electron scattering 217, 222, 223, 224, 225, 226, 237, 243
inelastic electron tunneling spectroscopy (IETS) 435–436, 440, 789
inelastic mean free path (IMFP) 219, 221, 222, 223, 224–228
information depth 222, 229–233
infrared absorption spectroscopy (IRAS) 778, 789
inner potential 108
inner work function 572
instrumental transfer width 114
interface diffraction 386–389
interferometry 322–323
internal conversion 698
International Union of Crystallography (IUC) 14
intralayer (multiple) scattering 124, 125
intrinsic diffusion 746
inverse photoelectron spectroscopy (IPES) 753
ionic bonding 17
ionization gauges 86
ion pump 84
ion scattering spectrometry (ICISS) 282
ion scattering spectroscopy (ISS) 269
– composition and structure
 – concentration 272–275
 – element identification 270–272
 – structure 275–276
– equipment 276–278
– low-energy ion scattering
 – compositional analysis 278–283
 – structure analysis 283–297
– macroscopic damage 308
– medium-energy ion scattering (MEIS) 297–298
 – compositional analysis 298
 – surface crystal structure, reconstruction, and relaxation 300–304
 – thin layer analysis 298–300
– radiation damage and sputtering 306–308
– secondary electron emission 304–306
ion-sensitive FETs (ISFETs) 893
Ising model 709, 723
J
Jahn–Teller instability 828–831
jellium model 28–29, 57–61, 565
k
Kelvin method 578
Kelvin probe force microscopy (KPFM) 451, 452, 453, 459
Kerr rotation 731
kinematic approximation, spot intensities in 106–114
kinetic energy 75, 76, 77, 91
Kirchhoff’s laws 79
Knudsen cell 90
Kohn anomaly 797
Kohn–Sham equations 21, 25
Koopman’s theorem 157
Kronig–Penney model 203
l
lateral manipulation 436
layer doubling (LD) method 95, 127
linear chain 626, 790, 830
– surface modes 774–778
– vibrations of 773–774
linear magnetic dichroism in angular distribution (MLDAD) 691, 693, 702
linear response theory (LRT) 622
liquid interface composition 281–283
local-band theory 718
local density approximation 568
local-density approximation (LDA) 22–23, 31, 36, 52, 56, 59, 568–570, 687
local density of states (LDOS) 433, 434, 435, 570, 707, 708, 737
localized surface modes 875
localized surface plasmon resonance (LSPR) 346
low-energy electron diffraction (LEED) 40, 41, 43, 329, 375–376, 489, 526, 579, 627, 753, 782, 786, 831, 834, 836
– basic experimental equipment 96–98
– historical development 93–96
– intensity measurement 98–100
– multiple scattering and dynamical intensities 118–119
 – dynamical diffraction and LEED pattern 129–130
 – dynamical diffraction of atomic layer 123–125
 – dynamical diffraction of full surface 125–129
Index

– dynamical scattering of atom 119–123
– patter and intensity
– coherent electron beam and periodic surface 101–106
– finite coherence and nonideal sample 114–115
– kinematic approximation and spot intensities 106–114
– superlattices and domains 115–117
– practical limitations 145–146
– direct methods 146–148
– structure determination 136
– accuracy, precision, and elemental sensitivity 141–145
– reliability factor 137–139
– structural search 139–140
– surface sensitivity 100–101
– tensor 130–131
– chemical tensor LEED 134–135
– geometrical tensor LEED 131–133
– thermal tensor LEED 135
low-energy electron microscope (LEEM) 94
low-energy ion scattering (LEIS) 269, 275, 306, 749
– compositional analysis 278–283
– structure analysis 283–284
– application of structure and composition techniques to Cu3Pt(111) 295–297
– Azimuthal angle scan of recoils 291–295
– Azimuthal angle scan using shadow cone 290–291
– double scattering 284–286
– polar angle scan using shadow cone 286–290
low-temperature scanning tunneling microscopes (LT-STM) 430, 435, 439, 440

m
magnetic dichroism in angular distribution (MDAD) 691
magnetic excitations 714
– spin waves 714–717
– thermally excited spin waves at surfaces 717–718
– thermally excited spin waves in ultrathin ferromagnetic films 721–724
magnetic hyperfine field at surfaces, experimental methods probing 697–700
magnetic moment 19, 679, 680, 681–685, 718
– Fe surfaces 700–704
– Fe ultrathin films 709–715
– surfaces and ultrathin films 685–688
magnetization distribution
– imaging and magnetic domains at surfaces 734–737
– magnetic domains, and domain walls at surfaces 732–733
magnetization-induced second-harmonic generation (MSHG) 688
magnetocrystalline anisotropy energy (MAE) 727, 729
magnetocrystalline volume anisotropy 728, 729
magneto-optical Kerr effect (MOKE) method 730, 731
MARVIN computer code 457
mass transfer 746
matrix notation 516
mean escape depth (MED) 222, 229–233
mean free path length 76
medium-energy ion scattering (MEIS) 269, 275, 297–298, 755, 763, 764
– compositional analysis 298
– electrostatic analyzer 277
– surface crystal structure, reconstruction, and relaxation 300–304
– thin layer analysis 298–300
meta-generalized gradient approximation 23, 31, 36
metal cohesive properties and bonding 31–33
metallic bonding 17, 26–27
metallic compounds
– chemically disordered 528–530
– chemically ordered 527–528
metallic substrates 629–632
metal surfaces, electronic structure of
– band structures and Bloch functions 561
– Friedel oscillations 565–566
– density functional theory (DFT) and local density approximation (LDA) 568–570
– dimensionality reduction and electron correlation 618–619
– electron interaction and correlation 619–620
– model systems on surfaces 626–632
– screening, plasmons, and quasi-particles 620–626
– Friedel oscillations 565–568
– consequences of 570–582
– periodic potential 582–583
– image-potential surface states 590–592
metal surfaces, electronic structure of (contd.)
– nearly-free electron approximation 583–585
– projector–operator technique 601–604
– Shockley surface states 587–589
– Tamm surface states 596–601
– three-dimensional case 592–595
– wave function matching and phase-accumulation model 585–586
– surface states
– experimental observation of 605–609
– influence on metal surfaces 612–618
– modification 609–612
metal-surface selection rule 319
microfacet notation 509–510
microwave chemical vapor deposition (MWCVD) 898
Miller–Bravais indices 495
Miller indices 495
mirror lines 498
mirror symmetry 499
missing row reconstruction of fcc (110) surfaces 43
model systems, on surfaces 626–632
mode softening 797
modified Pandey model 540
molecular flow conditions 76
molecular pumps 84
Moliere potential 273
Monte Carlo simulations 765
Mott polarimeter 205
muffin-tin constant 123
muffin-tin potential 123
multiple diffraction spots 129
multiple electron capture spectroscopy (MECS) 693
multiple scattering and dynamical intensities 118–119
– dynamical diffraction and LEED pattern 129–130
– dynamical diffraction of atomic layer 123–125
– dynamical diffraction of full surface 125–129
– dynamical scattering of atom 119–123
multiplex (Fellgett) advantage 323
n
nanobiosensors 345–346
nanosized materials 10–11, 11
nanotribology 449
National Institute of Standards and Technology (NIST), US and AES and XPS 218
– additional data and software 241, 243
– Database, for Simulation of Electron Spectra for Surface Analysis (SESSA) (SRD 100), 237, 239, 241
– database, relevant to AES and XPS surface sensitivity
– depth distribution function (DDF) 218–222
– effective attenuation length 233–238
– inelastic mean free path 224–228
– mean escape depth and information depth 229–233
– parameters defining surface sensitivity 222–223
– Electron Effective-Attenuation-Length Database 220, 235
– Electron Elastic-Scattering Cross-Section Database (SRD 64) 220, 239
– Electron Inelastic-Mean-Free-Path Database 227
– selected relevant standards from ASTM International 244
– selected standards and technical reports from International Organization for Standardization 245–246
– standards 243–247
– X-Ray Photoelectron Spectroscopy Database (SRD 20) 238–239
near-edge X-ray absorption fine structures (NEXAFS) 357–358, 905, 906, 907, 908
– examples, in surface structure determination 363–369
– instrumentation 361–363
– theoretical considerations 358–361
nearly-free electron (NFE) approximation 583–585
Néel temperature 681
Néel-type anisotropy 728
Néel walls 733
negative electron affinity (NEA) 893, 918, 919, 928
negative ion resonance, scattering via 784
neutral projectile impact collision ion scattering spectrometry 282–283
non-empirical DFT functionals 22
noninteracting reference system 20
normal-incidence X-ray standing wave (NIXSW) method 187–189
Index

o
one-dimensional potential 255
optical phonons 777
optical potential 108
optical spectroscopies 350
optical theorem 122
order of commensurability 516
oscillatory relaxations 580–581

p
Patterson function 410, 411
Pauli’s principle 681, 682, 683
Pauli correlation 22
peculiarities, of surfaces 1–9
Peierls instability 797
Penn gap 893
perfect nesting 623
periodic crystals 14
periodicity and simulation cells 24–25
periodic potential 582–583
– image-potential surface states 590–592
– nearly-free electron approximation 583–585
– projector–operator technique 601–604
– Shockley surface states 587–589
– Tamm surface states 596–601
– three-dimensional case 592–595
– wave function matching and phase-accumulation model 585–586
perpendicular magnetic anisotropy (PMA) 727
perpendicular magnetization 732
phase boundaries 1
phase shifts, temperature-corrected 122
phonon–polariton coupling 798–802
phonons at covalently bonded surfaces 802–811
photodiodes 345
photoelastic modulator (PEM) 350
photoelectron microscopy (PEEM) 749
photoelectron spectroscopy and diffraction 151
– Auger electron spectroscopy 177–179
– instrumentation
– – electron energy analyzers 162–165
– – light sources, including synchrotron radiation 161–162
– – sample environment 165–166
– from photoelectric effect to 151–152
– photoemission matrix element 155–161
– photoemission spectrum 152–155
– photoexcitation by X-ray standing waves (XSW) 187–189
– ultraviolet photoelectron spectroscopy (UPS)/angle-resolved photoemission spectroscopy (ARPES)
– – ARPES for band mapping and Fermi surface mapping on surfaces 190–199
– – extrinsic contributions to line shapes and widths 202–204
– – spectral functions and many-body effects 199–202
– – spin polarimetry 205–207
– – spin-polarized photoelectron spectroscopy 204–205
– – spin structure measurement in reciprocal space 207–210
– – work function measurement 189–190
– valence band XPS and resonant photoemission 186–187
– X-ray electron spectroscopy 166
– – core-level spectra, chemical shifts, and satellites 169–177
– – quantifying elemental concentrations and surface cleanliness 166–169
– X-ray photoelectron diffraction/Auger electron diffraction 179–186
photoemission electron microscopes (PEEM) 164
photoemission lineshape analysis 663–665
– defects influence 665–666
– electron–phonon coupling 666–667
photoemission matrix element 155–161
photoemission microspectroscopy 164
photoemission of adsorbed xenon (PAX) method 579
photoemission spectroscopy (PES) 690, 705, 907
photoexcitation, by X-ray standing waves (XSW) 187–189
photomultipliers 345
photon-based methods
– near-edge X-ray absorption fine structures (NEXAFS) 357–369
– reflection–absorption infrared spectroscopy (RAIRS) 311–343
– reflection anisotropy spectroscopy 348–357
– ultraviolet–visible (UV–vis) absorption spectroscopy 343–348
physiosorption 613–614
π-bonded chain model 47–48
Pirani gauges 85
plane groups 502–505
point symmetry 498
Index

positive electron affinity (PEA) 919
projected bulk band structure (PBS) 592
projector-augmented wave (PAW) potential 26
projector–operator technique 601–604
pseudopotential (PP) 26
pumping 78–80
– equation 80
– speed 78
– systems 81, 83–85
pure dephasing 653, 654
quadrupol mass spectrometers 87
quantitative surface analysis. See National Institute of Standards and Technology (NIST), US and AES and XPS
quantum defect 256
quantum well states (QWS) 729
quartz microbalance 90
QUASES software 243
quasi crystals 14
quasi-elastic approximation 650
quasi-particle peak 201
quasi-particles (QPs) 605, 618, 625, 628, 638, 640, 642
radial wave functions 158, 159
radiation 151, 152, 155, 156, 157, 161, 178, 186, 190
– damage and sputtering 306–308
– synchrotron 161, 171, 187, 194, 361, 375, 421, 422
random-phase approximation (RPA) 621
rational directions. See crystallographic directions
Rayleigh phonon 790, 791–796, 803
Rayleigh surface mode 652
Rayleigh wave 873
real gas 74
reciprocal lattice 104, 105, 106, 108, 109
– vectors 103
reciprocal unit-cell vectors 104
reflection–absorption infrared spectroscopy (RAIRS) 311
– adsorbed species on metal surfaces and 325–343
– adsorbed species vibrations 314–316
– current status and future 343
– experimental considerations 320–325
– IR spectroscopy basic principles 311–314
– metal surfaces and 316–320
reflection anisotropy spectroscopy (RAS) 348–350
– instrumentation 350–352
– spectra interpretation 352–357
reflectivity 380, 396
– specular 396–400
renormalized forward scattering (RFS) 95, 127
residual gas analyzer (RGA) 87
resonant photoemission 187
rest atom 848, 849, 851, 861, 862
– adatom model and 847–849
retarding field analyzer (RFA) 97
roasting 89
root-mean-square (RMS) uncertainty 225
rotary vane pumps 83
rotational symmetry 499
roughening pumps 83
roughening temperature 756, 761–762, 762
roughening transition 745, 756, 760, 761, 762, 864, 869
rough gauge 85
row pairing 463
Rutherford backscattering spectrometry (RBS) 269
sagittal plane 873
satellites, vibrational 174
scanning electron microscopy (SEM) 749
scanning electron microscopy with polarization analysis (SEMPA) 734
scanning force microscopy (SFM) 427
– basic principles and apparatus 444–453
– capabilities 458–459
– case studies 460–472
– theory 454–458
scanning probe microscopes (SPMs) 427
scanning probe techniques 427. See also scanning force microscopy; scanning tunneling microscopy
– outlook 472–473
scanning tunneling microscopy (STM) 139, 427, 569, 640, 747, 749, 750, 751, 810, 822, 834, 835, 861, 862
– basic principles and apparatus 428–431
– capabilities 435–437
– case studies 437–444
– theory 431–434
scanning tunneling spectroscopy (STS) 434, 580, 627, 640, 667, 707
– confined electron spectroscopy 668
– flat surface spectroscopy 667
scattering asymmetry 205
scattering matrix 121
scattering vector 102
Schrödinger equation 19, 21, 64, 118, 119, 122, 123, 255, 431–432, 565, 569, 583, 585, 597
screening length 273
scroll pump 83
secondary electron coefficient 306
secondary electron emission 304–306
semiconducting substrates 629
semiconductor surface states 661–662
sensitivity factor 280
shadow cone 275–276
– Azimuthal angle scan using 290–291
– polar angle scan using 286–289
shear horizontal modes 791
Sherman function 206, 207, 209
Shockley-inverted gaps 588, 589
Shockley states 64, 254, 255, 256, 587–589, 614, 655, 670–671, 705
Si(001)-(2 \times 1) surface electronic structure 857–859
Si(001) surface structure 831–833
– asymmetric (2 \times 1) reconstruction 837–838
– asymmetric p(2 \times 2) reconstruction 838–839
– asymmetric c(4 \times 2) reconstruction 839
– bulk terminated (1 \times 1) 833
– low-temperature excitation 840–841
– order–disorder phase transition c(4 \times 2) \leftrightarrow (2 \times 1) 839–840

Si(100)-(2 \times 1) 807–811
Si(111)-(1 \times 1)-H 803–807
Si(111)-(2 \times 1) surface electronic structure 859–860
Si(111)-(7 \times 7) surface electronic structure 860–863
Si(111) and Ge(111) surface structure 844–846
– Ge(111)-c(2 \times 8) structure 849–850
– Si(111)-c(7 \times 7) structure 850–855
– (2 \times 1)π-bonded chain structure 846–847
– (2 \times 2) adatom–rest atom model 847–849
– silicon nanotubes (SiNTs) 347
Simulation of Electron Spectra for Surface Analysis (SESSA) (SRD 100) 237, 239, 241
single crystalline surfaces 88
single dangling bond (SDB) surface 844
sliding 442
Smoluchowski effect 524, 575–577

Smoluchowski smoothing, of surface electron density 39
snap-to-contact (jump to contact) 446–447
sp^3-hybrid functions 34
space-charge effects 264
Spicer’s model of photoelectron emission 929
spin polarimetry 205–207
spin polarization in field emission spectroscopy (SP-FES) 705
spin polarization photoemission spectroscopic analysis (SP-PES) 691, 692, 702
spin-polarized (SP)-2PPE 706
spin-polarized electron energy loss spectroscopy (SPEELS) 716, 717
spin-polarized inverse photoemission spectroscopy (SP-IPES) 691, 692, 702
spin-polarized low energy electron diffraction (SP-LEED) 689, 690, 702
spin-polarized photoelectron spectroscopy 204–205
spin-polarized scanning tunneling microscopy (SP-STM) 710, 734, 735, 736
spin-polarized STS (SP-STS) 707, 735, 736
spin-polarized surface electronic states 704–709
spin reorientation transition (SRT) 726, 728
spin structure measurement in reciprocal space 207–210
spin waves 714–717
– thermally excited, at surfaces 717–718
– thermally excited, in ultrathin ferromagnetic films 721–724
split-position method 128
spot photometer 98
spot-profile-analysis LEED (SPA-LEED) method 94
sputtering 89
step modulation 595
stepped and kinked surfaces 505–514
sticking coefficient 77
Stoner gap 714
Stoner model 718
Stoner parameter 684
stopping power 763
structure factor 377–378
sudden approximation 157
superlattice approach, to model surfaces 25
supercell approach, to model surfaces 25
superlattices 490
– coincidence 518–519
– domains and 115–117
– incommensurate 116, 519–520
– simple 515–518
superparamagnetic limit 710
superstructure 490, 516
– rods 384
surface alloys 542
Surface Analysis Society of Japan 243
Surface Chemical Analysis Technical Working Area (SCATWA) 246–247
surface composition 6
surface conductivity (SC) 890, 893, 908, 926, 935
surface core level shifts (SCLS) 62–63, 170–173
surface coverage 77
surface crystal field effect 197
surface crystallography 489–493
– adsorbate-induced relaxation and reconstruction 550
– surface relaxation change 550–551
– surface restructuring 551–555
– clean compound surfaces, chemical reconstruction of 543
– compound semiconductors 545–550
– ordered alloys 544–545
– random alloys 543–544
– clean surfaces, geometric reconstruction of 532
– bond-breaking and bond-creating reconstruction of compound surfaces 542–543
– bond-breaking and bond-creating reconstruction of elemental surfaces 536–542
– elemental surface displacive reconstruction 532–536
– layer relaxation in clean and unreconstructed surfaces
– compound semiconductors 530–532
– elemental semiconductors 525–527
– metallic compounds 527–530
– multilayer relaxation 520–524
– registry shifts 524–525
two-dimensional lattices and structures
– Bravais lattices 497, 498, 499–500
– crystallographic 2D point groups 500–502
– plane groups 502–505
– rotational and mirror symmetry 499
– stepped and kinked surfaces 505–514
– superlattices 514–520
– surface orientation 494–496
– from 2D to 3D crystallography 496–497
surface density of states (SDOS) 433, 434
surface diffraction 382–385
surface diffusion 746–750
surface dipole 59, 570–571
surface electronic structure 57, 67
– Jellium surfaces 57–61
– surface states 63–65
– transition metal surfaces 61–63
surface energies 66
– anisotropy 55–57
– cohesive energies and 53–55
– experimental considerations 49–52
– theoretical considerations 52–53
surface-enhanced Raman spectroscopy (SERS) 789
surface free energy 4, 9
surface layer atomic density changes 41–43
surface magnetism 679–681
– experimental methods probing magnetic hyperfine field at surfaces 697–700
– experimental methods probing magnetization at surfaces 688–693
– experimental methods probing X-ray magnetic circular dichroism (XMCD) in absorption 693–697
– low dimensions 681–685
– magnetic moment at surfaces and in ultrathin films 685–688
– magnetic anisotropy and magnetization distribution 724–726
– dipolar/shape anisotropy and magnetocrystalline anisotropy 726–729
– magnetization distribution imaging and magnetic domains at surfaces 734–737
– magnetization distribution, magnetic domains, and domain walls at surfaces 732–733
– thin films and surface magnetic determination and experimental determination 730–732
– magnetic excitations 714
– spin waves 714–717
– thermally excited spin waves at surfaces 717–718
– thermally excited spin waves in ultrathin ferromagnetic films 721–724
– magnetic moments at Fe surfaces 700–704
– magnetic moments in Fe ultrathin films 709–715
– spin-polarized surface electronic states 704–709
surface melting 762–767
surface morphologies 345, 346, 352–353, 355
surface phonon 873–877
 – anharmonicity and 754–757
 – dispersion 789
 – – Rayleigh phonon 791–796
 – – from single 2D layers to finite slabs 789–791
 – – surface Brillouin zones 791
 – studies
 – – phonon–polariton coupling 798–802
 – – phonons at covalently bonded surfaces 802–811
 – – reconstruction and relaxation 796–798
surface phonon–polariton. See Fuchs–Kliewer phonon
surface photovoltage 883–884
surface plasmon resonance (SPR) absorption 347
surface reconstruction 7, 39, 40, 490, 532
 – elemental metals 41–43
 – elemental semiconductors 43–49
surface relaxation 6, 7, 39–40
surface resonance 875
surface rippling 491
surface roughening 760–762
surface roughness 385–386
surface science approach 73–74
 – sample preparation
 – – clean surface preparation 87–89
 – – controlled adsorption and deposition 89–90
 – surface analytical methods 90–92
 – vacuum physical background 74
 – – gas exposure 76–78
 – – ideal gas 75–76
 – – pumping 78–80
 – vacuum technology technical background
 – – pressure measurements 85–87
 – – pumping systems 81, 83–85
 – – ultrahigh vacuum materials 80–81
surface segregation 492
surface-state mediated interactions 616–618
 – band bending and 879–883
 – experimental observation of 605–609
 – influence on metal surfaces 612–618
 – modification 609–612
surface stress 581–582
surface structure
 – basic considerations 823, 825–828
 – Jahn–Teller instability 828–831
 – Si(001) surface structure 831–844
 – Si(001)-(2 × 1) surface electronic structure 857–859
 – Si(111) and Ge(111) surface structure 844–855
 – Si(111)-(2 × 1) surface electronic structure 859–860
 – Si(111)-(7 × 7) surface electronic structure 860–863
surface topography 427
 – experimental techniques 778–779
 – – helium atom scattering (HAS) 784–788
 – – high-resolution electron energy loss spectroscopy (HREELS) 779–784
 – phonons, in one dimension
 – – surface modes of linear chain 774–778
 – – vibrations of linear chain 773–774
 – – surface phonon dispersion 789
 – – Rayleigh phonon 791–796
 – – from single 2D layers to finite slabs 789–791
 – – surface Brillouin zones 791
 – – surface phonon studies
 – – phonon–polariton coupling 798–802
 – – phonons at covalently bonded surfaces 802–811
 – – reconstruction and relaxation 796–798
 – surface X-ray diffraction (SXRD) 375–376
 – – bulk X-ray crystallography 376–378
 – – crystal shape function and diffraction rods 389–392
 – – crystal truncation rods 379–382
 – – data analysis
 – – averaging 404–406
 – – Fourier methods 409–411
 – – model calculations 408–409
 – – obtaining of accurate data 407
 – – interface diffraction 386–389
 – – line shapes
 – – antiphase domains 417–419
 – – correlation function 411–413
 – – multidomain system integrated intensity 419–421
 – – two-level roughness model 413–417
 – – reflection and refraction
 – – specular reflectivity 396–400
 – – structure factor effects 401–404
 – – transmitted beam 400–401
 – – single layer 378–379
 – – structure factor measurement
surface X-ray diffraction (SXRD) (contd.)
– correction factors 393–395
– experimental geometries 392–393
– stationary geometry 396
– surface diffraction 382–385
– surface roughness 385–386
– trends 421–423
symmetric dimer model (SDM) 45
synchrotron radiation 161, 171, 187, 194, 361, 375, 421, 422
systematic extinctions 129

T
Tamm states 64, 596–601
tensor LEED 130–131
– chemical tensor 134–135
– geometrical tensor 131–133
– thermal tensor 135
terrace modulation 595
Tersoff–Hamann model 434
total symmetry 502
thermal conductivity 892
thermal desorption spectroscopy (TDS) 751
thermal dynamics, at surfaces 743–745
– surface diffusion 746–750
– surface melting 762–767
– surface phonons and anharmonicity 754–757
– surface roughening 760–762
– thermal surface reconstructions 757–760
– two-dimensional adatom and vacancy gas 750–754
thermal surface reconstructions 757–760
thermal tensor LEED 135
thermocouple 90
thin films and surface magnetic determination and experimental determination 730–732
throughput (Jacquinot) advantage 322–323
titanium sublimation pumps 85
topography mode 450
total symmetry 502
transfer doping mechanism 893
transition metals
– surfaces 61–63
– tight binding and 29–31
transition state theory (TST) 746
transmission electron microscopy (TEM) 541, 758
transmitted beam 400–401
transport approximation (TA) 219
transport cross section (TCS) 220
transport mean free path (TMFP) 220

triplet dangling bond (TDB) 844
tunable lasers 257
turbomolecular pump 84
two-dimensional adatom and vacancy gas 750–754
two-dimensional lattices and structures
– Bravais lattices 497, 498, 499–500
– crystallographic 2D point groups 500–502
– plane groups 502–505
– rotational and mirror symmetry 499
– stepped and kinked surfaces 505–514
– superlattices 514–520
– surface orientation 494–496
– from 2D to 3D crystallography 496–497
two-level roughness model 413–417
two-photon photoelectron spectroscopy 253
– energy-resolved spectroscopy 256–258
– experimental setup 262–264
– image-potential states 253–256
– theoretical aspects 264–267
– time-resolved measurements 258–262
two-photon photoemission (2PPE) 580, 706

U
UK Surface Analysis Forum 243
– conditions 73
– materials 80–81
ultraviolet photoelectron spectroscopy (UPS)/angle-resolved photoemission spectroscopy (ARPS)
– ARPES for band mapping and Fermi surface mapping on surfaces 190–199
– extrinsic contributions to line shapes and widths 202–204
– spectral functions and many-body effects 199–202
– spin polarimetry 205–207
– spin-polarized photoelectron spectroscopy 204–205
– spin structure measurement in reciprocal space 207–210
– work function measurement 189–190
ultraviolet–visible (UV–vis) absorption spectroscopy 343–344, 347, 348
– applications 345–348
– instrumentation 344–345
uniaxial anisotropy 710, 724
universal potential. See
Ziegler–Biersack–Littmark (ZBL)
up atom 837

\textbf{v}
vacuum gauges 85
vacuum level 575
valence band maximum (VBM) 905, 920
van der Waals bonding 16–17
Versailles Project on Advanced Materials and
Standards (VAMAS) 246
vertical manipulation 436
vibrational coupling, in organic molecules
369
vibrational properties, surface-specific 8
vibrational spectroscopy 311–314, 316, 331, 334, 341

\textbf{w}
wave function matching, and
phase-accumulation model 585–586
wave vector 563
wet pumps 83
Wigner–Seitz cell 498
Wood notation 515–516
work function 59–60, 878, 918
– basic considerations 571–575
– experimental determination 577–580
– measurement 189–190
Wulff construction 50–51, 56

\textbf{x}
X-ray absorption cross section 359
X-ray absorption near-edge structure (XANES) 360
X-ray absorption spectroscopy 62
X-ray absorption spectrum (XAS) 358, 360
X-ray diffraction (XRD) 93, 107, 145, 389, 421, 489
X-ray fluorescence process 177
X-ray fluorescence yield 178
X-ray magnetic circular dichroism (XMCD) 727
– absorption 693–697
X-ray photoelectron diffraction (XPD) 152, 179–186
– Auger electron diffraction and 179–186
See also National Institute of Standards and
Technology (NIST), US and AES and XPS
– core-level spectra, chemical shifts, and
satellites 169–177
– quantifying elemental concentrations and
surface cleanliness 166–169
– valence band, and resonant photoemission
186–187
X-Ray Photoelectron Spectroscopy Database
(SRD 20) 238–239
X-ray resonant magnetic reflectivity (XRMR)
method 697
X-rays 86
– scattering 91
X-ray standing waves (XSW), photoexcitation
by 187–189

\textbf{z}
Zeeman splitting 686
Ziegler–Biersack–Littmark (ZBL) 274
Z+1 approximation 174