bulk metallic glasses (BMGs) (contd.)
designing
 functional minor alloying elements 209–210
glass forming ability 210
fabrication 191, 193
future biomedical applications 211–213
medical devices, manufacturing 211
non-biodegradable
 Fe-based 201
 Ti-based 197, 199
 Zr-based 198, 200
 polarized corrosion curves 196
 processing methods 194
 properties 193, 196
 surface modification 211
bulk nanostructured metallic biomaterials
 CoCrMo alloys 239, 243
crystallization from amorphous solids 224
future prospects 245
mechanical property variation
 biocorrosion 228
corrosion behavior 227–228
 fatigue behavior 226
 friction coefficient 226
 high strength and ductility 228
 strength and ductility 226
Mg alloys 243
physical property variation 225
processing methods
 bottom-up 224–225
 top-down 224–225
pure Cu 244
pure Fe 244
pure Ta 244–245
pure Ti 230–231
pure Zr 245
stainless steel 238, 240
structure-property relationship 228
Ti-based alloys 235–236
cold gas dynamic sparing (CGDS) 150–152
combustion synthesis technique 255
compaction technique 224
computer-aid design (CAD) 17, 256, 260, 262, 278
Concept Laser Company 259
constrained groove pressing (CGP) 225
core-and-mantle model 229
Coronary stent implantation 8, 15, 46–49, 59, 92
critical cooling rate (CCR) 193
critical resolved shear stress (CRSS) 74, 88
Curie point 118
Curie temperature 201, 225
cyclic-extrusion-compression 225
cylinder covered compression (CCC) 225
d
Debye temperature 225
direct metal laser sintering (DMLS) 256, 257, 260
dissolution mechanism 63
DREAMS 1G 8, 91
DREAMS 2G 8, 91
drug-eluting stents (DES) 8
drug-releasing coatings 91
ductile brittle transition temperature (DBTT) 70
electrodeposition method 5, 92, 194, 225, 226, 229
electroforming 128, 140, 150, 155
electron work function (EWF) 229
Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB) 98
EOS GmbH 259
essential metallic elements 298, 304

Fe-based degradable metallic biomaterials applications 155
fabrication technologies CGDS 151
ECAP 150–151
electroforming 150
MIM 151
3D printing 153
future outlook 154
mechanical properties and corrosion rate 115–116
surface modification degradation behavior regulation 147–150
for improving biocompatibility 144–147
iron-based composites compositing with metals 139–141
compositing with with nonmetallic materials 141–142
in vitro biocompatibility of Fe-O film 144
flow/temperature sensor 302
friction stir processing (FSP) 225

gamma iron (γ-Fe) 118
glass forming ability (GFA) 193, 210–211
grain-boundary sliding (GBS) 78, 228–229
growth restriction factor (GRF) 70–71

Hall-Petch effect 69
Hall-Petch prediction 226
HAp (Mn HAp) ceramics layers 146
HA-VSMCs 145
hemochromatosis 118
hemoglobin 114, 117, 118
hexagonally close-packed structure (HCP) 69, 74, 76
high pressure torsion (HPT) 15, 20, 225, 226, 229–233, 236–238
hot extrusion 75–76, 78, 84, 170
human bones 192–193, 255, 268, 278
human mesenchymal stem cells (hMSCs) 6
human umbilical endothelial cells (HUVECs) 6, 139, 140, 144–146, 302
human umbilical vein smooth muscle cells (HUVSMC) 121

IBS scaffold 145–147
inert gas condensation (IGC) 194, 224, 226
in-stent restenosis (ISR) 8, 35, 299, 300
intergranular stress corrosion cracking (IGSCC) 63
iron-based composites compositing with metals 139
compositing with with non-metallic materials 141
in vitro biocompatibility 142
iron stents 121–127, 130, 145, 150
Ir₅Ti₁₋x-oxides 48

LaserCUSING 259
laser engineered net shaping (LENS™) 5
long-period stacking ordered (LPSO) 74–77, 80, 81, 88, 97
low-temperature rapid prototyping technology 296
m
magnetic susceptibilities 9, 41, 44–47, 201, 209, 245
MAGNEZIX® 96
mechanical fracture mechanism 63
metal injection molding (MIM) 150, 151
metal vapor vacuum arc (MEVVA) 144, 147
Mg-based alloy
bio-activated surfaces biomimetic coatings 91
drug-releasing coatings 91
bio-compatibility 64
bio-degradation
dissolution mechanism 63
factors affecting 60
IGSCC 63
in vivo experiments 60
mechanical fracture mechanism 63
micro-galvanic corrosion 61
reducing corrosion problem 63
TGSCC 63
challenges 97
degradation property 77
essential elements
Mg-Ca based alloys 84–85
Mg-Si based alloys 85
Mg-Sr based alloys 85–86
high strength
Mg–RE based alloys 87–88
Mg–Zn-based alloys 87
improved corrosion resistance 90
in-situ strengthening
atomic property 68
grain-refinement 69
LPSO 74
precipitation strengthening 69, 71
solid solubility 68
solid solution strengthening 69
material compositional design 65
mechanical property requirements 64
mechanical strength 76
medical research
cardiovascular devices 92
orthopedic devices 94
opportunities 97
post processing
heat treatment 80
plastic deformation 75
SPD, on corrosion behavior 79
SPD, on microstructure and mechanical properties 76
pure Mg 83
special biofunctions 88, 90
toxicity and degradation 66
Mg-RE-based alloys mechanical and corrosion property 89
micro-arc oxidation (MAO) 5
microorganisms 3, 31–32
MRI compatibility 9
ABI alloy 47
Nb alloys 46–47
traditional metallic biomaterials 44
zirconium (Zr) alloys 44–45
multi-directional forging 225
n
N-acetyl cysteine-loaded nanotube Ti (NLN–Ti) 7
nitinol scaffolds 6
nitinol stents 47, 49
o
osseointegration 5–7, 234, 274, 276–277
p
percutaneous coronary intervention (PCI) 113
plasma immersion ion implantation and deposition (PIIID) 144
plasma nitriding technology 145
plasma spraying 255
PLGA-coated porous iron (PCPI) 149
PLGA-infiltrated porous iron (PIPI) 149
poly (lactic-co-glycolic acid) (PLGA) 149
poly (lactide-co-glycolide acid) (PLGA) 91
poly-L-lactic acid (PLLA) 12, 91, 301
polymer sponge replacement method 255
polymethyl methacrylate (PMMA) 91, 195
porous revolutionizing metallic biomaterials 293
powder leveling 257, 262
powder materials, AM technology 257, 284
Pt-enhanced radiopaque stainless steel (PERSS) alloys 48
pulse wave velocity (PWV) 301
pure iron
 alpha iron 118
 advantages 154
cold drawing deformation 119
degradation behavior in physiological environment 119
delta iron 118
gamma iron 118
human body
 absorption 114, 117
 balancing 117
 distribution 114
 physiological function 114
 toxicity 118
in vitro experiments 121
in vivo experiments 123
in human body 114
in vivo experiments
t advancement 130
 mechanical properties 114
 metabolism and toxicity 114
reciprocating extrusion 225
repetitive corrugation and straightening (RCS) 225
revolutionizing metallic biomaterials
 antibacterial function 3
 biocompatibility and biofunctionality 3
 biocorrosion/biodegradation behavior 14–16
evolution of 302
future development 304
in-stent restenosis reduction 8
intelligentization
 biodegradable electronic stent 302
 biosensors/bioelectronics 300
 microchips 300
 RF-driven RLC resonators 300–301
 RF pressure sensor 301
 wireless implantable biodegradable sensors 300
mechanical properties
evolution 10–14
MRI technology 9
multi-functions
 ISR 299
 self-antibacterial capacity 297
osteogenesis
 LENSTM 5
 MAO Ti 5
 Mg alloy 7
 nanotopography 6
 nitinol scaffolds 6
 NLN–Ti 7
 RP technique 5
 Zn incorporation 7
radiopacity 10
 Co-Cr stents 48
 ideal stent 47
 Nb-based alloy 49
 Nitinol stents 49
 Pt–Cr stents 49
 stainless steel stents 48
 Ta stents 49
rapamycin 302
rapid prototyping (RP) technique 5, 17, 256, 296

\[r \]

- radiopacity 10
- Co-Cr stents 48
- ideal stent 47
- Nb-based alloy 49
- Nitinol stents 49
- Pt–Cr stents 49
- stainless steel stents 48
- Ta stents 49
- rapamycin 302
- rapid prototyping (RP) technique 5, 17, 256, 296
revolutionizing metallic biomaterials
(contd.)
porous structures 293
rapid prototyping (RP) technology 296
surface coating technology 293
3D printing 294–295
Young’s modulus, spinal fixation applications 10
ROS scavenging 302
RRAM array 302

selective laser melting (SLM) 256–268,
272, 275, 276, 284
severe plastic deformation (SPD) 20,
70, 75, 76, 79–80, 84, 97, 132, 194,
225, 230, 234, 235, 238, 243–245
simulated body fluid (SBF) 16, 61, 62,
65, 75, 81, 85, 86, 90, 92, 121,
137–139, 144, 150, 170, 197, 198,
200, 203, 204, 206
Sirolimus 8, 91, 94, 145
SK4 steel, wear resistance 195
solution treatment 80–82
space holder technique 255
spark plasma sintering (SPS) 139–140,
155, 178, 193, 211, 238
stainless steel stents 48
stress corrosion cracking (SCC) 63
submerged friction stir processing (SFSP) 225
surface modified Ti alloys 38–39

T4 treatment 69, 80–81, 83, 88
T6 treatment 69, 80–83, 88
Ta stents 49
ternary Zn-based alloys
biocompatibility 178
degradation behavior 176, 178
mechanical properties 175–176
microstructure 174
3-D printing 17, 128, 153–155, 295
316L SS 1, 33, 36, 44, 46–48, 59, 113–114,
123, 129, 131, 136, 138–139, 144,
151–152, 202, 238–239, 244

Ti-6Al-4V, mechanical properties 269
Ti-based alloys
advantages 255
AM technology 256
medical field 255
tissue engineering 17, 60, 284, 294
trabecular titanium (TT) 259
traditional metallic biomaterials
advantages 1
mechanical properties 2
revolutionizing metallic biomaterials
in vitro corrosion properties vs. 16
mechanical properties vs. 13
transgranular stress corrosion cracking (TGSCC) 63
twist extrusion 225

ultimate strength (UTS) 42–43,
70–72, 75, 76, 78, 80, 81, 83, 85,
87, 88, 90, 171, 177
ultra-fined grained (UFG) materials 20, 70, 75–76, 78,
223, 227–228, 233, 238

vascular endothelial cells (VECs) 8,
299, 300
vascular smooth muscle cells (VSMCs) 8, 145–146, 151, 245,
299, 300

Wigner-Seitz radius 73

Young’s modulus 10–11, 223, 228, 235,
238, 255, 272

zinc (Zn)
distribution and mobilization in body 162
human body
distribution and mobilization 162
physiological function 162
Zn-based degradable metallic biomaterials
- binary 165
 - biocompatibility 170–174
 - degradation behavior 167–170
 - mechanical properties 167
 - microstructure 166–167
- challenges and opportunities 182–185

- composites 178
 - nanodiamond 182
 - Zn-ZnO composites 178–182
- pure Zn 164
- ternary 174
 - biocompatibility 178
 - degradation behavior 176–178
 - microstructure 174–175
 - mechanical properties 175–176