Contents

A Personal Foreword XIII
Preface XV
List of Contributors XVII

I Introduction 1

1 Administrative Optimization of Proteomics Networks for Drug Development 3
André van Hall and Michael Hamacher

1.1 Introduction 3
1.2 Tasks and Aims of Administration 4
1.3 Networking 6
1.4 Evaluation of Biomarkers 7
1.5 A Network for Proteomics in Drug Development 9
1.6 Realization of Administrative Networking: the Brain Proteome Projects 10
1.6.1 National Genome Research Network: the Human Brain Proteome Project 11
1.6.2 Human Proteome Organisation: the Brain Proteome Project 14
1.6.2.1 The Pilot Phase 15

References 17

2 Proteomic Data Standardization, Deposition and Exchange 19
Sandra Orchard, Henning Hermjakob, Manuela Pruess, and Rolf Apweiler

2.1 Introduction 19
2.2 Protein Analysis Tools 21
2.2.1 UniProt 21
2.2.2 InterPro 22
2.2.3 Proteome Analysis 22
2.2.4 International Protein Index (IPI) 23

Proteomics in Drug Research
Edited by M. Hamacher, K. Marcus, K. Stühler, A. van Hall, B. Warscheid, H. E. Meyer
Copyright © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31226-9
Contents

2.2.5 Reactome 23
2.3 Data Storage and Retrieval 23
2.4 The Proteome Standards Initiative 24
2.5 General Proteomics Standards (GPS) 24
2.6 Mass Spectrometry 25
2.7 Molecular Interactions 27
2.8 Summary 28

References 28

II Proteomic Technologies 31

3 Difference Gel Electrophoresis (DIGE): the Next Generation of Two-Dimensional Gel Electrophoresis for Clinical Research 33
Barbara Sitek, Burghardt Scheibe, Klaus Jung, Alexander Schramm and Kai Stähler

3.1 Introduction 34
3.2 Difference Gel Electrophoresis: Next Generation of Protein Detection in 2-DE 36
3.2.1 Application of CyDye DIGE Minimal Fluors (Minimal Labeling with CyDye DIGE Minimal Fluors) 38
3.2.1.1 General Procedure 38
3.2.1.2 Example of Use: Identification of Kinetic Proteome Changes upon Ligand Activation of Trk-Receptors 39
3.2.2 Application of Saturation Labeling with CyDye DIGE Saturation Fluors 44
3.2.2.1 General Procedure 44
3.2.2.2 Example of Use: Analysis of 1000 Microdissected Cells from PanIN Grades for the Identification of a New Molecular Tumor Marker Using CyDye DIGE Saturation Fluors 44
3.2.3 Statistical Aspects of Applying DIGE Proteome Analysis 47
3.2.3.1 Calibration and Normalization of Protein Expression Data 48
3.2.3.2 Detection of Differentially Expressed Proteins 50
3.2.3.3 Sample Size Determination 51
3.2.3.4 Further Applications 52
References 52

4 Biological Mass Spectrometry: Basics and Drug Discovery Related Approaches 57
Bettina Warscheid

4.1 Introduction 57
4.2 Ionization Principles 58
4.2.1 Matrix-Assisted Laser Desorption/Ionization (MALDI) 58
4.2.2 Electrospray Ionization 60
4.3 Mass Spectrometric Instrumentation 62
4.4 Protein Identification Strategies 65
4.5 Quantitative Mass Spectrometry for Comparative and Functional Proteomics 67
4.6 Metabolic Labeling Approaches 69
4.6.1 15N Labeling 70
4.6.2 Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) 71
4.7 Chemical Labeling Approaches 73
4.7.1 Chemical Isotope Labeling at the Protein Level 73
4.7.2 Stable Isotope Labeling at the Peptide Level 75
4.8 Quantitative MS for Deciphering Protein–Protein Interactions 78
4.9 Conclusions 80

References 81

5 Multidimensional Column Liquid Chromatography (LC) in Proteomics – Where Are We Now? 89
Egidijus Machtejevas, Klaus K. Unger and Reinhard Ditz

5.1 Introduction 90
5.2 Why Do We Need MD-LC/MS Methods? 91
5.3 Basic Aspects of Developing a MD-LC/MS Method 92
5.3.1 General 92
5.3.2 Issues to be Considered 93
5.3.3 Sample Clean-up 94
5.3.4 Choice of Phase Systems in MD-LC 94
5.3.5 Operational Aspects 97
5.3.6 State-of-the-Art – Digestion Strategy Included 98
5.3.6.1 Multidimensional LC MS Approaches 98
5.4 Applications of MD-LC Separation in Proteomics – a Brief Survey 100
5.5 Sample Clean-Up: Ways to Overcome the “Bottleneck” in Proteome Analysis 104
5.6 Summary 109

References 110

6 Peptidomics Technologies and Applications in Drug Research 113
Michael Schrader, Petra Budde, Horst Rose, Norbert Lamping, Peter Schulz-Knappe and Hans-Dieter Zucht

6.1 Introduction 114
6.2 Peptides in Drug Research 114
6.2.1 History of Peptide Research 114
6.2.2 Brief Biochemistry of Peptides 116
6.2.3 Peptides as Drugs 117
6.2.4 Peptides as Biomarkers 118
6.2.5 Clinical Peptidomics 118
6.3 Development of Peptidomics Technologies 120
6.3.1 Evolution of Peptide Analytical Methods 120
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2</td>
<td>Peptidomic Profiling</td>
<td>121</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Top-Down Identification of Endogenous Peptides</td>
<td>123</td>
</tr>
<tr>
<td>6.4</td>
<td>Applications of Differential Display Peptidomics</td>
<td>124</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Peptidomics in Drug Development</td>
<td>124</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Peptidomics Applied to in vivo Models</td>
<td>127</td>
</tr>
<tr>
<td>6.5</td>
<td>Outlook</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>Protein Biochips in the Proteomic Field</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Angelika Lücking and Dolores J. Cahill</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>7.2</td>
<td>Technological Aspects</td>
<td>139</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Protein Immobilization and Surface Chemistry</td>
<td>139</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Transfer and Detection of Proteins</td>
<td>141</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Chip Content</td>
<td>142</td>
</tr>
<tr>
<td>7.3</td>
<td>Applications of Protein Biochips</td>
<td>144</td>
</tr>
<tr>
<td>7.4</td>
<td>Contribution to Pharmaceutical Research and Development</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>8</td>
<td>Current Developments for the In Vitro Characterization of Protein Interactions</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Daniela Moll, Bastian Zimmermann, Frank Gesellchen and Friedrich W. Herberg</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>160</td>
</tr>
<tr>
<td>8.2</td>
<td>The Model System: cAMP-Dependent Protein Kinase</td>
<td>161</td>
</tr>
<tr>
<td>8.3</td>
<td>Real-time Monitoring of Interactions Using SPR Biosensors</td>
<td>161</td>
</tr>
<tr>
<td>8.4</td>
<td>ITC in Drug Design</td>
<td>163</td>
</tr>
<tr>
<td>8.5</td>
<td>Fluorescence Polarization, a Tool for High-Throughput Screening</td>
<td>165</td>
</tr>
<tr>
<td>8.6</td>
<td>AlphaScreen as a Pharmaceutical Screening Tool</td>
<td>167</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>171</td>
</tr>
<tr>
<td>9</td>
<td>Molecular Networks in Morphologically Intact Cells and Tissue–Challenge for Biology and Drug Development</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Walter Schubert, Manuela Friedenberger and Marcus Bode</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>9.2</td>
<td>A Metaphor of the Cell</td>
<td>174</td>
</tr>
<tr>
<td>9.3</td>
<td>Mapping Molecular Networks as Patterns: Theoretical Considerations</td>
<td>176</td>
</tr>
<tr>
<td>9.4</td>
<td>Imaging Cycler Robots</td>
<td>177</td>
</tr>
<tr>
<td>9.5</td>
<td>Formalization of Network Motifs as Geometric Objects</td>
<td>179</td>
</tr>
<tr>
<td>9.6</td>
<td>Gain of Functional Information: Perspectives for Drug Development</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>182</td>
</tr>
</tbody>
</table>
III Applications 185

10 From Target to Lead Synthesis 187
Stefan Müllner, Holger Stark, Päivi Niskanen, Erich Eigenbrodt, Sybille Mazurek and Hugo Fasold

10.1 Introduction 187
10.2 Materials and Methods 190
10.2.1 Cells and Culture Conditions 190
10.2.2 In Vitro Activity Testing 190
10.2.3 Affinity Chromatography 190
10.2.4 Electrophoresis and Protein Identification 191
10.2.5 BIACore Analysis 191
10.2.6 Synthesis of Acyl Cyanides 192
10.2.6.1 Methyl 5-cyano-5-oxopentanoate 192
10.2.6.2 Methyl 6-cyano-6-oxohexanoate 193
10.2.6.3 Methyl-5-cyano-3-methyl-5-oxopentanoate 193
10.3 Results 193
10.4 Discussion 201

11 Differential Phosphoproteome Analysis in Medical Research 209
Elke Butt and Katrin Marcus

11.1 Introduction 210
11.2 Phosphoproteomics of Human Platelets 211
11.2.1 Cortactin 213
11.2.2 Myosin Regulatory Light Chain 213
11.2.3 Protein Disulfide Isomerase 214
11.3 Identification of cAMP- and cGMP-Dependent Protein Kinase Substrates in Human Platelets 216
11.4 Identification of a New Therapeutic Target for Anti-Inflammatory Therapy by Analyzing Differences in the Phosphoproteome of Wild Type and Knock Out Mice 218
11.5 Concluding Remarks and Outlook 219

References 220

12 Biomarker Discovery in Renal Cell Carcinoma Applying Proteome-Based Studies in Combination with Serology 223
Barbara Seliger and Roland Kellner

12.1 Introduction 224
12.1.1 Renal Cell Carcinoma 224
12.2 Rational Approaches Used for Biomarker Discovery 225
12.3 Advantages of Different Proteome-Based Technologies for the Identification of Biomarkers 226

References 233
15.2 Proteomic Analysis 280
15.2.1 Sample Preparation 280
15.2.2 Two-Dimensional Electrophoresis 282
15.2.3 Protein Quantification 282
15.2.4 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy 283
15.3 Proteins with Deranged Levels and Modifications in AD 284
15.3.1 Synaptosomal Proteins 290
15.3.2 Guidance Proteins 291
15.3.3 Signal Transduction Proteins 291
15.3.4 Oxidized Proteins 292
15.3.5 Heat Shock Proteins 293
15.3.6 Proteins Enriched in Amyloid Plaques 293
15.4 Limitations 294

References 294

16 Cardiac Proteomics 299
Emma McGregor and Michael J. Dunn

16.1 Heart Proteomics 300
16.1.1 Heart 2-D Protein Databases 300
16.1.2 Dilated Cardiomyopathy 300
16.1.3 Animal Models of Heart Disease 301
16.1.4 Subproteomics of the Heart 302
16.1.4.1 Mitochondria 302
16.1.4.2 PKC Signal Transduction Pathways 304
16.1.5 Proteomics of Cultured Cardiac Myocytes 305
16.1.6 Proteomic Characterization of Cardiac Antigens in Heart Disease and Transplantation 306
16.1.7 Markers of Acute Allograft Rejection 307
16.2 Vessel Proteomics 307
16.2.1 Proteomics of Intact Vessels 307
16.2.2 Proteomics of Isolated Vessel Cells 308
16.2.3 Laser Capture Microdissection 311
16.3 Concluding Remarks 312

References 312

IV To the Market 319

17 Innovation Processes 321
Sven Rüger

17.1 Introduction 321
17.2 Innovation Process Criteria 322
17.3 The Concept 322
17.4 Market Attractiveness 323
17.5 Competitive Market Position 323
17.6 Competitive Technology Position 324
17.7 Strengthen the Fit 325
17.8 Reward 325
17.9 Risk 325
17.10 Innovation Process Deliverables for each Stage 326
17.11 Stage Gate-Like Process 326
17.11.1 Designation as an Evaluation Project (EvP) 327
17.11.2 Advancement to Exploratory Project (EP) 329
17.11.3 For Advancement to Progressed Project (PP) 331
17.11.4 Advancement to Market Preparation 334
17.12 Conclusion 335

Subject Index 337