Contents

Preface xiii

Part I Materials 1

1 Electrochemical Theory and Physics 3
Geraint Minton
1.1 Overview of a LiS cell 3
1.2 The Development of the Cell Voltage 5
1.2.1 Using the Electrochemical Potential 7
1.2.2 Electrochemical Reactions 10
1.2.3 The Electric Double Layer 13
1.2.4 Reaction Equilibrium 15
1.2.5 A Finite Electrolyte 17
1.2.6 The Need for a Second Electrode 17
1.3 Allowing a Current to Flow 19
1.3.1 The Reaction Overpotential 20
1.3.2 The Transport Overpotential 21
1.3.3 General Comments on the Overpotentials 22
1.4 Additional Processes Which Define the Behavior of a LiS Cell 22
1.4.1 Multiple Electrochemical Reactions at One Surface 22
1.4.2 Chemical Reactions 23
1.4.3 Species Solubility and Indirect Reaction Effects 25
1.4.4 Transport Limitations in the Cathode 25
1.4.5 The Active Surface Area 26
1.4.6 Precipitate Accumulation 27
1.4.7 Electrolyte Viscosity, Conductivity, and Species Transport 27
1.4.8 Side Reactions and SEI Formation at the Anode 28
1.4.9 Anode Morphological Changes 29
1.4.10 Polysulfide Shuttle 29
1.5 Summary 30
References 30
2 Sulfur Cathodes 33
Holger Althues, Susanne Dörfler, Sören Thieme, Patrick Strubel and Stefan Kaskel
2.1 Cathode Design Criteria 33
2.1.1 Overview of Cathode Components and Composition 33
2.1.2 Cathode Design: Role of Electrolyte in Sulfur Cathode Chemistry 34
2.1.3 Cathode Design: Impact on Energy Density on Cell Level 35
2.1.4 Cathode Design: Impact on Cycle Life and Self-discharge 36
2.1.5 Cathode Design: Impact on Rate Capability 37
2.2 Cathode Materials 37
2.2.1 Properties of Sulfur 37
2.2.2 Porous and Nanostructured Carbons as Conductive Cathode Scaffolds 39
2.2.2.1 Graphite-Like Carbons 39
2.2.2.2 Synthesis of Graphite-like Carbons 39
2.2.2.3 Carbon Black 40
2.2.2.4 Activated Carbons 41
2.2.2.5 Carbide-Derived Carbon 42
2.2.2.6 Hard-Template-Assisted Carbon Synthesis 42
2.2.2.7 Carbon Surface Chemistry 43
2.2.3 Carbon/Sulfur Composite Cathodes 43
2.2.3.1 Microporous Carbons 44
2.2.3.2 Mesoporous Carbons 45
2.2.3.3 Macroporous Carbons and Nanotube–based Cathode Systems 46
2.2.3.4 Hierarchical Mesoporous Carbons 47
2.2.3.5 Hierarchical Microporous Carbons 49
2.2.3.6 Hollow Carbon Spheres 50
2.2.3.7 Graphene 51
2.2.4 Retention of LiPS by Surface Modifications and Coating 51
2.2.4.1 Metal Oxides as Adsorbents for Lithium Polysulfides 56
2.3 Cathode Processing 57
2.3.1 Methods for C/S Composite Preparation 57
2.3.2 Wet (Organic, Aqueous) and Dry Coating for Cathode Production 58
2.3.3 Alternative Cathode Support Concepts (Carbon Current Collectors, Binder-free Electrodes) 59
2.3.4 Processing Perspective for Carbons, Binders, and Additives 59
2.4 Conclusions 59
References 61

3 Electrolyte for Lithium–Sulfur Batteries 71
Marzieh Barghamadi, Mustafa Musameh, Thomas Rüther, Anand I. Bhatt, Anthony F. Hollenkamp and Adam S. Best
3.1 The Case for Better Batteries 71
3.2 Li–S Battery: Origins and Principles 72
3.3 Solubility of Species and Electrochemistry 74
3.4 Liquid Electrolyte Solutions 75
3.5 Modified Liquid Electrolyte Solutions 91
3.5.1 Variation in Electrolyte Salt Concentration 91
3.5.2 Mixed Organic–Ionic Liquid Electrolyte Solutions 91
Contents

6.2.3 A Survey of Experimental and Theoretical Findings Involving Li$_2$S and Li$_2$S$_2$ Formation and Proposed Reduction Pathways 153

6.2.4 Mechanistic Insight into Li$_2$S/Li$_2$S$_2$ Nucleation and Growth 157

6.2.5 Strategies to Limit Li$_2$S Precipitation and Enhance the Capacity 160

6.2.6 Charge Mechanism and its Difficulties 161

6.3 Li$_2$S-Based Cathodes: Toward a Li Ion System 164

6.3.1 General 164

6.3.2 Initial Activation of Li$_2$S – Mechanism of First Charge 165

6.3.3 Recent Developments in Li$_2$S Cathodes for Improved Performances 171

6.4 Summary 176

References 176

7 Degradation in Lithium–Sulfur Batteries 185

Rajlakshmi Purkayastha

7.1 Introduction 185

7.2 Degradation Processes Within a Lithium–Sulfur Cell 190

7.2.1 Degradation at Cathode 190

7.2.2 Degradation at Anode 194

7.2.3 Degradation in Electrolyte 197

7.2.4 Degradation Due to Operating Conditions: Temperature, C-Rates, and Pressure 200

7.2.5 Degradation Due to Geometry: Scale-Up and Topology 205

7.3 Capacity Fade Models 209

7.3.1 Dendrite Models 211

7.3.2 Equivalent Circuit Network Models 213

7.4 Methods of Detecting and Measuring Degradation 214

7.4.1 Incremental Capacity Analysis 215

7.4.2 Differential Thermal Voltammetry 215

7.4.3 Electrochemical Impedance Spectroscopy 215

7.4.4 Resistance Curves 216

7.4.5 Macroscopic Indicators 217

7.5 Methods for Countering Degradation 218

7.6 Future Direction 221

References 222

Part III Modeling 227

8 Lithium–Sulfur Model Development 229

Teng Zhang, Monica Marinescu and Gregory J. Offer

8.1 Introduction 229

8.2 Zero-Dimensional Model 231

8.2.1 Model Formulation 231

8.2.1.1 Electrochemical Reactions 231

8.2.1.2 Shuttle and Precipitation 232

8.2.1.3 Time Evolution of Species 233

8.2.1.4 Model Implementation 233
Contents
ix

8.2.2 Basic Charge/Discharge Behaviors 233
8.3 Modeling Voltage Loss in Li–S Cells 236
8.3.1 Electrolyte Resistance 237
8.3.2 Anode Potential 238
8.3.3 Surface Passivation 239
8.3.4 Transport Limitation 240
8.4 Higher Dimensional Models 242
8.4.1 One-Dimensional Models 242
8.4.2 Multi-Scale Models 244
8.5 Summary 245
References 246

9 Battery Management Systems – State Estimation for Lithium–Sulfur Batteries 249
Daniel J. Auger, Abbas Fotouhi, Karsten Propp and Stefano Longo
9.1 Motivation 249
9.1.1 Capacity 249
9.1.2 State of Charge (SoC) 251
9.1.3 State of Health (SoH) 251
9.1.4 Limitations of Existing Battery State Estimation Techniques 252
9.1.4.1 SoC Estimation from “Coulomb Counting” 252
9.1.4.2 SoC Estimation from Open-Circuit Voltage (OCV) 253
9.1.5 Direction of Current Work 253
9.2 Experimental Environment for Li–S Algorithm Development 254
9.2.1 Pulse Discharge Tests 255
9.2.2 Driving Cycle Tests 255
9.3 State Estimation Techniques from Control Theory 256
9.3.1 Electrochemical Models 257
9.3.2 Equivalent Circuit Network (ECN) Models 258
9.3.3 Kalman Filters and Their Derivatives 259
9.4 State Estimation Techniques from Computer Science 261
9.4.1 ANFIS as a Modeling Tool 261
9.4.2 Human Knowledge and Fuzzy Inference Systems (FIS) 263
9.4.3 Adaptive Neuro-Fuzzy Inference Systems 266
9.4.4 State-of-Charge Estimation Using ANFIS 268
9.5 Conclusions and Further Directions 269
Acknowledgments 270
References 270

Part IV Application 273

10 Commercial Markets for Li–S 275
Mark Crittenden
10.1 Technology Strengths Meet Market Needs 275
10.1.1 Weight 275
10.1.2 Safety 276