About the authors, ix
Series foreword, xi
Preface, xiii
Acknowledgements, xv

1 An introduction to environmental flows, 1
 1.1 What are environmental flows?, 1
 1.2 Why EFA is so hard; scientific issues, 2
 1.2.1 Stream ecosystems are dynamic and open, 2
 1.2.2 Fish evolve, 3
 1.2.3 Streams adjust, 4
 1.2.4 Climate changes, 4
 1.2.5 Populations vary, 5
 1.2.6 Habitat selection is conditional, 5
 1.2.7 Spatial and temporal scales matter, 5
 1.3 Why EFA is so hard: social issues, 6
 1.3.1 Social objectives evolve, 6
 1.3.2 Science and dispute resolution, 7
 1.3.3 Water is valuable, 7
 1.3.4 Managers or clients often want the Impossible, 7
 1.4 Why EFA is so hard: problems with the literature, 8
 1.5 Why EFA is so hard: limitations of models and objective methods, 8
 1.5.1 Models and environmental flow assessment, 8
 1.5.2 Objective and subjective methods, 9
 1.6 Conclusions, 9

2 A brief history of environmental flow assessments, 11
 2.1 Introduction, 11
 2.2 The legal basis for environmental flows, 12
 2.3 The scope of environmental flow assessments, 13
 2.4 Methods for quantifying environmental flows, 14
 2.5 Conclusions, 20
 Note, 20

3 A primer on flow in rivers and streams, 21
 3.1 Introduction, 21
 3.2 Precipitation and runoff, 22

4 Life in and around streams, 39
 4.1 Introduction, 39
 4.2 Structure of stream ecosystems, 40
 4.2.1 Across-channel gradients, 40
 4.2.2 Upstream–downstream gradient, 41
 4.3 Adaptations of stream organisms, 43
 4.3.1 Morphological adaptations, 43
 4.3.2 Physiological adaptations, 44
 4.3.3 Behavioral adaptations, 45
 4.4 Adapting to extreme flows, 46
 4.5 Synthesis, 47
 4.6 Environmental flows and fish assemblages, 47
 4.7 Conclusions, 49

5 Tools for environmental flow assessment, 51
 5.1 Introduction, 51
 5.2 Descriptive tools, 52
 5.2.1 Graphical tools and images, 52
 5.2.2 Stream classifications, 53
 5.2.3 Habitat Classifications, 54
 5.2.4 Species classifications, 55
 5.2.5 Methods classifications, 55
 5.3 Literature reviews, 55
 5.4 Experiments, 56
 5.4.1 Flow experiments, 56
 5.4.2 Laboratory experiments, 56
 5.4.3 Thought experiments, 56

3.3 Flow regimes, 22
 3.3.1 Describing or depicting flow regimes, 22
 3.3.2 Variation in flow regimes across climates and regions, 25
 3.3.3 Anthropogenic changes in flow regimes, 28
 3.3.4 Hydrologic classifications, 29
 3.4 Spatial patterns and variability within streams, 30
 3.4.1 Spatial complexity of flow within stream channels, 30
 3.4.2 The variety of channel forms, 31
 3.4.3 Lateral connectivity with floodplain and off-channel water bodies, 33
 3.4.4 Bed topography and hyporheic exchange, 36
 3.5 Managing environmental flows, 37
 3.6 Conclusions, 38

4.3.1 Spatial complexity of flow within stream channels, 30
4.4.2 The variety of channel forms, 31
4.4.3 Lateral connectivity with floodplain and off-channel water bodies, 33
4.4.4 Bed topography and hyporheic exchange, 36
4.5 Managing environmental flows, 37
4.6 Conclusions, 38

5.1 Introduction, 51
5.2 Descriptive tools, 52
 5.2.1 Graphical tools and images, 52
 5.2.2 Stream classifications, 53
 5.2.3 Habitat Classifications, 54
 5.2.4 Species classifications, 55
 5.2.5 Methods classifications, 55
5.3 Literature reviews, 55
5.4 Experiments, 56
 5.4.1 Flow experiments, 56
 5.4.2 Laboratory experiments, 56
 5.4.3 Thought experiments, 56
5.5 Long-term monitoring, 58
5.6 Professional opinion, 59
5.7 Causal criteria, 60
5.8 Statistics, 60
5.8.1 Sampling, 61
5.8.2 Sampling methods, 61
5.8.3 Hypothesis testing, 61
5.8.4 Model selection and averaging, 62
5.8.5 Resampling algorithms, 62
5.9 Modeling, 63
5.9.1 Abundance–environment relations, 64
5.9.2 Habitat association models, 65
5.9.3 Drift–foraging models, 65
5.9.4 Capability models, 66
5.9.5 Bayesian networks, 66
5.9.6 Hierarchical Bayesian models, 69
5.9.7 Dynamic occupancy models, 70
5.9.8 State-dependent life-history models and dynamic energy budget models, 71
5.9.9 Hydraulic models, 71
5.9.10 Hydrological models, 72
5.9.11 Temperature models, 72
5.9.12 Sediment transport models, 72
5.9.13 Other uses of models in EFA, 73
5.10 Hydraulic habitat indices, 73
5.11 Hydrological indices, 75
5.12 Conclusions, 75

6 Environmental flow methods, 77
 Summary, 77
6.1 Introduction, 77
6.1.1 Hydrologic, habitat rating, habitat simulation, and holistic methods, 78
6.1.2 Top-down and bottom-up approaches, 78
6.1.3 Sample-based methods and whole-system methods, 78
6.1.4 Standard-setting and incremental approaches, 79
6.1.5 Micro-, meso-, and river-scale methods, 79
6.1.6 Opinion-based and model-based methods 79
6.2 Hydrological methods, 80
6.2.1 The tennant method and its relatives, 80
6.2.2 Indicators of hydraulic alteration (IHA), 81
6.3 Hydraulic rating methods, 82
6.4 Habitat simulation methods, 83
6.4.1 Habitat association models, 84
6.4.2 Bioenergetic or drift–foraging models, 88
6.5 Frameworks for EFA, 92
6.5.1 Instream flow incremental methodology (IFIM), 92
6.5.2 Downstream response to imposed flow transformation (DRIFT), 95
6.5.3 Ecological limits of hydraulic alteration (ELOHA), 97
6.5.4 Adaptive management, 102
6.5.5 Evidence-based EFA, 104
6.6 Conclusions, 107

7 Good modeling practice for EFA, 109
 Summary, 109
7.1 Introduction, 110
7.2 Modeling practice, 110
7.2.1 What are the purposes of the modeling?, 110
7.2.2 How should you think about the natural system being assessed?, 111
7.2.3 What data are or will be available, and how good are they?, 111
7.2.4 How will the available budget be distributed over modeling efforts, or between modeling and data collection, or between the assessment and subsequent monitoring?, 112
7.2.5 How will the uncertainty in the results of the modeling be estimated and communicated?, 112
7.2.6 How will the model and model development be documented?, 113
7.2.7 How will the models be tested?, 113
7.2.8 How good is good enough to be useful?, 113
7.2.9 Who will use the results of the modeling, and how will they be used?, 113
7.2.10 Do you really need a model?, 113
7.3 Behavioral issues in modeling for EFA, 114
7.4 Data-dependent activities in developing estimation models, 115
7.5 Sampling, 118
7.5.1 General considerations, 118
7.5.2 Spatial scale issues in sampling, 119
7.5.3 Cleaning data sets, 119
7.6 On testing models, 120
7.6.1 The purpose of testing models, 120
7.6.2 Why testing models can be hard, 120
7.6.3 The problem with validation, 120
7.6.4 The limited utility of significance tests, 121
7.6.5 Tests should depend on the nature of the method being applied, 122
7.6.6 Models should be tested multiple ways, 122
7.6.7 The importance of plausibility, 123
7.6.8 The importance of testing models with independent data, 123
7.6.9 The quality of the data limits the quality of the tests, 123
7.6.10 The importance of replication, 123
7.6.11 Models should be tested against other models, 123
7.7 Experimental tests, 126
7.7.1 Flow experiments, 126
7.7.2 Behavioral carrying-capacity tests, 128
7.7.3 Virtual ecosystem experiments, 128
7.8 Testing models with knowledge, 129
7.9 Testing hydraulic models, 129
7.10 Testing EFMs based on professional judgement, 130
7.11 Testing species distribution models, 131
7.11.1 Goodness of fit, 132
7.11.2 Prevalence, 132
7.11.3 Imperfect detection, 133
7.11.4 Spatial scale and other complications, 133
7.12 Conclusions, 141
Note, 142
8 Dams and channel morphology, 143

Summary, 143
8.1 Introduction, 143
8.2 Diagnosing the problem and setting objectives, 145
8.3 Managing sediment load, 146
 8.3.1 Existing dams, 146
 8.3.2 Proposed dams, 147
 8.3.3 Obsolete dams, 150
8.4 Specifying morphogenic flows, 152
 8.4.1 Three common approaches to specifying morphogenic flows, 152
 8.4.2 Clear objectives needed, 153
 8.4.3 Magnitude, 153
 8.4.4 Duration, 155
 8.4.5 The hydrograph, 155
 8.4.6 Seasonality, 156
 8.4.7 Recurrence, 158
8.5 Flows for managing vegetation in channels, 159
8.6 Constraints, 159
 8.6.1 Minimizing cost of foregone power production and other uses of water, 159
 8.6.2 Preserving spawning gravels, 160
 8.6.3 Preventing flooding and bank erosion, 161
8.7 Conclusions, 161

9 Improving the use of existing evidence and expert opinion in environmental flow assessments, 163

Summary, 163
9.1 Introduction, 163
9.2 Overview of proposed method, 164
9.3 Basic principles and background to steps, 165
 9.3.1 Literature as a basis of an evidence-based conceptual model, 165
 9.3.2 Translate the conceptual model into the structure of a Bayesian belief network, 166
 9.3.3 Quantify causal relationships in the BBN using formal expert elicitation, 166
9.4 Case study: golden perch (Macquaria ambigua) in the regulated Goulburn River, southeastern Australia, 168
 9.4.1 Evidence-based conceptual model of golden perch responses to flow variation, 168
 9.4.2 Bayesian belief network structure of the golden perch model, 168
 9.4.3 Expert-based quantification of effects of flow and non-flow drivers on golden perch, 169
 9.4.4 Inclusion of monitoring data to update the golden perch BBN, 171
9.5 Discussion, 172
 9.5.1 Improved use of knowledge from the literature, 172
 9.5.2 Improving the basis of Bayesian networks for environmental flows, 173
 9.5.3 Hierarchical Bayesian methods as best practice, 174
 9.5.4 Piggy-backing on existing knowledge, 175
 9.5.5 Resourcing improved practice, 175
 9.5.6 Accessibility of methods, 176
9.6 Summary, 176

10 Summary conclusions and recommendations, 177

10.1 Conclusions and recommendations, 177
 10.1.1 Confront uncertainty and manage adaptively, 177
 10.1.2 Methods for EFA, 178
 10.1.3 Recommendations on monitoring, 180
 10.1.4 Recommendations for assessments, 181
10.2 A checklist for EFA, 182

Literature cited 185
Index 215