Index

0–1 integer programming algorithm
  application 130
  linear algorithm 128–129
logarithm likelihood ratio calculation 126–128
recursive algorithm 129–130

absolute registration 72
absolute value of error cost function 21–22
accumulative number of track interruptions 430–431
active calibration 88
active phased array radar technology 488
adaptive sampling period algorithm 345
  constant gain filtering method 346–347
  interactive multiple-model (IMM) algorithm 347–348
  predicted covariance threshold algorithm 348–349
adaptive scheduling strategy 352–355
  performance analysis 357–359
adaptive tracking algorithm
  current statistical model algorithm 180–182
  interacting multiple model algorithm (IMM) 186–187
  interacting state estimates 187
  model modification 187
  model output 188–189
  model possibility calculation 188
  model probability update 188
  jerk model tracking algorithm 182–184
modified-input estimation algorithm 174–176
  multiple model algorithm 184–186
  Singer model tracking algorithm 176–180
ADS-B system calibration 88–89
aims of radar data processing 1–2
  relation diagram 2
air traffic flow management (ATFM) 468
air warning radar networks 492
  key technologies
    coordinate transformation 494
    multi-station track association 494–495
    space registration 493
    system error registration 494
    time registration 493
    structure 492–493
airborne early warning (AEW) radar
  data processing technology 487–488
    active phased array radar technology 488
    data fusion technology 488–489
  features, components and task 486–487
  working modes 489
    AEW mode 490–491
    marine mode 491
    over-the-horizon mode 491
    passive working mode 492
aircraft motion equation 449–451
algorithm simulation examples 457–463
  correct association probability 462–463

© 2016 Publishing House of Electronics Industry. All rights reserved. Published 2016 by John Wiley & Sons
Singapore Pte. Ltd.
algorithm simulation examples (cont’d)
position error of root mean square 460–461
speed of algorithm 462
all-neighbor Bayesian algorithm for multi-target track
termination 255–256
AN/SPY-1A multi-function phased array radar 484–485
annular gate 96–97
antenna coordinate system 79
  transformation to/from sight of target 86
anti-jamming ability performance indexes 407–408
arbitrarily random number generation 447–449
astronomical time synchronization 72
ATC command monitoring system (ATCCMS) 468
  functional architecture 473
  logic architecture 474
ATC systems, data processing applications 467–468
  application, components and requirements 464–466
  basic data source 468–469
  data processing structures 466–467
  centralized structure 467
  functional subsystem at operational level 469–473
  functional subsystem of management and decision level 473
  supporting environment 474
augmented state registration (ASR) algorithm 397–398
average track initiation time 429–430

Bar-Shalom, Y. 13, 14
Bar-Shalom poly concept 13
basic concepts 2
  data association 4
  measurement preprocessing 2–3
  outlier rejection 3
  saturation prevention 3–4
  space alignment 3
  system error registration 3
  time synchronization 3
measurements 2
  track initiation and termination 5
  tracking 5–6
  tracks 7–9
  wave gate 4–5
Bayes’ formula 23
Bayesian algorithm for multi-target track termination 254–255
Bayesian estimation 22
Bayesian multi-target data association methods 138,
  167–168
  integrated PDA algorithm 152
  data analysis 154
  track existence 152–154
  joint probabilistic data algorithm (JPDA) 154–155
  basic model 155–160
  joint event probability calculation 160–162
  performance analysis 165–167
  simplified model 164–165
  state estimation covariance calculation 162–164
  nearest-neighbour algorithm
  nearest-neighbour standard filter (NNSF) 138–139
  probabilistic nearest-neighbour filter (PNNF) algorithm 139–140
  probabilistic data association (PDA) algorithm 141
  association probability 144–146
  covariance update 142–144
  start update 141–142
bistatic radar networks
  basic location relation 413–416
  combined estimation 416–417
  feasibility of 417–420
Blackman, S. S. 14
bound norm cost function 22
Bucy, S. S. 12
cancelled track 8
candidate echoes 96
carrier coordinate system 78–79
  transformation to/from NED 84–85
center computer 335
central limit theorem for normally distributed random
  number generation 445–446
centroid group tracking (CGT) 233–234
  initiation, confirmation and cancellation 234
  other features 237
  track updating 234–237
circulation threshold value segmentation method 206
  clustering track initiation method 108–109
clutter suppression
  principle 476–477
  shipboard method 477
  correlation filter module 479
  echo pretreatment module 477–478
  manual intervention 479–480
  radar control module 478–479
collision detection 473
computation amount and time 116
computer simulation technology 443
conditional extremum derivation 292–297
confirmed track 7
constant false alarm rate (CFAR) 1, 476
constant gain filtering method 346–347
constant-acceleration (CA) model 174
constant-velocity (CV) model 173
constrained limited exhaustive search (CLES) 165
control instructions 473
converted measurement Kalman filters (CMKFs) 319
cooperative calibration 88
coordinate system transformation 80, 469–470
antenna to/from sight of target 86
NED systems 86–87
NED to/from Earth rectangular 85–86
NED to/from shipborne 84–85
rectangular to/from polar 83–84
rotation transformation 81–83
translation transformation 80–81
coordinates for space registration 75
carrier coordinate system 78–79
Descartes rectangular coordinate system 75–77
Earth coordinate system 77–78
north east down (NED) coordinate system 78
north west down (NED) coordinate system 79
radar antenna coordinate system 79
sight of target coordinate system 80
space polar coordinate system 77
correlated measurements 2
correlation wave gate 4
cost function 21
cost function method 253–254
coverage performance indexes 406–407
Cramer–Rao lower bound (CRLB) 27
current situation radar processing technology 13–14
current statistical model algorithm 180–182
comparison with other algorithms 192–198
data association 4, 11
multi-target method 500
data association evaluation 429
accumulative number of track interruptions 430–431
average track initiation time 429–430
track ambiguity 431–432
data compression techniques 89
monostatic radar 89
equal-weighted average measurement
preprocessing 89–90
variable-weighted average measurement
preprocessing 90–91
multistatic radar 91–92
measurement synthesis 91–93
serial combination 93
data correlation 4
data format conversion 468
data fusion 472
data fusion performance evaluation 436
detection probability of networks 436–437
response time 437
track capacity 436
data preprocessing 468–469
equal-weighted average measurement 89–90
variable-weighted average measurement 90–91
data processing 469–472
data processing algorithm evaluation 438
analytic method 438–439
Monte Carlo method 438
semi-physical simulation method 439–440
test validation method 440
data processing practical examples 464
air warning radar networks 492
key technologies 493–495
structure 492–493
airborne early warning (AEW) radar
data processing technology 487–489
features, components and tasks 486–487
working modes 489–492
ATC systems 467–468
application, components and requirements 464–466
basic data source 468–469
data processing structures 466–467
functional subsystem at operational level 469–473
functional subsystem of management and
decision level 473
supporting environment 474
fleets air defense system 484
components and function 484–485
main performance indexes 485–486
ground-based radar
data acquisition principle 480–481
data processing procedure 481–482
phased array radar 495, 498
data processing procedure 495–496
functional features 495
test examples 496–498
shipboard monitoring systems
application, components and requirements 482–483
marine control system structure 483–484
shipboard navigation radar 474–476
marine collision avoidance system 475
tracking algorithm 476
shipboard radar clutter suppression
method 477–480
principle of clutter suppression 476–477
data processing relation diagram 2
data processing simulation technology
algorithm simulation examples 457–463
  correct association probability 462–463
  position error of root mean square 460–461
  speed of algorithm 462, 463
basis of simulation technology
  basic concept 442–443
  stochastic noise simulation 444–449
observation process simulation 452
  direction cosine noise 452–453
  range noise 452
  target motion model simulation
    motion equation of aircraft 449–451
    real-time track creation 451–452
track management simulation
  initiation and termination 455–456
  statistical evaluation of errors 456–457
tracking filtering simulation
  filtering and prediction algorithm 453–455
  multi-target data association methods 455
data processor design requirements
  basic tasks 9
  engineering design 9–10
  evaluation 11–12
data processors 1
de-duplication 423
density approximation method for normally
distributed random number generation 446–447
depth-first search (DPS) 164
Descartes rectangular coordinate system 75–77
transformation to/from polar 83–84
detection overlap coefficient 407
detection probability of networks 436–437
diagrammatical segmentation method 206–208
digital beam forming (DBF) 333
digital data network (DDN) 468
direction cosine noise 452–453
distance segmentation method 205–206
divergence 435–436
Doppler, Christian 304
Doppler change rate
  and azimuth joint location method 283–285
  azimuth and elevation joint location method 285–286
Doppler effect 305
Doppler frequency 305
Doppler measurement unscented Kalman filtering
  (DUKF) algorithm 319–320
  earliest deadline first (EDF) scheduling algorithm 353–354
Earth-centered, Earth-fixed (ECEF) coordinate
  system 373
  coordinate transformation relationship 373–374
ECEF–GLS registration algorithm 374–377
Earth coordinate system 77–78
transformation to/from NED 85–86
echo pretreatment module clutter suppression 477–478
  adaptive radar control with clutter maps 478
  manual intervention 477
  radar control with area control 478
elliptic/ellipsoidal gate 97–98
  area/volume ratio 100
equal-weighted average measurement
  preprocessing 89–90
error calibration techniques 88–89
error registration 470–471
errors, systematic
  composition 362–363
  influence 363–366
statistical evaluation 456–457
evaluation of data processing performance 427, 440
  basic terms 428–429
data association 429
  accumulative number of track interruptions 430–431
  average track initiation time 429–430
  track ambiguity 431–432
data fusion performance evaluation 436
  detection probability of networks 436–437
  response time 437
  track capacity 436
data processing algorithm evaluation 438
  analytic method 438–439
  Monte Carlo method 438
  semi-physical simulation method 439–440
  test validation method 440
tracking performance 432–433
  divergence 435–436
  false track ratio 434–435
  maneuvering target tracking ability 434
  track accuracy 433–434
evaluation of data processors 11–12
  data association 11
  immediacy 11
  tracking batches 11
  tracking filter accuracy 11
extended Kalman filter (EKF) 53
  algorithm 13–14
  application examples 67–71
  filter model 54–58
  problems in application 58
passive radar 278
principles 59

fading-memory likelihood function 121
false targets 10
false track initiation probability 268–269
false track life 8, 269–270
false track ratio 434–435
false tracks 116
filtering
block diagram 6
linear 34, 52
Kalman filter (KF) 34–48
Kalman filter (KF), steady state 48–52
nonlinear 53, 71
application examples 67–71
comparison between algorithms 70
extended Kalman filter (EKF) 53–58
particle filter (PF) 65–71
unscented Kalman filter (UKF) 58–65
finite-memory likelihood function 122
Fisher, R. A. 12
Fisher information 27, 29

generalized least squares (GLS) algorithm 371–373
Earth-centered, Earth-fixed (ECEF) coordinate system 373–377
coordinate transformation relationship 373–374
ECEF–GLS registration algorithm 374–377

global track 2
gray fine track initiation algorithm 231–233
analysis of algorithm 222–231
calculation formula 247–249
simulation verification 221–222
state matrix establishment 221
track confirmation 220–221

gray fine track initiation algorithm for group targets 214–215
relative position vector of measurement 215–216
establishment of model 219–220
establishment of vector 216–219
rules 220
ground-based radar
data acquisition principle 480–481
data processing procedure 481–482
group target tracking 203–204, 246–247
algorithm performance analysis
simulation analysis 240–246
simulation environment 240
simulation results 241–245
centroid group tracking (CGT) 233–234
initiation, confirmation and cancellation 234
other features 237
track updating 234–237
formation group tracking (FGT)
logic description 238–240
overview 238
gray fine track initiation algorithm 214–215, 231–233
analysis of algorithm 222–231
relative position vector of measurement 215–220
simulation verification 221–222
state matrix establishment 221
track confirmation 220–221
track initiation 204

frequency overlap coefficient 407–408
frequency-locked frequency tracking loop 306
generalized correlation algorithm 130
application 133
cycle flowchart 135
score function 135–136
suboptimal correlated recursive equation of score function sequences 133–135
score function 130–133
generalized least squares (GLS) algorithm 371–373
Earth-centered, Earth-fixed (ECEF) coordinate system 373–377
coordinate transformation relationship 373–374
ECEF–GLS registration algorithm 374–377

fixed radar registration algorithm 366–368
cooperative targets 366–368
generalized least squares (GLS) algorithm 371–373
generalized least squares (GLS) algorithm, ECEF coordinates 373–377
least squares (LS) algorithm 370–371
real-time quality control (RTQC) algorithm 368–370
simulation analysis 377–380
fixed scheduling strategy
performance analysis 357–359
fixed track 7–8
fleet air defense system 484
components and function 484
AN/SPY-1A multi-function phased array radar 484–485
MK1 operational readiness and test system 485
MK1 weapon control system 485
MK99 missile fire control system 485
main performance indexes 485–486
flight plan and radar data correlation 472
flight status correlation 473
format conversion of radar data 468
formation group tracking (FGT)
logic description 238–240
overview 238
formation target track initiation method 108–109
free measurements 2
group target tracking (cont’d)
group correlation 208–209
group definition 204–205
group segmentation 205–208
group velocity estimation 209–214
group tracking 500–501

high-level data link control (HDLC) protocol 468
historical perspective on radar processing technology 12–13
Hough transform and logic-based track initiation method 107–108
Hough transform-based track initiation method 103–106

identification of friend or foe (IFF) 334
identity (ID) of tracks 9
IMM–DUKF algorithm 320
immediacy 10
evaluation 11
IMM–PDAF algorithm 340–341
information fusion system 273–274
initiation response time 266–268
innovation covariance 42–43

interacting multiple model algorithm (IMM) 186–187
adaptive sampling period 347–348
comparison with other algorithms 192–198
interacting state estimates 187
model modification 187
model output 188–189
model possibility calculation 188
model probability update 188

isolated track 273
issues
data processing technology in other sensors 502
multi-radar information system optimization 504
multi-radar systems 503
multi-target tracking and track association joint optimization 503
multi-target tracking in complex electromagnetic wave and clutter 504
non-Gaussian noise 503
non-standard and nonlinear systems 503
target feature utilization 504
track initiation in passive sensor tracking 502–503

jerk model tracking algorithm 182–184
comparison with other algorithms 192–198
joint maximum likelihood algorithm
feasible partitions 123–125
recursive algorithm 125–126
joint probabilistic data algorithm (JPDA) 13, 154–155, 343–345

basic model
applications 157–160
association matrix 155–156
association probability calculation 156–157
validation matrix 155
joint event probability calculation 160–162
performance analysis 165–167
simplified model 164–165
state estimation covariance calculation 162–164

Kalman, R. E. 12
Kalman filter (KF) 12–13, 34
2-dimensional state vector estimation 44–45
4-dimensional state vector estimation 45–46
6-dimensional state vector estimation 46–47
9-dimensional state vector estimation 47–48
filtering model 41–44
algorithm 44
algorithm, single-cycle flow 45
initialization 44
system model 35
constant acceleration (CA) model 37
constant velocity (CV) model 35–36
coordinate turn (CT) model 38–39
measurement equation 39–41
state equation 35–39
Kalman filter (KF), steady state 48, 50–52
mathematical definition
filter stability 49
stability judgment 49
random linear system, controllability and observability 49–50

k-means clustering track initiation method 108–109
Kolmogorov, Andrey 12

Lagrange interpolation algorithm 74
Lagrange multiplier method 292–297
least squares (LS) algorithm
fixed radar registration 370–371
least squares (LS) parameter estimation 20, 26
static vectors 28–30
least-squares curve-fitting algorithm 74–75
left-hand space rectangular coordinate system 76
likelihood function
calculation 119–120
modified 121–122
linear filtering 34, 52
Kalman filter (KF) 34
filtering model 41–44
initialization 44–48
system model 35–41
Kalman filter (KF), steady state 48, 50–52
mathematical definition 49
random linear system, controllability and observability 49–50
linear minimum mean square error (LMMSE) parameter estimation 20
static vectors 32–33
linear multiple-target (LM) approach 343
local track 2
logic-based track initiation method 101–102
  Hough transform and logic-based method 107–108
modified 102–103
maneuver detection 170–171
  schematic diagram 170
  variable-dimension filtering 172–174
  white noise model with adjustable level 171–172
maneuvering target tracking 500
maneuvering target tracking ability 434
marine collision avoidance system 475
  tracking algorithm 476
marine control system structure 483–484
master clock time synchronization 72
maximum a priori (MAP) parameter estimation 20, 23–24
maximum likelihood (ML) parameter estimation 20, 24
maximum likelihood method 12
maximum likelihood registration algorithm (MLR) 390–393
maximum likelihood registration of mobile radar algorithm (MLRM) 393–397
measurement correlation 4
measurement preprocessing 2–3
  outlier rejection 3
  saturation prevention 3–4
  space alignment 3
  system error registration 3
  time synchronization 3
measurement preprocessing techniques 72, 93–94
  data compression techniques 89
  monostatic radar 89–91
  multistatic radar 91–93
error calibration techniques 88–89
  space registration
    coordinate transformation 80–88
    coordinates 75–80
  tracking system selection 87–88
  time registration 72–73
  interpolation/extrapolation using velocity 73–74
  Lagrange interpolation algorithm 74
  least-squares curve-fitting algorithm 74–75
measurement preprocessing technology 500
minimum mean square error (MMSE) parameter estimation 20, 21, 24–25
static vectors 30–32
minimum variance estimator 25
mixed congruential random number generation 444–445
MK1 operational readiness and test system 485
MK1 weapon control system 485
MK99 missile fire control system 485
mobile ad hoc network (MANET) technology 506
mobile radar registration algorithm 380
  cooperative targets 386–390
  maximum likelihood registration algorithm (MLR) 390–393
  maximum likelihood registration of mobile radar algorithm (MLRM) 393–397
  modeling method 380–386
model splice 481
modified EDF scheduling algorithm 354
modified logic-based track initiation method 102–103
modified-input estimation algorithm 174–176
monostatic radar networks 408
  process of data processing 408–410
  flowchart 409
state estimation 410
  centralized structures 411–412
  distributed structures 413
Monte Carlo simulations 443
  motion equation of aircraft 449–451
moving target indication (MTI) 476
multiple hypothesis filter (MHT) 168
multiple hypothesis method 13
multiple hypothesis tracking (MHT) 471
multiple model algorithm 184–186
  interacting multiple model algorithm (IMM) 186–189
multiple-input, multiple-output (MIMO) system 420–421
multiple-radar data processing systems (MRDPSs) 468
multiplicative congruential random number generation 444
multistatic radar networks 420–421
  generic data processing 422–423
  observation equation 422
  tracking principle 421–422
multi-target data association methods 118, 137, 455
  0–1 integer programming algorithm
    application 130
    linear algorithm 128–129
    logarithm likelihood ratio calculation 126–128
    recursive algorithm 129–130
multi-target data association methods (cont’d)
  generalized correlation algorithm 130
  application 133–136
  score function 130–133
  joint maximum likelihood algorithm 123
  feasible partitions 123–125
  recursive algorithm 125–126
  track-splitting algorithm 118–119
  characteristics 122–123
  likelihood function calculation 119–120
  modified likelihood function 121–122
  threshold setting 120–121
multi-target data association methods, Bayesian 138, 167–168
integrated PDA algorithm 152
  data analysis 154
  track existence 152–154
  joint probabilistic data algorithm (JPDA) 154–155
  basic model 155–160
  joint event probability calculation 160–162
  performance analysis 165–167
  simplified model 164–165
  state estimation covariance calculation 162–164
  nearest-neighbour algorithm
    nearest-neighbour standard filter (NNSF) 138–139
    probabilistic nearest-neighbour filter (PNNF) algorithm 139–140
  probabilistic data association (PDA) algorithm 141
    association probability 144–146
    covariance update 142–144
    start update 141–142
multi-target track management 275
  information fusion system 273–274
  track batch management 258–259
    descriptive diagram 261–262
    double-track batch characteristics 261–262
    double-track solid figure description 262–265
    single-track batch assignment method 259–260
  track data storage 265–266
  track quality management 266
    initiation rule and track deletion 266–270
    optimization under mono-radar circumstances 270–272
    optimization under multiple site circumstances 272–273
multi-target track termination (MMTT) 255
multi-target track termination theory 275
  algorithm performance analysis
    parameter setting 256–257
    simulation environment 256–257
  simulation results and analysis 257–258
  all-neighbor Bayesian algorithm 255–256
  Bayesian algorithm 254–255
  cost function method 253–254
  sequential probability ratio test (SPRT) algorithm 250–252
  tracking gate method 252
multi-target tracking 95–96, 117
  gate shape and size 96
    annular gate 96–97
    elliptic/ellipsoidal gate 97–98
    rectangular gate 99
    sector gate 99–100
  track initiation algorithm comparison and analysis 109–116
  track initiation algorithms 100–101
    formation target method 108–109
    Hough transform and logic-based method 107–108
    Hough transform-based method 103–106
    logic-based method 101–102
    modified logic-based method 102–103
  track initiation issues 116
    main indicators of performance 116
    scan times 116–117
multi-target-in-clutter tracking algorithms 343–345
multi-tracking target principle 338
multi-tracking termination theory 501
nearest-neighbor algorithm
  nearest-neighbor standard filter (NNSF) 138–139
  probabilistic nearest-neighbor filter (PNNF) algorithm 139–140
probabilistic data association (PDA) algorithm 141
  association probability 144–146
  covariance update 142–144
  start update 141–142
network data processing 405–406, 426
  bistatic radar networks
    basic location relation 413–416
    combined estimation 416–417
    combined estimation, feasibility of 417–420
  monostatic radar networks 408
    process of data processing 408–410
    state estimation 410–413
  multistatic radar networks 420–421
    generic data processing 422–423
    observation equation 422
    tracking principle 421–422
  performance evaluation indexes 406
    anti-jamming ability 407–408
    coverage 406–407
    target capacity 407
track association 423–426
network error registration algorithm 362, 402–404
augmented state registration (ASR) algorithm 397–398
fixed radar registration algorithm 366–368
cooperative targets 366–368
generalized least squares (GLS) algorithm 371–373
generalized least squares (GLS) algorithm, ECEF coordinates 373–377
least squares (LS) algorithm 370–371
real-time quality control (RTQC) algorithm 368–370
simulation analysis 377–380
mobile radar registration algorithm 380
cooperative targets 386–390
maximum likelihood registration algorithm (MLR) 390–397
maximum likelihood registration of mobile radar algorithm (MLRM) 393–397
modeling method 380–386
simulation analysis 398–402
systematic errors
composition 362–363
influence 363–366
noncooperative calibration 88
non-Gaussian noise 503
nonlinear filtering 53, 71
extended Kalman filter (EKF) 53
application examples 67–71
comparison between algorithms 70
filter model 54–58
principles 59
problems in application 58
particle filter (PF)
application examples 67–71
filtering model 65–67
unscented Kalman filter (UKF) 58–59
application examples 67–71
filtering model 60–61
principles 59
simulation analysis 61–65
unscented transformation (UT) 59–60
non-pre-emptive EDF (NPEDF) scheduling algorithm 353–354
normal distribution random number generation 445–447
north east down (NED) coordinate system 78, 79
transformation to/from Earth rectangular 85–86
transformation to/from shipborne 84–85
transformations 86–87
observation equation with Doppler radial velocity 337–340
observation process simulation 452
direction cosine noise 452–453
range noise 452
one-step predicted covariance 42
optimal Bayesian filter (OBF) 168
optimal range–velocity mutual coupling tracking 309–312
outlier elimination 481
outlier rejection 3
parameter estimation 20, 33
basic techniques 23
least squares (LS) 26
maximum a priori (MAP) 23–24
maximum likelihood (ML) 24
minimum mean square error (MMSE) 24–25
concept 20–23
estimator properties
consistency 26–27
efficiency 27
unbiasedness 26
variance 26
static vectors 28
least squares (LS) 28–30
linear minimum mean square error (LMMSE) 32–33
minimum mean square error (MMSE) 30–32
particle filter (PF)
algorithm 14
filtering model 65–67
application examples 67–71
passive calibration 88
passive radar data processing 276, 303
advantages 276–277
optimal deployment of direction-finding location 289
conditional extremum derivation from Lagrange multiplier method 292–297
position concentration ellipse area 289–291
position concentration ellipse area minimum 297–298
spatial data association 278
Doppler change rate and azimuth joint location method 283–285
Doppler change rate, azimuth and elevation joint location method 285–286
multiple-model method 286–289
phase changing rate method 278–283
time difference of arrival (TDOA) measurements location model 299
passive radar data processing (cont’d)
three-dimensional condition 301–303
two-dimensional condition 299–301
phased array radar 495
data processing procedure
adaptive track update rate 495–496
measurements processing 495
track filter 495
functional features 495
test examples
adaptive tracking 497
multiple-function operation 496
split track tracking 497–498
phased array radar data processing 332, 361
algorithm performance analysis
comparison and discussion 360–361
simulation environment and parameter settings 355–356
simulation results and analysis 356–360
characteristics 333–334
data processing 336–337
adaptive sampling period algorithm 345–349
multi-target-in-clutter tracking algorithms 343–345
multi-tracking target principle 338
real-time task scheduling strategy 349–355
single-target-in-clutter tracking algorithms 337–343
major indexes 334
structure 334–335
working procedure 335–336
flowchart 336
track-and-scan (TAS) mode 336
track-while-scan (TWS) mode 336
phase-locked frequency tracker 307
Poisson parameter model 145–146
polar coordinate system 77
transformation to/from rectangular 83–84
position error 457
possible track 7
pre-emptive EDF scheduling algorithm 353
primary signal processing 1
probabilistic data association algorithm (PDA) 141
association probability 144–145
modified PDAF algorithm 146–147
nonparameter models 145–146
parameter models 145
performance analysis 147–151
covariance update 142–144
integrated PDA algorithm 152
data analysis 154
track existence 152–154
start update 141–142
probabilistic data association filter (PDAF) 141, 337
modified 146–147
performance 147–151
with Doppler radial velocity 341–343
probabilistic nearest-neighbor filter (PNNF)
algorithm 139–140
performance 147–151
probability density function (PDF) 13, 22
probability mass function (PMF) 145
pulse Doppler (PD) radar data processing 304, 331
algorithm performance analysis
simulation environment and parameter settings 321–322
simulation results and analysis 322–330
algorithms 307–309
multi-target tracking 312
optimal range–velocity mutual coupling
tracking 309–312
target tracking with Doppler measurements 312–320
characteristics 304–305
tracking systems 305
multi-target system 307
single-target range 306–307
single-target velocity 306
pulse repetition frequency (PRF) 305
radar antenna coordinate system 79
transformation to/from sight of target 86
radar control module clutter suppression 478–479
adaptive radar control with clutter maps 479
manual intervention 478
radar control with area control 479
radar controller 335
radar head processing delay 470
radar scheduler 335
random error 2
range noise 452
range tracking loop 308
ratio of errors 2
real-time quality control (RTQC) algorithm 368–370
real-time task scheduling strategy 349
adaptive scheduling strategy 352–355
influential factors 349–351
template scheduling strategy 351–352
real-time track creation 451–452
rectangular coordinate system 75–77
transformation to/from polar 83–84
rectangular gate 99
area/volume ratio 100
redundant track 8
relative registration 72
space registration (cont’d)
sight of target coordinate system 80
space polar coordinate system 77
tracking system selection 87–88
space–time adaptive processing (STAP) 488
speed of algorithm 462
splice of model 481
squared error cost function 21
state estimation
   basis 499
   centralized structures 411–412
   distributed structures 413
state variable method 6
static vector parameter estimation 28
least squares (LS) 28–30
linear minimum mean square error (LMMSE) 32–33
minimum mean square error (MMSE) 30–32
statistical evaluation of errors 456–457
stereographic projection 369
stochastic noise digital simulation 444
normal distribution random number generation 445–447
uniformly random number generation 444–445
strongest-neighbour filter (SNF) 139
system error 2
system error registration 3, 501
system simulation technology 442
system track 2
systematic errors
   composition 362–363
   influence 363–366
target capacity performance indexes 407
target motion model simulation
   motion equation of aircraft 449–451
   real-time track creation 451–452
target tracking with Doppler measurements 312
   Doppler measurement unscented Kalman filtering (DUKF) algorithm 319–320
   unbiased sequential extended Kalman filtering (USEK Fif) algorithm 312–317
   unbiased sequential unscented Kalman filtering (USUKF) algorithm 318–319
   unscented Kalman filtering (UKF) algorithm for moving targets 320
technical indexes of data processors 10
   false targets 10
   immediacy 10
   tracking accuracy 10
   tracking capacity 10
   true target loss 10
template scheduling strategy 351–352
tentative track 7
tertiary signal processing 1–2
time difference of arrival (TDOA) technique
   location model 299
   three-dimensional condition 301–303
   two-dimensional condition 299–301
time registration 72–73, 470, 493
   interpolation/extrapolation using velocity 73–74
   Lagrange interpolation algorithm 74
least-squares curve-fitting algorithm 74–75
time synchronization 3, 72
track accuracy 433–434
track ambiguity 431–432
track-and-scan (TAS) mode 336
track association 423–426, 471–472
track batch management 258–259
descriptive diagram 261–262
double-track batch characteristics 261–262
double-track solid figure description 262–265
single-track batch assignment method 259–260
track data storage 265–266
track cancellation 472
   start update 136
track capacity 436
track confirmation 135–136
track IDs 9
track initiation 5, 95–96, 117, 136
   algorithm comparison and analysis 109–116
   algorithms 100–101
   formation target method 108–109
   Hough transform and logic-based method 107–108
   Hough transform-based method 103–106
   logic-based method 101–102
   modified logic-based method 102–103
gate shape and size 96
   annular gate 96–97
   elliptic/ellipsoidal gate 97–98
   rectangular gate 99
   sector gate 99–100
group targets 204
   group definition 204–205
   group segmentation 205–208
issues 116
   main indicators of performance 116
   scan times 116–117
multi-target tracking 500
simulation 455–456
false track ratio 434–435
maneuvering target tracking ability 434
track accuracy 433–434
track-splitting algorithm 118–119
characteristics 122–123
likelihood function calculation 119–120
modified likelihood function 121–122
threshold setting 120–121
track-while-scan (TWS) mode 336
tracking system selection 87–88
tracking target groups 203–204, 246–247
algorithm performance analysis
simulation analysis 240–246
simulation environment 240
simulation results 241–245
centroid group tracking (CGT) 233–234
initiation, confirmation and cancellation 234
other features 237
track updating 234–237
formation group tracking (FGT)
logic description 238–240
overview 238
gray fine track initiation algorithm 214–215, 231–233
analysis of algorithm 222–231
relative position vector of measurement 215–220
simulation verification 221–222
state matrix establishment 221
track confirmation 220–221
track initiation 204
group correlation 208–209
group definition 204–205
group segmentation 205–208
group velocity estimation 209–214
tracking wave gate 4
tracks 7–9
concepts
cancelled track 8
confirmed track 7
fixed track 7–8
possible track 7
redundant track 8
tentative track 7
track interruption 8
track life 8–9
track switch 8
transformation method for normally distributed random number generation 446
translation coordinate transformation 80–81
ture target loss 10
ture track life 9, 269–270
unbiased converted measurements Kalman filter (UCMKF) 61
unbiased sequential extended Kalman filtering (USEKF) algorithm 312–317
unbiased sequential unscented Kalman filtering (USUKF) algorithm 318–319
uniform cost function 21, 22
uniformly random number generation 444–445
unscented Kalman filter (UKF) 58–59
algorithm 13
algorithm for moving targets 320
application examples 67–71
filtering model 60–61
principles 59
simulation analysis 61–65
unscented transformation (UT) 59–60
validation gate 4
variable-dimensional filtering (VDF) 169, 172–174
comparison with other algorithms 192–198
variable-weighted average measurement preprocessing 90–91
velocity error 457
velocity estimation for groups 209
association and distinction algorithm 210–211
center extrapolation algorithm 211–214
direct estimation algorithm 209
voice recording and processing 469
voltage-controlled oscillator (VCO) 306
wave gate 2, 4–5
Wiener, N. 12
Wiener filter 12