Contents

Preface xi

About the Authors xv

Acknowledgement xvii

List of Figures xix

List of Tables xxiii

1 Introduction 1

1.1 Plant-Wide System 1

1.2 Control System Structure of the Plant-Wide System 3

1.2.1 Centralized Control 4

1.2.2 Decentralized Control and Hierarchical Coordinated Decentralized Control 5

1.2.3 Distributed Control 6

1.3 Predictive Control 8

1.3.1 What is Predictive Control 8

1.3.2 Advantage of Predictive Control 9

1.4 Distributed Predictive Control 9

1.4.1 Why Distributed Predictive Control 9

1.4.2 What is Distributed Predictive Control 10

1.4.3 Advantage of Distributed Predictive Control 10

1.4.4 Classification of DMPC 11

1.5 About this Book 13

Part I FOUNDATION

2 Model Predictive Control 19

2.1 Introduction 19

2.2 Dynamic Matrix Control 20

2.2.1 Step Response Model 20

2.2.2 Prediction 21
Contents

2.2.3 Optimization 22
2.2.4 Feedback Correction 23
2.2.5 DMC with Constraint 24

2.3 Predictive Control with the State Space Model 26
 2.3.1 System Model 27
 2.3.2 Performance Index 28
 2.3.3 Prediction 28
 2.3.4 Closed-Loop Solution 30
 2.3.5 State Space MPC with Constraint 31

2.4 Dual Mode Predictive Control 33
 2.4.1 Invariant Region 33
 2.4.2 MPC Formulation 34
 2.4.3 Algorithms 35
 2.4.4 Feasibility and Stability 36

2.5 Conclusion 37

3 Control Structure of Distributed MPC 39
 3.1 Introduction 39
 3.2 Centralized MPC 40
 3.3 Single-Layer Distributed MPC 41
 3.4 Hierarchical Distributed MPC 42
 3.5 Example of the Hierarchical DMPC Structure 43
 3.6 Conclusion 45

4 Structure Model and System Decomposition 47
 4.1 Introduction 47
 4.2 System Mathematic Model 48
 4.3 Structure Model and Structure Controllability 50
 4.3.1 Structure Model 50
 4.3.2 Function of the Structure Model in System Decomposition 51
 4.3.3 Input–Output Accessibility 53
 4.3.4 General Rank of the Structure Matrix 56
 4.3.5 Structure Controllability 56
 4.4 Related Gain Array Decomposition 58
 4.4.1 RGA Definition 59
 4.4.2 RGA Interpretation 60
 4.4.3 Pairing Rules 61
 4.5 Conclusion 63

Part II UNCONSTRAINED DISTRIBUTED PREDICTIVE CONTROL

5 Local Cost Optimization-based Distributed Model Predictive Control 67
 5.1 Introduction 67
 5.2 Local Cost Optimization-based Distributed Predictive Control 68
 5.2.1 Problem Description 68
 5.2.2 DMPC Formulation 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3 Closed-loop Solution</td>
<td>72</td>
</tr>
<tr>
<td>5.2.4 Stability Analysis</td>
<td>79</td>
</tr>
<tr>
<td>5.2.5 Simulation Results</td>
<td>79</td>
</tr>
<tr>
<td>5.3 Distributed MPC Strategy Based on Nash Optimality</td>
<td>82</td>
</tr>
<tr>
<td>5.3.1 Formulation</td>
<td>83</td>
</tr>
<tr>
<td>5.3.2 Algorithm</td>
<td>86</td>
</tr>
<tr>
<td>5.3.3 Computational Convergence for Linear Systems</td>
<td>86</td>
</tr>
<tr>
<td>5.3.4 Nominal Stability of Distributed Model Predictive Control System</td>
<td>88</td>
</tr>
<tr>
<td>5.3.5 Performance Analysis with Single-step Horizon Control Under</td>
<td>89</td>
</tr>
<tr>
<td>Communication Failure</td>
<td></td>
</tr>
<tr>
<td>5.3.6 Simulation Results</td>
<td>94</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>99</td>
</tr>
<tr>
<td>Appendix</td>
<td>99</td>
</tr>
<tr>
<td>Appendix A. QP problem transformation</td>
<td>99</td>
</tr>
<tr>
<td>Appendix B. Proof of Theorem 5.1</td>
<td>100</td>
</tr>
<tr>
<td>6 Cooperative Distributed Predictive Control</td>
<td>103</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>103</td>
</tr>
<tr>
<td>6.2 Noniterative Cooperative DMPC</td>
<td>104</td>
</tr>
<tr>
<td>6.2.1 System Description</td>
<td>104</td>
</tr>
<tr>
<td>6.2.2 Formulation</td>
<td>104</td>
</tr>
<tr>
<td>6.2.3 Closed-Form Solution</td>
<td>107</td>
</tr>
<tr>
<td>6.2.4 Stability and Performance Analysis</td>
<td>109</td>
</tr>
<tr>
<td>6.2.5 Example</td>
<td>113</td>
</tr>
<tr>
<td>6.3 Distributed Predictive Control based on Pareto Optimality</td>
<td>114</td>
</tr>
<tr>
<td>6.3.1 Formulation</td>
<td>118</td>
</tr>
<tr>
<td>6.3.2 Algorithm</td>
<td>119</td>
</tr>
<tr>
<td>6.3.3 The DMPC Algorithm Based on Plant-Wide Optimality</td>
<td>119</td>
</tr>
<tr>
<td>6.3.4 The Convergence Analysis of the Algorithm</td>
<td>121</td>
</tr>
<tr>
<td>6.4 Simulation</td>
<td>121</td>
</tr>
<tr>
<td>6.5 Conclusions</td>
<td>123</td>
</tr>
<tr>
<td>7 Networked Distributed Predictive Control with Information Structure Constraints</td>
<td>125</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>7.2 Noniterative Networked DMPC</td>
<td>126</td>
</tr>
<tr>
<td>7.2.1 Problem Description</td>
<td>126</td>
</tr>
<tr>
<td>7.2.2 DMPC Formulation</td>
<td>127</td>
</tr>
<tr>
<td>7.2.3 Closed-Form Solution</td>
<td>132</td>
</tr>
<tr>
<td>7.2.4 Stability Analysis</td>
<td>135</td>
</tr>
<tr>
<td>7.2.5 Analysis of Performance</td>
<td>135</td>
</tr>
<tr>
<td>7.2.6 Numerical Validation</td>
<td>137</td>
</tr>
<tr>
<td>7.3 Networked DMPC with Iterative Algorithm</td>
<td>144</td>
</tr>
<tr>
<td>7.3.1 Problem Description</td>
<td>144</td>
</tr>
<tr>
<td>7.3.2 DMPC Formulation</td>
<td>145</td>
</tr>
<tr>
<td>7.3.3 Networked MPC Algorithm</td>
<td>147</td>
</tr>
<tr>
<td>7.3.4 Convergence and Optimality Analysis for Networked</td>
<td>150</td>
</tr>
</tbody>
</table>
7.3.5 Nominal Stability Analysis for Distributed Control Systems 152
7.3.6 Simulation Study 153

7.4 Conclusion 159
Appendix 159
Appendix A. Proof of Lemma 7.1 159
Appendix B. Proof of Lemma 7.2 160
Appendix C. Proof of Lemma 7.3 160
Appendix D. Proof of Theorem 7.1 161
Appendix E. Proof of Theorem 7.2 161
Appendix F. Derivation of the QP problem (7.52) 164

Part III CONSTRAINT DISTRIBUTED PREDICTIVE CONTROL

8 Local Cost Optimization Based Distributed Predictive Control with Constraints 169
8.1 Introduction 169
8.2 Problem Description 170
8.3 Stabilizing Dual Mode Noncooperative DMPC with Input Constraints 171
8.3.1 Formulation 171
8.3.2 Algorithm Design for Resolving Each Subsystem-based Predictive Control 176
8.4 Analysis 177
8.4.1 Recursive Feasibility of Each Subsystem-based Predictive Control 177
8.4.2 Stability Analysis of Entire Closed-loop System 183
8.5 Example 184
8.5.1 The System 184
8.5.2 Performance Comparison with the Centralized MPC 185
8.6 Conclusion 187

9 Cooperative Distributed Predictive Control with Constraints 189
9.1 Introduction 189
9.2 System Description 190
9.3 Stabilizing Cooperative DMPC with Input Constraints 191
9.3.1 Formulation 191
9.3.2 Constraint C-DMPC Algorithm 193
9.4 Analysis 194
9.4.1 Feasibility 194
9.4.2 Stability 199
9.5 Simulation 201
9.6 Conclusion 208

10 Networked Distributed Predictive Control with Inputs and Information Structure Constraints 209
10.1 Introduction 209
10.2 Problem Description 210
10.3 Constrained N-DMPC
 10.3.1 Formulation
 10.3.2 Algorithm Design for Resolving Each Subsystem-based Predictive Control

10.4 Analysis
 10.4.1 Feasibility
 10.4.2 Stability

10.5 Formulations Under Other Coordination Strategies
 10.5.1 Local Cost Optimization Based DMPC
 10.5.2 Cooperative DMPC

10.6 Simulation Results
 10.6.1 The System
 10.6.2 Performance of Closed-loop System under the N-DMPC
 10.6.3 Performance Comparison with the Centralized MPC and the Local Cost Optimization based MPC

10.7 Conclusions

Part IV APPLICATION

11 Hot-Rolled Strip Laminar Cooling Process with Distributed Predictive Control
 11.1 Introduction
 11.2 Laminar Cooling of Hot-rolled Strip
 11.2.1 Description
 11.2.2 Thermodynamic Model
 11.2.3 Problem Statement
 11.3 Control Strategy of HSLC
 11.3.1 State Space Model of Subsystems
 11.3.2 Design of Extended Kalman Filter
 11.3.3 Predictor
 11.3.4 Local MPC Formulation
 11.3.5 Iterative Algorithm
 11.4 Numerical Experiment
 11.4.1 Validation of Designed Model
 11.4.2 Convergence of EKF
 11.4.3 Performance of DMPC Comparing with Centralized MPC
 11.4.4 Advantages of the Proposed DMPC Framework Comparing with the Existing Method
 11.5 Experimental Results
 11.6 Conclusion

12 High-Speed Train Control with Distributed Predictive Control
 12.1 Introduction
 12.2 System Description
12.3 N-DMPC for High-Speed Trains 264
 12.3.1 Three Types of Force 264
 12.3.2 The Force Analysis of EMUs 266
 12.3.3 Model of CRH2 267
 12.3.4 Performance Index 271
 12.3.5 Optimization Problem 272
12.4 Simulation Results 272
 12.4.1 Parameters of CRH2 273
 12.4.2 Simulation Matrix 273
 12.4.3 Results and Some Comments 274
12.5 Conclusion 278

13 Operation Optimization of Multitype Cooling Source System Based on DMPC 279
 13.1 Introduction 279
 13.2 Structure of Joint Cooling System 279
 13.3 Control Strategy of Joint Cooling System 280
 13.3.1 Economic Optimization Strategy 281
 13.3.2 Design of Distributed Model Predictive Control in Multitype Cold Source System 283
 13.4 Results and Analysis of Simulation 286
 13.5 Conclusion 292

References 293

Index 299