| Affine Jacobi process, 103–104, 110 |
| Ahdida-Alfonsi process, 110 |
| Asian options, 2, 12, 123–124 |
| Autocallable options, 12, 123 |
| Average correlation, 104–108, 139 |
| B-O model, 107–108 |
| nontradable, 104 |
| tradable, 104, 105–106 |
| Barrier options, 2–3 |
| Basket options, 5–6, 87–88, 95–99 |
| Basket variance, 105, 106 |
| Best-of/worst-of options, 6 |
| Binomial trees, 45–46 |
| Black-Scholes model, 1–5, 6, 26, 34–35, 93 |
| with constant correlation, 82–83, 86 |
| with implied volatility smile, 15–19, 25 |
| and volatility trading, 59–60 |
| B-O model, 107–108 |
| Boortz’s Common Factor Model, 109 |
| Breeden-Litzenberger formula, 36 |
| Brownian motion, 7–8, 46–47, 83, 117 |
| Butterfly spreads, 33–35 |
| Capital Guaranteed Performance Note, 10 |
| Carr-Wu model. See LNV model |
| Cauchy-Schwarz inequality, 119–120 |
| Change of measure, 12, 124 |
| Change of numeraire, 7–9 |
| Chicago Board Options Exchange (CBOE), 60, 67 |
| Cholesky decomposition, 83, 121 |
| Cliquet options, 4, 99 |
| Common factor model, 109–110 |
| Conditional pricing, 43 |
| Conditioning, 117–118 |
| Constant and Dynamic Conditional Correlation models, 104 |
| Constant correlation: Black-Scholes model with, 82–83, 86 |
| local volatility with (LVCC), 84, 86 |
| Continuous time formulation, 46–47 |
| Correlation, 73–86. See also Correlation trading; Local correlation average correlation, 104–108, 139 |
| Black-Scholes with constant correlation, 82–83, 86 |
| constant, 82–83, 84, 86 |
| continuously monitored, 86, 140 |
| correlation average, 77–82, 85 |
| correlation matrices, 75–77, 85–86, 108–110 |
| correlation proxy, 77–82, 86 |
| historical, 73–74, 104 |
| implied, 75, 95–96, 100, 104 |
Correlation (Continued)
measuring, 73–75
problems, 85–86
references, 84
solutions, 139–140
spread options, 98
stochastic (see Stochastic
correlation)
Correlation proxy, 77–82, 86
Correlation swaps, 91–93
Correlation trading, 87–94
correlation swaps, 91–93
dispersion trading, 87–91
problems, 93–94
solutions, 140–141
Cross-sectional dispersion, 91
Cubic spline interpolation, 21

Daily volatility rule, 2
Decomposition, 83
Delta, 44
delta hedging, 59–60, 62, 70, 88,
97, 132–133, 136
and implied volatility smile, 18
Digital options, 1–2, 18–19
Dispersion trading, 87–91
cross-sectional dispersion, 91
vanilla dispersion trades, 87–88,
93
variance dispersion trades,
89–91, 94
Distribution, 116–117
Dollar gamma, 59–60
Dupire’s equation, 46, 47–48, 56
Dynamic correlation models,
98–99, 101

Econometric process, 104
Eigenvalues, 75, 85, 109
Equity correlation matrix, 75–76,
108, 109
Equity-linked notes, 9–10
Euclidean metric, 82
Euclidean spaces, 119–120
Euler-Maruyama discretization, 46,
47, 53
European payoff pricing and
replication, 36–39, 39–41
Exotic derivatives, 1–11, 121
Asian options, 2, 12
barrier options, 2–3
basket options, 5–6, 87–88,
95–99
cliquet options, 4, 99
digital options, 1–2, 18–19
forward start options, 4, 54
lookback options, 3, 12, 25
multi-asset options, 4
problems, 11–13
quanto options, 7–9
ratchet options, 4
references, 11
solutions, 123–125
spread options, 4–5, 98
structured products, 9–11
worst-of/best-of options, 6
Extrapolation, 19–21

Feller condition, 27–28, 103, 106,
107
Fifth property, 82
Filtered probability space, 115
Fischer-Wright model, 110
Forward start options, 4, 54
Forward variance, 64–65
“Free options,” 11, 123

Gamma, 59–60
Generalized variance swaps, 138
Geometric Asian option, 123–124
Geometric basket call, 85–86,
139–140
Index

Girsanov theorem, 7, 14
Gram-Schmidt’s orthonormalization process, 120
Greeks, 41. See also Delta; Gamma Gurrieri’s model, 50

Hedge ratios, 15–18
Hedging. See also Overhedging
 correlation swaps, 92–93
delta-hedging, 59–60, 62, 70, 88, 97, 136
 with local volatility, 49
 variance swaps, 62–64
Hedging theory, 51–52
Heston model, 26–28, 51, 53, 54, 103
Historical correlation, 73–74, 104
Historical volatility, 59

Implied correlation, 75, 95–96, 100, 104
Implied distribution density, 34
Implied distributions, 33–44
 butterfly spreads and, 33–35
 European payoff pricing and replication, 35–41
 and exotic pricing, 42, 131
 Greeks, 41
 and overhedging, 37–39
 problems, 42–44
 references, 42
 solutions, 130–133
Implied volatility, 59
 local volatility from, 49, 55–56, 133–135
 market- vs. model-implied, 23
 problems, 55–56
Implied volatility derivatives, 67–69
 VIX futures, 67–68
 VIX options, 68–69
Implied volatility smile, 15–19, 25
Implied volatility surface, 15–32
 Black-Scholes model, 15–19, 25
 Feller condition, 27–28
 Heston model, 26–28
 implied volatility smile, 15–19
 indirect models, 25
 interpolation and extrapolation, 19–21
 LNV model, 28–29, 51
 problems, 30–32
 properties, 22
 references, 29
 SABR model, 25–26
 solutions, 125–129
 SVI model, 23–25
 (see also Heston model)
Independence, 115, 116–117
Indirect models of implied volatility, 25
Interpolation, 19–21
Ito-Doeblin theorem, 8, 14, 51, 63, 83, 93, 103, 105, 117

Jacobi process, 104
Jensen’s inequality, 66, 89
Joint distribution, 116–117
Jumps, 54–55

Knock-in/knock-out option, 3
Kolmogorov equation, 56

Law of the unconscious statistician, 116
LNV model, 28–29, 51
Local correlation, 95–101
dynamic models, 98–99, 101
implied correlation smile, 95–96
local volatility with (LVLC), 96–98, 99–100
problems, 100–101
references, 100
solutions, 141
Local volatility, 45–49
and binomial trees, 45–46
calculating, 47–50
connection with stochastic volatility, 53
with constant correlation (LVCC), 84, 86
in continuous time, 46–47
Dupire’s equation, 46, 47–48, 56
hedging with, 50
from implied volatility, 49–50, 55–56, 133–135
with local correlation (LVLC), 96–98, 99–100
pricing, 56, 136
problems, 55–56
references, 55
solutions, 133–136
Log-Normal Variance (LNV) model, 28–29, 51
Lookback options, 3, 12, 125
Lower bound unattainability, 112
LVCC, 84, 86
LVLC, 96–98, 99–100
Market capitalization weights, 77–78
Market price of volatility risk, 55, 135–136
Market-implied volatility, 23
Matrices:
correlation, 75–77, 85–86, 108–110
square matrix decomposition, 120–121
Milstein’s discretization method, 47
Model-implied volatility, 23
Monte Carlo simulations, 46, 53–54, 83, 107
Multi-asset options, 4
No butterfly spread arbitrage position, 30–31, 126–128
No call or put spread arbitrage condition, 30, 125–126
Non-attracting boundaries, 32, 129
Nontradable average correlation, 104
Normalized liquidity rule, 2
Orthogonality, 120
Overhedging, 37–39, 42, 130
Parseval’s identity, 120
Path-dependent payoff, 44, 131
Pearson’s correlation coefficient, 73
Perfect hedging with puts and calls, 42, 130
Probability space, 115
Probability theory, 115
Quanto options, 7–9
Radon-Nikodym derivative, 14
Random processes, 117
Random variables, 116–117
Ratchet options, 4
Rayleigh quotient, 121
Realized variance, 66, 72, 138
Realized volatility, 59
Realized volatility derivatives, 65–66
References:
correlation, 84
exotic derivatives, 11
implied distributions, 42
implied volatility surface, 29
local correlations, 100
local volatility, 55
stochastic correlation, 110–111
volatility derivatives, 70
Reverse Convertible Note, 10
Rolling historical correlation, 104
SABR model, 25–26
Siegel’s paradox, 13, 125
Single-asset exotics, 1–11, 121
Asian options, 2, 12
barrier options, 2–3
basket options, 5–6, 87–88, 95–99
cliquet options, 4, 99
digital options, 1–2, 18–19
forward start options, 4, 54
lookback options, 3, 12, 25
multi-asset options, 4
problems, 11–13
quanto options, 7–9
ratchet options, 4
references, 11
solutions, 123–125
spread options, 4–5, 98
structured products, 9–11
worst-of/best-of options, 6
Spectral decomposition, 109–110
Spread options, 4–5, 98
Spread pricing, 15
Square matrix decompositions, 120–121
Standard probability theory, 115
Sticky strike rule, 17, 18
Sticky true delta rule, 31–32, 128–129
Sticky-delta rule, 17, 18
Sticky-moneyness rule, 17, 18
Stochastic alpha, beta, rho (SABR) model, 25–26
Stochastic calculus, 117
Stochastic correlation, 103–112
average, 104–108
(see also Average correlation)
correlation matrices, 108–110
problems, 111–112
references, 110–111
solutions, 141–143
stochastic single correlation, 103–104
Stochastic volatility, 50–55.
See also Stochastic volatility-inspired (SVI) model
connection with local volatility, 53
and forward start options, 54
hedging theory, 51–52
and jumps, 54–55
Monte Carlo simulations, 53–54
problems, 55
Stochastic volatility-inspired (SVI) model, 23–25. See also Heston model
Structured products, 9–11
SVI model, 23–25. See also Heston model
Toy model, 92
 Tradable average correlation, 104, 105–106
Unattainability, 112–113
Upper bound unattainability, 113
Vanilla dispersion trades, 87–88, 93
Vanilla options, 15–16, 31, 37, 44, 47, 50–51
Variance dispersion trades, 89–91, 94
Variance futures, 62
Variance swaps, 60–65, 71, 138
forward variance, 64–65
hedging and pricing, 62–64
market, 62
payoffs, 61–62
variance futures, 62
Vega notional, 61
VIX. See Volatility Index (VIX)
Volatility derivatives, 59–72
implied, 67–69
problems, 70–72
realized, 65–66
references, 70
solutions, 136–138
variance swaps, 60–65, 138
volatility trading, 59–60, 70–71, 136–138
Volatility Index (VIX), 67
VIX futures, 67–68
VIX options, 68–69
Volatility trading, 59–60, 70–71
Volga, 54
Wiener process, 117
Worst-of/best-of options, 6
Worst-of-put pricing, 86
Wright-Fisher process, 103–104