ENVIRONMENTAL LABORATORY EXERCISES
FOR INSTRUMENTAL ANALYSIS AND
ENVIRONMENTAL CHEMISTRY
ENVIRONMENTAL LABORATORY EXERCISES FOR INSTRUMENTAL ANALYSIS AND ENVIRONMENTAL CHEMISTRY

FRANK M. DUNNIVANT
Whitman College
To my parents for nurturing
To my advisors for mentoring
To my students for questioning
CONTENTS

PREFACE xi
ACKNOWLEDGMENTS xiii
TO THE INSTRUCTOR xv

PART 1 PRELIMINARY EXERCISES

1 How to Keep a Legally Defensible Laboratory Notebook 3
2 Statistical Analysis 7
3 Field Sampling Equipment for Environmental Samples 19

PART 2 EXPERIMENTS FOR AIR SAMPLES

4 Determination of Henry’s Law Constants 33
5 Global Warming: Determining If a Gas Is Infrared Active 49
6 Monitoring the Presence of Hydrocarbons in Air around Gasoline Stations 61

PART 3 EXPERIMENTS FOR WATER SAMPLES

7 Determination of an Ion Balance for a Water Sample 73
8 Measuring the Concentration of Chlorinated Pesticides in Water Samples 83
9 Determination of Chloride, Bromide, and Fluoride in Water Samples 93
10 Analysis of Nickel Solutions by Ultraviolet–Visible Spectrometry 101

PART 4 EXPERIMENTS FOR HAZARDOUS WASTE

11 Determination of the Composition of Unleaded Gasoline Using Gas Chromatography 113
12 Precipitation of Metals from Hazardous Waste 123
13 Determination of the Nitroaromatics in Synthetic Wastewater from a Munitions Plant 143
14 Determination of a Surrogate Toxic Metal in a Simulated Hazardous Waste Sample 151
15 Reduction of Substituted Nitrobenzenes by Anaerobic Humic Acid Solutions 167

PART 5 EXPERIMENTS FOR SEDIMENT AND SOIL SAMPLES

16 Soxhlet Extraction and Analysis of a Soil or Sediment Sample Contaminated with \(n \)-Pentadecane 179
17 Determination of a Clay–Water Distribution Coefficient for Copper 191

PART 6 WET EXPERIMENTS

18 Determination of Dissolved Oxygen in Water Using the Winkler Method 207
19 Determination of the Biochemical Oxygen Demand of Sewage Influent 217
20 Determination of Inorganic and Organic Solids in Water Samples: Mass Balance Exercise 233
21 Determination of Alkalinity of Natural Waters 245
22 Determination of Hardness in a Water Sample 257

PART 7 FATE AND TRANSPORT CALCULATIONS

23 \(pC-pH \) Diagrams: Equilibrium Diagrams for Weak Acid and Base Systems 267
24	Fate and Transport of Pollutants in Rivers and Streams	277
25	Fate and Transport of Pollutants in Lake Systems	285
26	Fate and Transport of Pollutants in Groundwater Systems	293
27	Transport of Pollutants in the Atmosphere	303
28	Biochemical Oxygen Demand and the Dissolved Oxygen Sag Curve in a Stream: Streeter–Phelps Equation	317
APPENDIX A	Periodic Table	327
INDEX		329
My most vivid memory of my first professional job is the sheer horror and ineptitude that I felt when I was asked to analyze a hazardous waste sample for an analyte that had no standard protocol. Such was life in the early days of environmental monitoring, when chemists trained in the isolated walls of a laboratory were thrown into the real world of sediment, soil, and industrial waste samples. Today, chemists tend to be somewhat better prepared, but many still lack experience in developing procedures for problematic samples. My answer to this need for applied training is a book of laboratory experiments aimed at teaching upper-level undergraduate and graduate chemistry students how to analyze “dirty” samples. These experiments can be taught under the auspices of a standard instrumental analysis course or under more progressive courses, such as environmental chemistry or advanced analytical environmental techniques.

In preparing this book, I have kept in mind a number of chemical and analytical considerations, some stemming from fundamental principles taught in every chemistry department, others specific to environmental chemistry. First, chemists planning to work in the environmental field need to be aware of the uncompromising need for explicit laboratory documentation. Chemistry departments start this life-long learning exercise in general chemistry, where we tell students that any classmate should be able to pick up his or her laboratory notebook and repeat the work. Environmental chemistry takes this training one step further in that the experiments and their documentation must also be completed in a manner that is legally defensible. By legally defensible, I mean ready to serve as courtroom evidence, as almost any laboratory monitoring, no matter how routine, can easily become evidence to prosecute an illegal polluter. Thus, laboratory notebooks must be maintained in a standardized format (subject to state or federal authorities and discipline); if they are not, cases may be
dismissed. The introduction to this manual contains a list of commonly accepted documentation procedures. They are arranged so that instructors can select which level of documentation is suitable for their course.

A second feature of this manual is that it is designed to be a complete, stand-alone summary of a student’s laboratory work. In the student version of the laboratory manual, each procedure contains background information, safety precautions, a list of chemicals and solutions needed, some data collection sheets, and a set of blank pages for the student to compile results and write a summary of findings. Thus, when each experiment is finished, students have a complete summary of their work that can be used as a laboratory portfolio during interviews at graduate schools or with potential employers.

A third theme, presented early in this book, is statistical analysis. Although many students entering environmental chemistry or instrumental analysis have briefly studied linear regression and Student’s t test, a more rigorous treatment of these topics is needed in laboratories dealing with instrumentation. As I tell my students, few if any instrumental techniques yield absolute numbers; all instruments have to be calibrated to some extent, and the most common approach is a linear least squares regression. One of the first exercises that I conduct in my classes is to have students build a spreadsheet to perform linear least squares analysis and Student’s t test. I have found that students understand data analysis techniques significantly better after this spreadsheet exercise, as opposed simply to quoting numbers from the regression of a calculator. An electronic copy of these spreadsheets (which I have students replicate) is included with the instructor’s edition, and the spreadsheets can be used throughout the semester for a variety of instruments.

Fourth, the laboratory exercises in this manual are designed to teach environmental chemistry and instrumental analysis simultaneously. The experiments are organized by sample media into sections of air, water, hazardous waste, sediment/soil, and wet techniques, and the manual includes a set of pollutant fate and transport simulation exercises, which are becoming more and more necessary in environmental chemistry courses. The laboratory experiments emphasize sampling, extraction, and instrumental analysis. Interactive software packages for pollutant fate and transport simulations, Fate and the pC-pH simulator, are included with the text.

Compiling the experiments for this manual has been a very educational experience for me, as I have reflected on which experiments work best in which setting. This information is given in the notes to the instructor. All of the experiments have been used in my courses, either environmental chemistry or instrumental analysis. More important for instructors using this manual, most experiments have a sample data set of the results expected, which is posted on the Wiley website. Each year I find these sample results most helpful in troubleshooting laboratories and identifying student mistakes.

FRANK M. DUNNIVANT
March 2004
ACKNOWLEDGMENTS

I would like to thank my reviewers, Samantha Saalfeld of Whitman College, Dr. Cindy Lee of Clemson University, and Dr. John Ferry of the University of South Carolina. Their efforts have helped significantly in turning my original manuscript into a readable and useful document. I am indebted to the Whitman College students from my environmental chemistry and instrumental methods of analysis courses (2000–2003) for testing and debugging the procedures given in the manual and for supplying the typical student results given on the Wiley website. There are a number of software packages included with this manual that were created by Whitman College students and with funding from Whitman College and the National Collegiate Inventors and Innovators Alliance (NCIIA) program. I am especially indebted to Dan Danowski (Cornell University) and Josh Wnuk, Mark-Cody Reynolds, and Elliot Anders (all of Whitman College) for their programming efforts. Funding from the Dreyfus Foundation started our initial programming of EnviroLand, the previous version of Fate. Last, but not least, I am grateful the professors in the environmental engineering and science program at Clemson University for all of their efforts, training, and patience during my graduate degrees.

F.M.D.
This laboratory manual is designed for use courses in Instrumental Methods of Analysis and Environmental Chemistry. In fact, students from both of these courses were involved in the testing of these procedures. The procedures emphasize solution preparation, experimental setup, use of instrumentation, and evaluation of results. Given that not everyone is an environmental chemist, I have put together a list of experiments I use in instrumental analysis that are also used in environmental experiment. If you are unfamiliar with environmental chemistry I have included extensive background information on the environmental topic being studied and most chapters have a complete set of student data for your review (included in the on-line instructor’s information). Indeed, one advantage of using this manual is that I have found students to be very interested in learning from an environmental viewpoint.

For instrumental analysis, of course, I use the experiments that emphasize the instruments a bit more than the solution preparation. There are certain exceptions to this statement, for example Chapter 14 (The Determination of a Surrogate Toxic Metal in a Simulated Hazardous Waste Sample), which stresses matrix effects and technique specificity (chelation, activity, or concentration). The following is the general plan I used for the course on Instrumental Methods of Analysis. It is based on two 3-hour laboratory periods each week.

Chapters 1 and 2 are given as introductory material but I usually have students build a spreadsheet for the statistics chapter.

- UV-Vis spectroscopy: Chapter 10
- Infrared spectroscopy: Chapter 5
- Electrodes: Chapter 9 or 14
Atomic absorption or emission spectroscopy Chapters 14 or 7
Gas chromatography Chapters 6, 8, 11, or 16
High performance liquid chromatography Chapter 13
Ion chromatography Chapter 7
Mass spectrometry any of the chromatography chapters

For environmental chemistry there are a variety of approaches. First, if you do not use this manual in a course in Instrumental Methods of Analysis you can select from all of the experiments. Second, if you use the approach given above for instrumental methods of analysis, there are still plenty of experiments left for use in environmental chemistry. I select from the following experiments.

Sampling Chapter 2 (covered in lecture)
Mass balance, weighing and pipeting skills Chapter 20
DO and BOD Chapters 18 and 19
Global warming Chapter 5
Environmental monitoring Chapters 6, 8, 9, 13, 16, 21, or 22
Hazardous waste treatment Chapter 12
Transformation reactions Chapter 15
Distribution coefficients Chapter 17
Chemical speciation Chapter 23 (covered in lecture)
Pollutant fate and transport Chapters 24 to 28 (covered in lecture)

An alternative is to design your environmental course completely around wet techniques.

Whichever way you choose to use this manual I hope that you will be satisfied with our efforts. We have done our best to provide student-tested procedures from an environmental perspective, detailed procedures for making solutions and unknown samples, example student data for troubleshooting and to supplement your students’ experimental data, two user-friendly software packages (The pH Simulator® and Fate®). Additionally, after you adopt the manual for use by your students you will have access to Wiley’s on-line resources for this manual and you will be sent The GC Tutorial and The HPLC Tutorial. The downloadable instructor’s manual can be obtained at http://www.wiley.com/wileyceda/wileytitle/productcd-0471488569.html. The latter two software packages are particularly helpful if students view them prior to attempting the chromatography experiments.