Contents

Preface xvii

1. Introduction 1

2. Project Management 5
 2.1 The Principle of Project Management 5
 2.2 Project Characteristics 6
 2.3 Project Life Cycle 9
 2.3.1 Initiation of the Project 12
 2.3.1.1 Getting to the Scope Baseline 14
 2.3.2 Feasibility Study 15
 2.3.3 Feed (Preliminary) Engineering 16
 2.3.4 Detail Engineering 20
 2.3.5 Decision Support Package 22
 2.3.5.1 What Is the DSP? 22
 2.3.5.2 Executive Summary 23
 2.3.5.3 DSP Notification Document 23
 2.3.5.4 DSP Reference Document 23
 2.3.5.5 Why Is It Important? 23
 2.3.5.6 How Can We Implement this Document? 24
 2.3.6 Design Management 25
 2.3.7 Execution Phase 26
 2.3.8 Commissioning and Startup 27
 2.4 Is this Project Successful? 27
 2.4.1 Project Management Goals 28
2.4.1.1 Project Integration Management 29
2.4.1.2 Project Scope Management 29
2.4.1.3 Project Time Management 29
2.4.1.4 Project Cost Management 30
2.4.1.5 Project Quality Management 30
2.4.1.6 Project Human Resource Management 30
2.4.1.7 Project Communications Management 31
2.4.1.8 Project Risk Management 31
2.4.1.9 Project Procurement Management 31

2.5 Project Management Tasks 32
 2.5.1 Define the Project Target 32
 2.5.2 Define the Scope of Work 32
 2.5.3 Define the Time Frame 33
 2.5.4 Define the Available Resources 33
 2.5.5 Define the Cost 34
 2.5.6 Evaluate the Master Plan 34
 2.5.7 Accept the Master Plan 34
 2.5.8 Schedule Follow Up 35
 2.5.9 Cost Follow up 35
 2.5.10 Comparing Between Actual Work and Master Plan Cost 35
 2.5.11 Performance Evaluation 36

2.6 Project Manager Skill 36

3. Economic Risk Analysis 39

3.1 Introduction 39

3.2 Project Cash Flow 40
 3.2.1 Depreciation Methods 43
 3.2.1.1 Straight-Line Method 45
 3.2.1.2 Declining-Balance Method 45
 3.2.1.3 Sum-of-the-Year-Digits 46
 3.2.1.4 Sinking-Fund Method 46
 3.2.1.5 Service-Out Method 47
 3.2.2 Method of Net Present Value (NPV) 47
 3.2.2.1 Inflation Rate 48
 3.2.3 Minimum Internal Rate of Return (MIRR) 49
 3.2.4 Payout Method 50

3.3 Economic Risk Assessment 51
 3.3.1 Probability Theory 51
3.3.2 Probability Distribution of Variables
3.3.2.1 Normal Distribution 57
3.3.2.2 Log Normal Distribution 62
3.3.2.3 Binominal Distribution 63
3.3.2.4 Poisson Distribution 66
3.3.2.5 Weibull Distribution (Rayleigh Distribution) 68
3.3.2.6 Gamma Distribution 69
3.3.2.7 Logistic Distribution 70
3.3.2.8 Extreme Value (Gumbel Distribution) 70
3.3.2.9 Pareto Distribution 71
3.3.3 Distribution for Uncertainty Parameters 72
3.3.3.1 Triangular Distribution 72
3.3.3.2 Uniform Distribution 73
3.3.4 Choosing the Appropriate Probability Distribution 74
3.3.4.1 Chi-Square Test 74
3.4 Decision Tree 75
3.5 Monte-Carlo Simulation Technique 80
3.6 Risk Adjusted Value (RAV) 83

4. Time Planning 87

4.1 Introduction 87
4.1.1 Plan Single Point of Accountability (SPA) 90
4.1.2 Starting the Plan 91
4.1.3 Work Breakdown Structure (WBS) 95
4.2 Responsibilities of the Team 97
4.3 Expected Activity Time Period 99
4.4 Calculating the Activity Time Period 100
4.5 Time Schedule Preparation 101
4.5.1 Gantt Chart 103
4.5.2 Arrow Diagram Method (ADM) 103
4.5.3 Precedence Diagram Method (PDM) 104
4.5.4 Critical Path Method (CPM) 104
4.5.5 Program Evaluation and Review Technique (PERT) 105
4.5.6 Example 106
4.5.7 Application of the PERT Method 112
viii CONTENTS

4.5.7.1 Statistics Calculation for Activity Time 113
4.5.7.2 Example 113
4.6 Planning Overview 116

5. Resource Management 119

5.1 Introduction 119
5.2 Project Organization 119
 5.2.1 Types of Organization 120
 5.2.1.1 Project Organization as Part of the Company 120
 5.2.1.2 Independent Project Organization 122
 5.2.1.3 Matrix Organization 123
 5.2.2 Selecting the Best Organization 125
5.3 Roles and Responsibilities of the Project Manager 127
 5.3.1 Project Manager as a Leader 129
5.4 Administrative Organization for Total Quality Management 130
5.5 Team Member Selection 132
5.6 Managing the Team 134
5.7 Allocate Resources to Project Plan 135
 5.7.1 Example 135
5.8 Relation Between Project Parties 141
5.9 Document and Information Transfer 141
5.10 Information Transfer 141
5.11 Quality Control in the Design Phase 143
 5.11.1 Inputs and Outputs of the Design Phase 148
 5.11.2 Design Verification 148
 5.11.3 Change in the Design 148
 5.11.4 Approval of the Design 153

6. Cost Management 157

6.1 Introduction 157
6.2 Cost Types 160
 6.2.1 Cost Estimate 161
 6.2.1.1 Top-Down Estimates 162
 6.2.1.2 Bottom-Up Estimates 162
6.2.1.3 Analogous Estimates 163
6.2.1.4 Parametric Estimates 163
6.2.2 Steel Structure Cost Estimate 168
6.2.3 Detailed Cost 168
6.2.4 Cost Estimate to Project Control 170
6.3 Economic Analysis of Project Cost 170
6.3.1 Work Breakdown Structure (WBS) 171
6.3.2 Organization Breakdown Structure (OBS) 171
6.3.3 OBS/WBS Matrix 172
6.3.4 Work Packages 172
6.3.5 Cost Control 174
6.3.6 “S” Curve 177
6.4 Cash Flow Calculation 181
6.4.1 Project Cash Flow 182
6.4.2 Impact on Increasing Cost 183
6.4.3 Project Lateness Impact 184
6.4.4 Impact of Operational Efficiency 184

7. Bidding, Tenders, and Contracts 187

7.1 Introduction 187
7.2 Contracts 189
7.2.1 The Measured Contract 191
7.2.2 The Lump-Sum Contract 191
7.2.3 The Cost-Plus Contract 192
7.3 Contracts Between an Owner and an Engineering Consultancy Office 193
7.4 The Importance of Contracts for Project Quality Assurance (QA) 194
7.5 Contracts in ISO 195
7.6 FIDIC Contracts 196
7.7 General Conditions in Contracts 203
7.8 Arbitration and the Arbitrator 205
7.9 Bids and Tenders 206
7.9.1 Public (Open) Tender 207
7.9.2 Limited Tender 208
7.9.3 Negotiated Tender 209
7.9.4 The Direct-Order Tender 210
7.9.5.1 Tender Technical Evaluation 211
7.9.6 Commercial Evaluation 214
7.9.6.1 Commercial Evaluation Methods 215
7.10 Closeout Report 216

8. Quality — From Theory to Reality 219

8.1 Introduction 219
8.2 Quality Management Systems 219
8.3 The ISO 9000 Standard 221
8.4 Quality Management Requirements 222
8.4.1 Quality Manual 222
8.4.2 Quality Plan 222
8.4.3 Quality Control 223
8.4.3.1 Why Is Quality Control Important? 224
8.4.3.2 Submittal Data 225
8.4.3.3 How to Check Incoming Materials 226
8.4.3.4 Methods of Laying Out and Checking Work 226
8.4.3.5 Material/Equipment Compliance Tests 228
8.4.3.5.1 Soils Testing 228
8.4.3.5.2 Concrete Tests 228
8.4.3.5.3 Mortar Testing 229
8.4.3.5.4 Heating, Ventilation, and Air-Conditioning Testing 229
8.4.3.5.5 Plumbing Tests 229
8.4.3.5.6 Performance Tests 230
8.4.3.6 When to Inspect Work 230
8.4.3.6.1 Inspection before the Commencement of Work 230
8.4.3.6.2 Inspection During Work-in-Progress 230
8.4.3.6.3 Inspection of Work after Completion 231
8.4.3.7 Paperwork/Documentation 231
8.4.3.7.1 Recording Logs 231
8.4.3.7.2 Pre-installation Inspection Reports 232
8.4.3.7.3 Punch List Log 233
8.4.3.8 Quality Control Plans 233
8.4.4 Quality Assurance 234
8.4.4.1 Quality Assurance in the ISO 236
8.4.4.2 The Responsibility of the Manufacturer 236
8.4.4.3 Responsibility of the Owner 237

8.5 Project Quality Control in Various Stages 238
8.5.1 Feasibility Study Stage 239
8.5.2 Quality Considerations During FEED (Front-End Engineering and Design) Preliminaries 240
8.5.3 Quality Considerations of Detailed Study 243
8.5.3.1 Design Quality Control 245
8.5.4 Execution Phase 246
8.5.4.1 ISO and Control Work 247
8.5.4.2 Inspection Procedures 247
8.5.4.3 Importance of Well-Prepared Contracts in Assuring Project Quality 248
8.5.4.4 Checklists 249
8.5.4.4.1 Checklists for Reviewers 249
8.5.4.4.2 External Auditing 251

8.6 Operational Phase of the Project 255

8.7 The "Total Building Commissioning System" 256
8.7.1 Planning Stage 258
8.7.1.1 Identifying the Commissioning Team 258
8.7.1.2 Defining the Owner's Project Requirements with the Customer Agency 260
8.7.1.3 Developing Preliminary Commissioning Plan 260
8.7.1.4 Commissioning for Certifications (LEED, Energy Star, etc.) 268
8.7.1.4.1 Establishing Initial Budget for Commissioning 271
8.7.1.5 Commissioning Agent Costs 271
8.7.1.6 Cost-Benefit Analysis for Commissioning 272
8.7.2 Design Stage
 8.7.2.1 Incorporation of Commissioning into A/E and CM Scope of Services
 272
 8.7.2.1.1 Project Lifecycle of the Design Professional
 273
 8.7.2.1.2 Project Lifecycle of the Construction Manager
 274
 8.7.2.1.3 Retain Commissioning Agent Services
 275
 8.7.2.1.4 Commissioning Agent Qualifications
 275
 8.7.2.1.5 Request for Qualifications (RFQ) for Commissioning Agent
 276
 8.7.2.1.6 Commissioning Agent Selection
 277
 8.7.2.1.7 Review Owner's Project Requirements and Basis of Design
 277
 8.7.2.1.8 CxA Roles in BOD
 278
 8.7.2.1.9 Concept, DD, and CD Design Reviews
 278
 8.7.2.1.10 Issues Log
 280
 8.7.2.1.11 Design Review Meetings
 281
 8.7.2.1.12 Update/Refine Commissioning Plan
 281
 8.7.2.1.13 Develop Commissioning Specifications
 282
 8.7.2.1.14 Written Test Procedures
 282

8.7.3 Construction Stage
 8.7.3.1 Review Submittals for Performance Parameters
 283
 8.7.3.2 Develop and Utilize Construction Checklists
 284
 8.7.3.3 Oversee and Document Functional Performance Testing
 285
8.7.3.4 Test Data Records 285
 8.7.3.4.1 Test Issues and Follow-up 286
8.7.3.5 Hold Commissioning Team Meetings and Report Progress 286
8.7.3.6 Conduct Owner Training 287
8.7.3.7 Turnover Commissioning Record 289
8.7.4 Building Commissioning Process in the Post-Construction Stage 291
 8.7.4.1 Post-Construction Stage 291
 8.7.4.2 Perform Deferred and Seasonal Testing 291
 8.7.4.3 Re-inspect/Review Performance Before End of Warranty Period 292
 8.7.4.4 Complete Final Commissioning Report 292
 8.7.4.4.1 Final Satisfaction Review with Customer Agency 293
8.7.4.5 Recommission Facility Every 3–5 Years 294
 8.7.4.6 Recommissioning 294
8.7.5 Advantages for Total Building Commissioning System 295

9. Project Risk Management 297
 9.1 Introduction 297
 9.1.1 The Risk Management Process 299
 9.2 Project Risks 299
 9.3 Risk Assessment 303
 9.4 Risk Identification 304
 9.4.1 Methods of Defining Risk 306
 9.4.1.1 Brainstorming 306
 9.4.1.2 Delphi Technique 307
 9.4.1.3 Nominal Group Technique 308
 9.4.1.4 Crawford’s Slip 309
 9.4.1.5 Expert Interviews 309
 9.4.1.6 Root Cause Identification 310
 9.4.1.7 Checklists 310
xiv CONTENTS

9.4.1.8 Documentation Review 310
9.4.1.9 SWOT (Strengths, Weaknesses, Opportunities, and Threats) Analysis 311
9.4.1.10 Analogy 311
9.4.2 Grouping of Risks 311
9.5 Defining Priorities 312
 9.5.1 Matrix Method 313
 9.5.2 Tabulated Method 315
9.6 Risk Response Planning and Strategies 317
9.7 Risk Monitoring and Control 317
9.8 Example 319
9.9 Methods of Risk Avoidance 319

10. Quiz for Project Management 325
 10.1 Introduction 325
 10.2 Questions 325
 10.3 The Right Decisions 350

References 381
Index 383
About the Author 393