CONTENTS

PREFACE

PART I INDUCTIVE FOUNDATIONS OF CLASSICAL THERMODYNAMICS

1. Mathematical Preliminaries: Functions and Differentials

1.1 Physical Conception of Mathematical Functions and Differentials

1.2 Four Useful Identities

1.3 Exact and Inexact Differentials

1.4 Taylor Series

2. Thermodynamic Description of Simple Fluids

2.1 The Logic of Thermodynamics

2.2 Mechanical and Thermal Properties of Gases: Equations of State

2.3 Thermometry and the Temperature Concept

2.4 Real and Ideal Gases

2.4.1 Compressibility Factor and Ideal Gas Deviations

2.4.2 Van der Waals and Other Model Equations of State

2.4.3 The Virial Equation of State

2.5 Condensation and the Gas–Liquid Critical Point

2.6 Van der Waals Model of Condensation and Critical Behavior

2.7 The Principle of Corresponding States

2.8 Newtonian Dynamics in the Absence of Frictional Forces

2.9 Mechanical Energy and the Conservation Principle

2.10 Fundamental Definitions: System, Property, Macroscopic, State

2.10.1 System

2.10.2 Property

2.10.3 Macroscopic

2.10.4 State

2.11 The Nature of the Equilibrium Limit

3. General Energy Concept and the First Law

3.1 Historical Background of the First Law

3.2 Reversible and Irreversible Work

3.3 General Forms of Work

3.3.1 Pressure–Volume Work

3.3.2 Surface Tension Work
CONTENTS

3.3.3 Elastic Work 79
3.3.4 Electrical (emf) Work 80
3.3.5 Electric Polarization Work 81
3.3.6 Magnetic Polarization Work 83
3.3.7 Overview of General Work Forms 84

3.4 Characterization and Measurement of Heat 85
3.5 General Statements of the First Law 87
3.6 Thermochemical Consequences of the First Law 89
3.6.1 Heat Capacity and the Enthalpy Function 89
3.6.2 Joule’s Experiment 91
3.6.3 Joule–Thomson Porous Plug Experiment 93
3.6.4 Ideal Gas Thermodynamics 95
3.6.5 Thermochemistry: Enthalpies of Chemical Reactions 101
3.6.6 Temperature Dependence of Reaction Enthalpies 107
3.6.7 Heats of Solution 108
3.6.8 Other Aspects of Enthalpy Decompositions 112

4.1 Introduction: Heat Flow, Spontaneity, and Irreversibility 117
4.2 Heat Engines: Conversion of Heat to Work 122
4.3 Carnot’s Analysis of Optimal Heat-Engine Efficiency 123
4.4 Theoretical Limits on Perpetual Motion: Kelvin’s and Clausius’ Principles 128
4.5 Kelvin’s Temperature Scale 130
4.6 Carnot’s Theorem and the Entropy of Clausius 134
4.7 Clausius’ Formulation of the Second Law 139
4.8 Summary of the Inductive Basis of Thermodynamics 145

PART II GIBBSIAN THERMODYNAMICS OF CHEMICAL AND PHASE EQUILIBRIA 147

5. Analytical Criteria for Thermodynamic Equilibrium 149
5.1 The Gibbs Perspective 149
5.2 Analytical Formulation of the Gibbs Criterion for a System in Equilibrium 152
5.3 Alternative Expressions of the Gibbs Criterion 157
5.4 Duality of Fundamental Equations: Entropy Maximization versus Energy Minimization 160
5.5 Other Thermodynamic Potentials: Gibbs and Helmholtz Free Energy 162
5.6 Maxwell Relations 164
5.7 Gibbs Free Energy Changes in Laboratory Conditions 170
5.8 Post-Gibbsian Developments 180
5.8.1 The Fugacity Concept 181
5.8.2 The “Third Law” of Thermodynamics: A Critical Assessment 183
6. Thermodynamics of Homogeneous Chemical Mixtures 195

6.1 Chemical Potential in Multicomponent Systems 195
6.2 Partial Molar Quantities 197
6.3 The Gibbs–Duhem Equation 201
6.4 Physical Nature of Chemical Potential in Ideal and Real Gas Mixtures 204

7. Thermodynamics of Phase Equilibria 209

7.1 The Gibbs Phase Rule 211
7.2 Single-Component Systems
 7.2.1 The Phase Diagram of Water 217
 7.2.2 Clapeyron and Clausius–Clapeyron Equations for Phase Boundaries 219
 7.2.3 Illustrative Phase Diagrams for Pure Substances 224
7.3 Binary Fluid Systems 233
 7.3.1 Vapor–Pressure (P–x) Diagrams: Raoult and Henry Limits 237
 7.3.2 The Lever Rule 241
 7.3.3 Positive and Negative Deviations 243
 7.3.4 Boiling-Point Diagrams: Theory of Distillation 247
 7.3.5 Immiscibility and Consolute Behavior 250
 7.3.6 Colligative Properties and Van’t Hoff Osmotic Equation 253
 7.3.7 Activity and Activity Coefficients 260
7.4 Binary Solid–Liquid Equilibria 263
 7.4.1 Eutectic Behavior 264
 7.4.2 Congruent Melting 265
 7.4.3 Incongruent Melting and Peritectics 266
 7.4.4 Alloys and Partial Miscibility 266
 7.4.5 Phase Boundaries and Gibbs Free Energy of Mixing 267
7.5 Ternary and Higher Systems 273

8. Thermodynamics of Chemical Reaction Equilibria 281

8.1 Analytical Formulation of Chemical Reactions in Terms of the Advancement Coordinate 281
8.2 Criterion of Chemical Equilibrium: The Equilibrium Constant 282
8.3 General Free Energy Changes: de Donder’s Affinity 285
8.4 Standard Free Energy of Formation 286
8.5 Temperature and Pressure Dependence of the Equilibrium Constant
 8.5.1 Temperature Dependence: Van’t Hoff Equation 288
 8.5.2 Pressure Dependence 289
8.6 Le Chatelier’s Principle 290
8.7 Thermodynamics of Electrochemical Cells 292
CONTENTS

8.8 Ion Activities in Electrolyte Solutions 296
8.9 Concluding Synopsis of Gibbs’ Theory 305

PART III METRIC GEOMETRY OF EQUILIBRIUM THERMODYNAMICS 311

9. Introduction to Vector Geometry and Metric Spaces 313
 9.1 Vector and Matrix Algebra 315
 9.2 Dirac Notation 323
 9.3 Metric Spaces 328

10. Metric Geometry of Thermodynamic Responses 331
 10.1 The Space of Thermodynamic Response Vectors 331
 10.2 The Metric of Thermodynamic Response Space 333
 10.3 Linear Dependence, Dimensionality, and Gibbs–Duhem Equations 337

11. Geometrical Representation of Equilibrium Thermodynamics 345
 11.1 Thermodynamic Vectors and Geometry 345
 11.2 Conjugate Variables and Conjugate Vectors 348
 11.3 Metric of a Homogeneous Fluid 353
 11.4 General Transformation Theory in Thermodynamic Metric Space 357
 11.5 Saturation Properties Along the Vapor-Pressure Curve 360
 11.6 Self-Conjugate and Normal Response Modes 363
 11.7 Geometrical Characterization of Common Fluids 366
 11.8 Stability Conditions and the “Third Law” for Homogeneous Phases 376
 11.9 The Critical Instability Limit 379
 11.10 Critical Divergence and Exponents 384
 11.11 Phase Heterogeneity and Criticality 386

12. Geometrical Evaluation of Thermodynamic Derivatives 393
 12.1 Thermodynamic Vectors and Derivatives 394
 12.2 General Solution for Two Degrees of Freedom and Relationship to Jacobian Methods 401
 12.3 General Partial Derivatives in Higher-Dimensional Systems 405
 12.4 Phase-Boundary Derivatives in Multicomponent Systems 408
 12.5 Stationary Points of Phase Diagrams: Gibbs–Konowalow Laws 414
 12.6 Higher-Order Derivatives and State Changes 417

13. Further Aspects of Thermodynamic Geometry 421
 13.1 Reversible Changes of State: Riemannian Geometry 424
 13.2 Near-Equilibrium Irreversible Thermodynamics: Diffusional Geometry 429
13.3 Quantum Statistical Thermodynamic Origins of Chemical and Phase Thermodynamics 439
 13.3.1 Nonequilibrium Displacement Variables of Mayer and Co-workers 442
 13.3.2 Quantum Statistical Thermodynamics and the Statistical Origins of Metric Geometry 445
 13.3.3 Evaluation of Molecular Partition Functions for Reactive Mixtures 452
 13.3.4 Quantum Cluster Equilibrium Theory of Phase Thermodynamics 455

Appendix: Units and Conversion Factors 465

AUTHOR INDEX 469

SUBJECT INDEX 473