CONTENTS

Preface xvii

PART I PRELIMINARIES

1 Introduction to VoIP Networks 3
1.1 Public Switched Telephone Network (PSTN) 3
 1.1.1 Switching 4
 1.1.2 Routing 5
 1.1.3 Connection hierarchy 5
 1.1.4 Telephone numbering 6
 1.1.5 Signaling 6
 1.1.6 Summary 6
1.2 Fundamentals of Internet technology 7
 1.2.1 Packetization and packet-switching 7
 1.2.2 Addressing 8
 1.2.3 Routing and forwarding 8
 1.2.4 DNS 10
1.3 Performance issues in the Internet 11
 1.3.1 Latency 11
 1.3.2 Packet loss 11
 1.3.3 Jitter 12
CONTENTS

1.4 Quality of Service (QoS) guarantees 12
 1.4.1 Integrated services 13
 1.4.2 Differentiated services 13
 1.4.3 Other modifications 14
 1.4.3.1 Route pinning 14
 1.4.3.2 Packet classification 14
 1.4.4 Admission control 15
 1.4.5 Status 15

1.5 Summary 15

2 Basics of VoIP 17
 2.1 Packetization of voice 17
 2.2 Networking technology 18
 2.3 Architecture overview 18
 2.3.1 Architectural requirements 19
 2.3.2 Functional components 21
 2.3.2.1 VoIP calling device 21
 2.3.2.2 Gateway 21
 2.3.2.3 Media server 22
 2.3.2.4 Session control server 22
 2.3.3 Protocols 22
 2.4 Process of making a VoIP call 22
 2.5 Deployment issues 23
 2.5.1 VoIP quality and performance issues 24
 2.5.2 Delay 24
 2.5.3 Jitter 25
 2.5.4 Packet loss 25
 2.5.5 Echo and talk overlap 25
 2.5.6 Approaches to maintaining VoIP quality 25
 2.5.6.1 Network-level QoS 25
 2.5.6.2 VoIP codecs 26
 2.6 VoIP applications and services 26
 2.6.1 Fax 26
 2.6.2 Emergency numbers 26
 2.6.3 Roaming 26
 2.6.4 Voice over IM 27
 2.6.5 Push-to-talk 27
 2.6.6 Conferencing 27
 2.6.7 Integration with other applications 27
 2.7 Summary 27
3 VoIP Codecs

3.1 Codec design overview

3.1.1 VoIP codec design goals

3.2 Speech coding techniques

3.2.1 Waveform codecs

3.2.1.1 Pulse code modulation (PCM)

3.2.1.2 Differential PCM (DPCM)

3.2.2 Source coding

3.2.3 Hybrid coding

3.2.4 Adaptive multirate

3.3 Narrowband codecs

3.3.1 PCM-based G.711

3.3.2 ADPCM-based G.721 codecs

3.3.3 RPE-based GSM codec

3.3.4 Low-delay CELP-based G.728 codec

3.3.5 DoD CELP-based G.723.1 codec

3.3.6 CS-ACELP-based G.729 codec

3.3.7 iLBC

3.3.8 Comparison of narrowband codecs

3.4 Wideband and multirate codecs

3.4.1 Adaptive MultiRate WideBand (AMR-WB)

3.4.2 Speex

3.5 VoIP softwares

3.5.1 Linphone

3.5.2 SJphone

3.5.3 Skype

3.5.4 RAT

3.6 Summary

4 Performance of Voice Codecs

4.1 Factors affecting VoIP quality

4.1.1 Effects due to encoding

4.1.2 Effects on the decoder

4.1.3 Monitoring network conditions

4.2 Voice quality assessment

4.3 Subjective measures and MOS score

4.3.1 Absolute Category Rating (ACR)

4.3.2 Degradation Category Rating (DCR)

4.3.3 Comparison Category Rating (CCR)

4.4 Conversational opinion score
CONTENTS

4.5 E-Model 46
 4.5.1 Sensitivity to delay 47
4.6 Sensitivity to loss 48
4.7 Perceptual Evaluation of Speech Quality (PESQ) 50
 4.7.1 PESQ analysis for VoIP codecs 50
 4.7.2 Cross correlation 53
4.8 Tools for lab testbed setup 53
 4.8.1 Network emulator 55
4.9 Voice input/output tools 55
 4.9.1 Recording tools 56
 4.9.2 Experiment configurations 56
4.10 Summary 57

5 VoIP Protocols 59

5.1 Introduction 59
5.2 Signaling protocols 61
 5.2.1 Session Initiation Protocol (SIP) 61
 5.2.1.1 Architecture overview 61
 5.2.1.2 SIP components 62
 5.2.1.3 SIP operation 63
 5.2.2 Session Description Protocol (SDP) 64
 5.2.3 H.323 64
 5.2.3.1 H.323 architecture overview 65
 5.2.3.2 H.323 components 65
 5.2.3.3 H.323 protocols 67
 5.2.3.4 H.323 operation 67
 5.2.4 Media Gateway Control Protocol (MGCP) 68
 5.2.4.1 Components 69
 5.2.4.2 Architecture overview 69
 5.2.4.3 MGCP operation 69
5.3 Media transport protocols 70
 5.3.1 Real-time Transport Protocol (RTP) 70
5.4 Summary 71

PART II VOIP IN OVERLAY NETWORKS

6 Overlay Networks 75

6.1 Internet communication overview 75
 6.1.1 Communication operations 76
 6.1.2 Communication roles 76
6.1.3 Internet routing 77
6.1.4 Client–server architecture 77
6.2 Limitations of the Internet 77
6.3 Overlay networks 78
6.3.1 Types of overlay network 79
6.3.1.1 Infrastructure overlays 80
6.3.1.2 P2P overlays 80
6.3.1.3 Design considerations for infrastructure versus P2P overlays 80
6.3.2 Routing in overlay networks 81
6.4 Applications of overlay networks 82
6.4.1 Content distribution network 82
6.4.2 Overlay multicast 82
6.4.3 Anonymous data delivery 83
6.4.4 Robust routing 84
6.4.5 High bandwidth streaming 85
6.5 Summary 86

7 P2P Technology 87
7.1 P2P communication overview 87
7.1.1 Peer node 88
7.1.2 Node join and leave 88
7.1.3 Bootstrapping 88
7.1.4 Communication process 89
7.2 Classification of P2P networks 89
7.3 Unstructured overlays 90
7.3.1 Centralized resource discovery 91
7.3.2 Controlled flooding 91
7.4 Structured overlays – Distributed Hash Tables (DHTs) 92
7.4.1 Hashing 92
7.4.1.1 Usage in DHT 93
7.4.1.2 Limitations with respect to DHT 93
7.4.1.3 Standard hash functions 94
7.4.2 Consistent hashing 94
7.4.3 Increasing information availability 96
7.5 Types of DHT 96
7.5.1 Chord 96
7.5.2 Koorde 98
7.5.3 CAN 99
7.5.4 Kademia 100
9.3.2.4 Call setup and routing 126
9.3.2.5 NAT traversal 126
9.3.2.6 Conferencing 126
9.3.3 Encryption 127
9.3.4 Skype performance 128
9.4 Standardization 130
9.5 Summary 130

PART III VOIP IN WIRELESS NETWORKS

10 IEEE 802.11 Wireless Networks 135
10.1 Network architecture overview 135
10.1.1 Components 135
10.1.2 Network configurations 136
10.1.2.1 Ad hoc networks 136
10.1.2.2 Infrastructure networks 136
10.1.2.3 Infrastructure mesh networks 136
10.2 Network access management 137
10.2.1 Association 137
10.2.2 Authentication 138
10.2.3 Mobility 138
10.3 Basic medium access protocol 139
10.3.1 Distributed Coordination Function (DCF) 139
10.3.1.1 Carrier sensing 139
10.3.1.2 Random access 140
10.3.2 Station protocol 140
10.3.3 Hidden terminal problem 141
10.3.4 PCF 142
10.4 Physical layer 142
10.4.1 Spread spectrum techniques in IEEE 802.11b 142
10.4.2 OFDM in IEEE 802.11a 143
10.4.3 MIMO in IEEE 802.11n 143
10.4.4 Modulation and rate control 143
10.5 Network resource management 144
10.5.1 Interference model 144
10.5.2 Channel allocation 145
10.5.3 Power control 146
10.6 IEEE 802.11 standardization overview 147
10.7 Summary 148
11 Voice over IEEE 802.11 Wireless Networks

11.1 VoIP over WLAN performance problems 149
 11.1.1 Channel access delay 150
 11.1.2 Interference from simultaneous transmissions 150
 11.1.3 External interference 151
 11.1.4 Disruption in connectivity 151
 11.1.5 Power drain 151
11.2 VoIP capacity 151
 11.2.1 Packet aggregation 152
 11.2.2 Header compression 153
 11.2.3 Interference limited capacity 154
 11.2.4 Call admission control 154
11.3 VoIP packet prioritization 155
 11.3.1 Downlink prioritization 155
 11.3.2 Uplink prioritization using IEEE 802.11e 156
 11.3.2.1 Extended distributed channel access (EDCA) 156
 11.3.2.2 Hybrid coordination function controlled channel access (HCCA) 157
11.4 Handoff performance 157
 11.4.1 Probing process 157
 11.4.2 Scanning using neighbor graph 158
 11.4.3 Synchronized scanning 159
 11.4.4 Multiscanning using dual radio 159
11.5 Reliable delivery 160
11.6 Client power management 161
11.7 Issues in mesh networks 161
 11.7.1 Capacity in mesh networks 162
 11.7.2 VoIP call routing 162
11.8 Summary 163

12 IEEE 802.16 WiMAX

12.1 WiMAX overview 165
12.2 IEEE 802.11 MAC protocol architecture 166
 12.2.1 QoS management 167
12.3 MAC layer framing 168
 12.3.1 Aggregation 169
 12.3.2 Fragmentation 170
 12.3.3 Concatenation 170
12.4 Physical layer 170
 12.4.1 OFDM 171
12.4.2 OFDMA 171
12.4.3 Slotted allocation 172
12.4.4 Subcarrier mapping 173
12.4.5 OFDMA frame structure 173
12.4.6 OFDMA MIMO 173

12.5 Radio resource management 174
12.5.1 Duplex modes 174
12.5.2 Uplink bandwidth allocation 174

12.6 Competing technologies 175
12.6.1 Comparison with IEEE 802.11 WLAN 175
12.6.2 Comparison with 3G cellular technologies 176
12.6.3 Comparison with LTE and UMB 176

12.7 Summary 176

13 Voice over WiMAX 177

13.1 Introduction 177

13.2 VoIP service delivery over WiMAX network 178
13.2.1 Network entry process 178
13.2.2 Inter-BS handoff process 178
13.2.3 Power-save modes 179

13.3 QoS architecture 179
13.3.1 Serving downlink queues 180
13.3.2 Serving uplink queues 180
13.3.3 QoS provisioning 181

13.4 Call admission control 181

13.5 Uplink QoS control 181
13.5.1 Unsolicited Grant Service (UGS) 182
13.5.2 Real-time Polling Service (rtPS) 182
13.5.3 Non-real-time Polling Service (nrtPS) 182
13.5.4 Best effort service 182

13.6 Enhanced QoS control for VoIP 182
13.6.1 Supporting voice using UGS 183
13.6.2 Supporting VoIP using rtPS 183
13.6.3 Enhanced rtPS for VoIP 184

13.7 MAC enhancement strategies 185
13.7.1 Packet loss probability 185
13.7.2 Packet delay 186
13.7.3 Dynamic adaptation of MPDU size 186
13.7.4 Performance of dynamic adaptation 186

13.8 Comparison with competing technologies 187

13.9 Summary 187
PART IV VOIP IN ENTERPRISE NETWORKS

14 Private Branch Exchange (PBX) 191
 14.1 Private Branch Exchange (PBX) 191
 14.1.1 Basic PBX functions 192
 14.1.2 PBX features 192
 14.1.3 IP-PBX 194
 14.2 Case study: Asterisk open-source IP-PBX 195
 14.2.1 Software architecture 196
 14.2.2 Asterisk operation 197
 14.2.3 Application gateway interface 200
 14.2.4 System requirements 201
 14.2.4.1 Summary 203
 14.2.5 Asterisk as an application server 204
 14.2.6 Desirable features 205
 14.3 Summary 206

15 Network Address Translation (NAT) and Firewall 207
 15.1 Introduction 208
 15.2 NAT fundamentals 208
 15.3 Applications of NAT 210
 15.3.1 IP address multiplexing 210
 15.3.2 Enhanced security 210
 15.3.3 Load balancing 211
 15.3.4 Failover protection 211
 15.3.5 Advantages 211
 15.3.6 Drawbacks 211
 15.4 Types of NAT 212
 15.4.1 Based on type of translation 212
 15.4.1.1 Basic NAT 212
 15.4.1.2 Address and port translation 212
 15.4.2 Based on session binding 212
 15.4.2.1 Static 212
 15.4.2.2 Dynamic 212
 15.4.2.3 Hybrid 212
 15.4.3 Based on allowed connections 213
 15.4.3.1 Full cone NAT 213
 15.4.3.2 Restricted cone NAT 213
 15.4.3.3 Port restricted cone NAT 213
 15.4.3.4 Symmetric NAT 213
 15.4.5 Summary 213
15.5 Firewall 214
15.6 NAT traversal solutions 214
 15.6.1 Determining the type of NAT 215
 15.6.2 STUN protocol 217
 15.6.3 TURN protocol 218
 15.6.4 Interactive connectivity establishment 218
 15.6.5 Application Layer Gateway (ALG) 218
 15.6.6 HTTP tunneling 219
15.7 NAT traversal in H.323 219
15.8 Summary 220

PART V VOIP SERVICE DEPLOYMENT

16 Supporting Services and Applications 223
 16.1 Domain Name System (DNS) 223
 16.2 ENUM 225
 16.3 Network monitoring 225
 16.4 Direct Inward Dialing (DID) 226
 16.5 Emergency calling (911) 226
 16.6 Fax 227
 16.7 Summary 228

17 Security and Privacy 231
 17.1 Security and privacy issues 232
 17.2 Generic issues 232
 17.2.1 Malware 232
 17.2.2 Spamming 233
 17.2.3 Denial of Service (DOS) 233
 17.2.4 Access technology weakness 234
 17.2.5 Improper implementation 234
 17.3 VoIP-related issues 234
 17.3.1 Misrepresentation 235
 17.3.2 Service theft 235
 17.3.3 Eavesdropping 235
 17.3.4 Call altering 236
 17.3.5 Call hijacking 236
 17.3.6 Privacy 236
 17.4 Solutions 236
 17.4.1 Authentication 237
 17.4.2 Message integrity 237
 17.4.3 Signaling message encryption 238
17.4.4 Data encryption 238
17.4.5 Privacy 239
17.5 Recommendations 239
17.6 Summary 240

18 IP Multimedia Subsystem (IMS) 241
 18.1 Introduction 241
 18.2 Architecture design goals 242
 18.3 IMS advantages
 18.3.1 End-user experience 243
 18.3.2 Enterprise-user experience 243
 18.3.3 Benefits for network operators 244
 18.3.4 Benefits for service providers 244
 18.4 IMS architecture organization 244
 18.5 Network Attachment SubSystem (NASS) 246
 18.6 Resource Admission Control Subsystem (RACS) 247
 18.7 IMS core subsystem 247
 18.7.1 Call session control 247
 18.7.1.1 Proxy-CSCF 247
 18.7.1.2 Serving-CSCF 248
 18.7.1.3 Interrogating-CSCF 248
 18.7.2 Other functional control entities 248
 18.8 IMS QoS management 249
 18.9 QoS provisioning approach 249
 18.9.1 Guaranteed QoS 249
 18.9.2 Relative QoS 249
 18.9.3 QoS control mechanism in IMS 249
 18.9.3.1 Session control layer 249
 18.9.3.2 Transport layer 250
 18.9.4 Policy based QoS control 251
 18.10 Summary 251

Index 253