CONTENTS

Chapter 0 Spatial Learner’s Permit 1
Spatial Terminology 2
Applying Spatial Terms 5
Spatial Cognition 8
Spatial Quantities 10
Spherical Earth 11
Concluding Remarks 13
Terms 14
Practice Exercises 14
References 16

UNIT 1 INTRODUCTION 17

Chapter 1 Introduction to Digital Geography 19
Learning Objectives 19
Geographic Information Systems Defined 19
A Brief History of Geographic Information Systems 23
GIS as a Growth Industry 25
Sample Application Areas of GIS 26
The Study of GIS 29
Terms 31
Review Questions 31
References 31

UNIT 2 DIGITAL GEOGRAPHIC DATA AND MAPS 33

Chapter 2 Basic Geographic Concepts 35
Learning Objectives 36
Developing Spatial Awareness 37
Spatial Measurement Levels 40
Spatial Location and Reference 42
Spatial Patterns 45
Geographic Data Collection 47
Populations and Sampling Schemes 52
Making Inferences from Samples 54
Terms 56
UNIT 3 INPUT, STORAGE, AND EDITING

Chapter 6 GIS Input

Learning Objectives 129
Primary Data 130
 Input Devices 131
 Reference Frameworks and Transformations 134
 Map Preparation and the Digitizing Process 137
What to Input 140
How Much to Input 141
Methods of Vector Input 142
Methods of Raster Input 143
Remote Sensing Data Input 146
GPS Data Input 149
Secondary Data 150
Metadata and Metadata Standards 151
Terms 154
Review Questions 154
References 155

Chapter 7 Data Storage and Editing

Learning Objectives 158
GIS Database Storage 158
Basic Error Types 160
Consequences of Errors 161
Error Detection and Editing 162
 Entity Errors: Vector 162
 Attribute Errors: Raster and Vector 168
Dealing with Projection Changes 171
Joining Adjacent Maps: Edge Matching 172
Conflation 173
Templating 174
Terms 175
Review Questions 175
References 176

UNIT 4 SPATIAL ANALYSIS

Chapter 8 Query and Description

Learning Objectives 180
Model Flowcharting 180
GIS Data Query 181
Locating and Identifying Spatial Objects 184
Defining Spatial Characteristics 185
Contents

Point Attributes 186
Line Attributes 187
Area Attributes 189
Working with Higher-Level Objects 192
Higher-Level Point Objects 192
Higher-Level Line Objects 195
Higher-Level Area Objects 198
Terms 199
Review Questions 200
References 200

Chapter 9 Measurement 202
Learning Objectives 202
Measuring Length 203
Measuring Polygons 205
 Measuring Polygon Lengths 205
Measuring Perimeters of Polygons 206
Calculating Areas of Polygonal Features 207
Measuring Shape 208
 Measuring Sinuosity 209
Measuring Polygon Shape 209
Measuring Distance 213
 Euclidean Distance 213
 Functional Distance 215
Terms 223
Review Questions 224
References 225

Chapter 10 Classification 227
Learning Objectives 228
Classification Principles 228
Elements of Reclassification 230
Neighborhood Functions 231
Roving Windows: Filters 232
Static Neighborhood Functions 235
Buffers 239
Terms 244
Review Questions 244
References 245

Chapter 11 Statistical Surfaces 247
Learning Objectives 248
What are Surfaces? 249
Surface Mapping 250
Nontopographical Surfaces 252
 Sampling the Statistical Surface 253
The DEM 254
 Interpolation 255
Contents

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Terrain Analysis</th>
<th>269</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Objectives</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Terrain Reclassification</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Elevation Zones</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Slope Analysis</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>Aspect Analysis</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>Shape or Form</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>Viewshed Analysis</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>Soundshed Analysis</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>Cut and Fill</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>Terms</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>Review Questions</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>286</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Spatial Arrangement</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Objectives</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Point, Area, and Line Arrangements</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Point Patterns</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Nearest Neighbor Analysis</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>Thiessen Polygons</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Area Patterns</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>Distance and Adjacency</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Other Polygonal Arrangement Measures</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Linear Patterns</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Line Densities</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>Nearest Neighbors and Line Intercepts</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>Direction and Circular Statistics</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Connectivity of Linear Objects</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>Gravity Model</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Routing and Allocation</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>Terms</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Review Questions</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>311</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14</th>
<th>Map Overlay</th>
<th>313</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Objectives</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>The Cartographic Overlay</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Point-In-Polygon and Line-In-Polygon Overlay</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Polygon Overlays</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>Why Perform an Overlay?</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>Types of Map Overlay</td>
<td>319</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Types of Vector Overlays 323
Graphical Overlay 324
Topological Vector Overlay 326
A Note about Error in Overlay 326
Dasymetric Mapping 328
Terms 330
Review Questions 331
References 331

Chapter 15 Cartographic Modeling 333

Learning Objectives 334
Model Components 334
The Cartographic Model 335
Types of Cartographic Models 337
Inductive and Deductive Modeling 339
Factor Selection 339
Model Flowcharting 340
 Working Through the Model 342
 Conflict Resolution 347
 Sample Cartographic Models 348
Model Implementation 351
Model Verification 352
Terms 356
Review Questions 356
References 357

UNIT 5 GIS OUTPUT AND DESIGN 359

Chapter 16 Cartography and Visualization 361

Learning Objectives 361
Output: The Display of Analysis 362
Cartographic Output 363
 Thematic Maps and Cartograms 364
 Multivariate Display 369
 Dynamic and Interactive Display 371
 Web Mapping and Visualization 372
 Virtual and Immersion Environments 374
 Mapping the Temporal Dimension 374
Noncartographic Output 375
 Tables and Charts 376
 Design Considerations 377
Terms 380
Review Questions 380
References 381
Chapter 17 GIS Design 383

Learning Objectives 384
Application Design 385
Some General Systems Characteristics 387
Project Definition 388
Analytical Model Design 389
 Components and Procedures 389
 GIS Tools for Solving Problems 390
 Selecting the Software 390
 Scientific Models and GIS 390
Database Design 391
 Modeling Tools 391
 Establishing the Effective Spatial Domain of the Model 392
 Study Area 393
 Scale, Resolution, and Level of Detail 393
 Classification 394
 Coordinate System and Projection 394
 Conceptual, Logical, and Physical Models 395
Institutional/System Design 395
GIS Information Products 396
 How Information Products Drive the GIS 396
 Organizing the Local Views 397
 Avoiding Design Creep 398
View Integration 399
System Implementation 399
 The Institutional Setting for GIS Operations 400
 The System and the Outside World 400
 Internal Players 401
 External Players 402
Terms 403
Review Questions 403
References 404

Appendix A Software and Data Sources 405
Appendix B Using the World Wide Web to Find Data and GIS Examples 411

Glossary 413
Index 435
Photo Credits 443