Contents

Preface XVII
Symbols and Abbreviations XXIII
References XXXI

1 Newtonian Celestial Mechanics 1
1.1 Prolegomena – Classical Mechanics in a Nutshell 1
1.1.1 Kepler’s Laws 1
1.1.2 Fundamental Laws of Motion – from Descartes, Newton, and Leibniz to Poincaré and Einstein 2
1.1.3 Newton’s Law of Gravity 7
1.2 The N-body Problem 10
1.2.1 Gravitational Potential 11
1.2.2 Gravitational Multipoles 13
1.2.3 Equations of Motion 15
1.2.4 The Integrals of Motion 19
1.2.5 The Equations of Relative Motion with Perturbing Potential 21
1.2.6 The Tidal Potential and Force 22
1.3 The Reduced Two-Body Problem 24
1.3.1 Integrals of Motion and Kepler’s Second Law 24
1.3.2 The Equations of Motion and Kepler’s First Law 27
1.3.3 The Mean and Eccentric Anomalies – Kepler’s Third Law 31
1.3.4 The Laplace–Runge–Lenz Vector 35
1.3.5 Parameterizations of the Reduced Two-Body Problem 37
1.3.5.1 A Keplerian Orbit in the Euclidean Space 37
1.3.5.2 A Keplerian Orbit in the Projective Space 39
1.3.6 The Freedom of Choice of the Anomaly 43
1.4 A Perturbed Two-Body Problem 45
1.4.1 Prefatory Notes 45
1.4.2 Variation of Constants – Osculating Conics 47
1.4.3 The Lagrange and Poisson Brackets 49
1.4.4 Equations of Perturbed Motion for Osculating Elements 51
1.4.5 Equations for Osculating Elements in the Euler–Gauss Form 53
1.4.6 The Planetary Equations in the Form of Lagrange 55
Contents

1.4.7 The Planetary Equations in the Form of Delaunay 56
1.4.8 Marking a Minefield 57
1.5 Re-examining the Obvious 58
1.5.1 Why Did Lagrange Impose His Constraint? Can It Be Relaxed? 58
1.5.2 Example – the Gauge Freedom of a Harmonic Oscillator 59
1.5.3 Relaxing the Lagrange Constraint in Celestial Mechanics 62
1.5.3.1 The Gauge Freedom 62
1.5.3.2 The Gauge Transformations 64
1.5.4 The Gauge-Invariant Perturbation Equation in Terms of the Disturbing Force 66
1.5.5 The Gauge-Invariant Perturbation Equation in Terms of the Disturbing Function 67
1.5.6 The Delaunay Equations without the Lagrange Constraint 69
1.5.7 Contact Orbital Elements 72
1.5.8 Osculation and Nonosculation in Rotational Dynamics 75
1.6 Epilogue to the Chapter 76

References 77

2 Introduction to Special Relativity 81
2.1 From Newtonian Mechanics to Special Relativity 81
2.1.1 The Newtonian Spacetime 81
2.1.2 The Newtonian Transformations 84
2.1.3 The Galilean Transformations 85
2.1.4 Form-Invariance of the Newtonian Equations of Motion 88
2.1.5 The Maxwell Equations and the Lorentz Transformations 89
2.2 Building the Special Relativity 94
2.2.1 Basic Requirements to a New Theory of Space and Time 94
2.2.2 On the “Single-Postulate” Approach to Special Relativity 96
2.2.3 The Difference in the Interpretation of Special Relativity by Einstein, Poincaré and Lorentz 97
2.2.4 From Einstein’s Postulates to Minkowski’s Spacetime of Events 99
2.2.4.1 Dimension of the Minkowski Spacetime 99
2.2.4.2 Homogeneity and Isotropy of the Minkowski Spacetime 99
2.2.4.3 Coordinates and Reference Frames 100
2.2.4.4 Spacetime Interval 100
2.2.4.5 The Null Cone 101
2.2.4.6 The Proper Time 102
2.2.4.7 The Proper Distance 103
2.2.4.8 Causal Relationship 103
2.3 Minkowski Spacetime as a Pseudo-Euclidean Vector Space 103
2.3.1 Axioms of Vector Space 103
2.3.2 Dot-Products and Norms 105
2.3.2.1 Euclidean Space 106
2.3.2.2 Pseudo-Euclidean Space 107
2.3.3 The Vector Basis 108
2.8.3 Nonperfect Fluid and Solids 189
2.8.4 Electromagnetic Field 190
2.8.5 Scalar Field 191
References 194

3 General Relativity 199
3.1 The Principle of Equivalence 199
3.1.1 The Inertial and Gravitational Masses 199
3.1.2 The Weak Equivalence Principle 201
3.1.3 The Einstein Equivalence Principle 202
3.1.4 The Strong Equivalence Principle 203
3.1.5 The Mach Principle 204
3.2 The Principle of Covariance 207
3.2.1 Lorentz Covariance in Special Relativity 208
3.2.2 Lorentz Covariance in Arbitrary Coordinates 209
3.2.2.1 Covariant Derivative and the Christoffel Symbols in Special
Relativity 211
3.2.2.2 Relationship Between the Christoffel Symbols and the Metric
Tensor 212
3.2.2.3 Covariant Derivative of the Metric Tensor 213
3.2.3 From Lorentz to General Covariance 214
3.2.4 Two Approaches to Gravitation in General Relativity 215
3.3 A Differentiable Manifold 217
3.3.1 Topology of Manifold 217
3.3.2 Local Charts and Atlas 218
3.3.3 Functions 218
3.3.4 Tangent Vectors 219
3.3.5 Tangent Space 220
3.3.6 Covectors and Cotangent Space 222
3.3.7 Tensors 224
3.3.8 The Metric Tensor 224
3.3.8.1 Operation of Rising and Lowering Indices 225
3.3.8.2 Magnitude of a Vector and an Angle Between Vectors 226
3.3.8.3 The Riemann Normal Coordinates 226
3.4 Affine Connection on Manifold 229
3.4.1 Axiomatic Definition of the Affine Connection 230
3.4.2 Components of the Connection 232
3.4.3 Covariant Derivative of Tensors 233
3.4.4 Parallel Transport of Tensors 234
3.4.4.1 Equation of the Parallel Transport 234
3.4.4.2 Geodesics 235
3.4.5 Transformation Law for Connection Components 237
3.5 The Levi-Civita Connection 238
3.5.1 Commutator of Two Vector Fields 238
3.5.2 Torsion Tensor 240
3.5.3 Nonmetricity Tensor 242
3.5.4 Linking the Connection with the Metric Structure 243
3.6 Lie Derivative 245
3.6.1 A Vector Flow 245
3.6.2 The Directional Derivative of a Function 246
3.6.3 Geometric Interpretation of the Commutator of Two Vector Fields 247
3.6.4 Definition of the Lie Derivative 249
3.6.5 Lie Transport of Tensors 251
3.7 The Riemann Tensor and Curvature of Manifold 253
3.7.1 Noncommutation of Covariant Derivatives 253
3.7.2 The Dependence of the Parallel Transport on the Path 255
3.7.3 The Holonomy of a Connection 256
3.7.4 The Riemann Tensor as a Measure of Flatness 258
3.7.5 The Jacobi Equation and the Geodesics Deviation 261
3.7.6 Properties of the Riemann Tensor 262
3.7.6.1 Algebraic Symmetries 262
3.7.6.2 The Weyl Tensor and the Ricci Decomposition 264
3.7.6.3 The Bianchi Identities 265
3.8 Mathematical and Physical Foundations of General Relativity 266
3.8.1 General Covariance on Curved Manifolds 267
3.8.2 General Relativity Principle Links Gravity to Geometry 269
3.8.3 The Equations of Motion of Test Particles 273
3.8.4 The Correspondence Principle – the Interaction of Matter and Geometry 277
3.8.4.1 The Newtonian Gravitational Potential and the Metric Tensor 277
3.8.4.2 The Newtonian Gravity and the Einstein Field Equations 279
3.8.5 The Principle of the Gauge Invariance 282
3.8.6 Principles of Measurement of Gravitational Field 286
3.8.6.1 Clocks and Rulers 286
3.8.6.2 Time Measurements 289
3.8.6.3 Space Measurements 290
3.8.6.4 Are Coordinates Measurable? 294
3.8.7 Experimental Testing of General Relativity 297
3.9 Variational Principle in General Relativity 300
3.9.1 The Action Functional 300
3.9.2 Variational Equations 303
3.9.2.1 Variational Equations for Matter 303
3.9.2.2 Variational Equations for Gravitational Field 307
3.9.3 The Hilbert Action and the Einstein Equations 307
3.9.3.1 The Hilbert Lagrangian 307
3.9.3.2 The Einstein Lagrangian 309
3.9.3.3 The Einstein Tensor 310
3.9.3.4 The Generalizations of the Hilbert Lagrangian 313
3.9.4 The Noether Theorem and Conserved Currents 316
3.9.4.1 The Anatomy of the Infinitesimal Variation 316
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.4.2 Examples of the Gauge Transformations</td>
<td>319</td>
</tr>
<tr>
<td>3.9.4.3 Proof of the Noether Theorem</td>
<td>320</td>
</tr>
<tr>
<td>3.9.5 The Metrical Energy-Momentum Tensor</td>
<td>322</td>
</tr>
<tr>
<td>3.9.5.1 Hardcore of the Metrical Energy-Momentum Tensor</td>
<td>322</td>
</tr>
<tr>
<td>3.9.5.2 Gauge Invariance of the Metrical Energy Momentum Tensor</td>
<td>324</td>
</tr>
<tr>
<td>3.9.5.3 Electromagnetic Energy-Momentum Tensor</td>
<td>325</td>
</tr>
<tr>
<td>3.9.5.4 Energy-Momentum Tensor of a Perfect Fluid</td>
<td>326</td>
</tr>
<tr>
<td>3.9.5.5 Energy-Momentum Tensor of a Scalar Field</td>
<td>329</td>
</tr>
<tr>
<td>3.9.6 The Canonical Energy-Momentum Tensor</td>
<td>329</td>
</tr>
<tr>
<td>3.9.6.1 Definition</td>
<td>329</td>
</tr>
<tr>
<td>3.9.6.2 Relationship to the Metrical Energy-Momentum Tensor</td>
<td>331</td>
</tr>
<tr>
<td>3.9.6.3 Killing Vectors and the Global Laws of Conservation</td>
<td>332</td>
</tr>
<tr>
<td>3.9.6.4 The Canonical Energy-Momentum Tensor for Electromagnetic Field</td>
<td>333</td>
</tr>
<tr>
<td>3.9.6.5 The Canonical Energy-Momentum Tensor for Perfect Fluid</td>
<td>334</td>
</tr>
<tr>
<td>3.9.7 Pseudotensor of Landau and Lifshitz</td>
<td>336</td>
</tr>
<tr>
<td>3.10 Gravitational Waves</td>
<td>339</td>
</tr>
<tr>
<td>3.10.1 The Post-Minkowskian Approximations</td>
<td>340</td>
</tr>
<tr>
<td>3.10.2 Multipolar Expansion of a Retarded Potential</td>
<td>344</td>
</tr>
<tr>
<td>3.10.3 Multipolar Expansion of Gravitational Field</td>
<td>345</td>
</tr>
<tr>
<td>3.10.4 Gravitational Field in Transverse-Traceless Gauge</td>
<td>350</td>
</tr>
<tr>
<td>3.10.5 Gravitational Radiation and Detection of Gravitational Waves</td>
<td>352</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>358</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Relativistic Reference Frames</td>
<td>371</td>
</tr>
<tr>
<td>4.1 Historical Background</td>
<td>371</td>
</tr>
<tr>
<td>4.2 Isolated Astronomical Systems</td>
<td>378</td>
</tr>
<tr>
<td>4.2.1 Field Equations in the Scalar-Tensor Theory of Gravity</td>
<td>378</td>
</tr>
<tr>
<td>4.2.2 The Energy-Momentum Tensor</td>
<td>380</td>
</tr>
<tr>
<td>4.2.3 Basic Principles of the Post-Newtonian Approximations</td>
<td>382</td>
</tr>
<tr>
<td>4.2.4 Gauge Conditions and Residual Gauge Freedom</td>
<td>387</td>
</tr>
<tr>
<td>4.2.5 The Reduced Field Equations</td>
<td>389</td>
</tr>
<tr>
<td>4.3 Global Astronomical Coordinates</td>
<td>391</td>
</tr>
<tr>
<td>4.3.1 Dynamic and Kinematic Properties of the Global Coordinates</td>
<td>391</td>
</tr>
<tr>
<td>4.3.2 The Metric Tensor and Scalar Field in the Global Coordinates</td>
<td>395</td>
</tr>
<tr>
<td>4.4 Gravitational Multipoles in the Global Coordinates</td>
<td>396</td>
</tr>
<tr>
<td>4.4.1 General Description of Multipole Moments</td>
<td>396</td>
</tr>
<tr>
<td>4.4.2 Active Multipole Moments</td>
<td>399</td>
</tr>
<tr>
<td>4.4.3 Scalar Multipole Moments</td>
<td>401</td>
</tr>
<tr>
<td>4.4.4 Conformal Multipole Moments</td>
<td>402</td>
</tr>
<tr>
<td>4.4.5 Post-Newtonian Conservation Laws</td>
<td>404</td>
</tr>
<tr>
<td>4.5 Local Astronomical Coordinates</td>
<td>406</td>
</tr>
<tr>
<td>4.5.1 Dynamic and Kinematic Properties of the Local Coordinates</td>
<td>406</td>
</tr>
<tr>
<td>4.5.2 The Metric Tensor and Scalar Field in the Local Coordinates</td>
<td>409</td>
</tr>
<tr>
<td>4.5.2.1 The Scalar Field: Internal and External Solutions</td>
<td>410</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>The Metric Tensor: Internal Solution</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>The Metric Tensor: External Solution</td>
</tr>
<tr>
<td>4.5.2.4</td>
<td>The Metric Tensor: The Coupling Terms</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Multipolar Expansion of Gravitational Field in the Local Coordinates</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>5</td>
<td>Post-Newtonian Coordinate Transformations</td>
</tr>
<tr>
<td>5.1</td>
<td>The Transformation from the Local to Global Coordinates</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Preliminaries</td>
</tr>
<tr>
<td>5.1.2</td>
<td>General Structure of the Coordinate Transformation</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Transformation of the Coordinate Basis</td>
</tr>
<tr>
<td>5.2</td>
<td>Matching Transformation of the Metric Tensor and Scalar Field</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Historical Background</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Method of the Matched Asymptotic Expansions in the PPN Formalism</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Transformation of Gravitational Potentials from the Local to Global Coordinates</td>
</tr>
<tr>
<td>5.2.3.1</td>
<td>Transformation of the Internal Potentials</td>
</tr>
<tr>
<td>5.2.3.2</td>
<td>Transformation of the External Potentials</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Matching for the Scalar Field</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Matching for the Metric Tensor</td>
</tr>
<tr>
<td>5.2.5.1</td>
<td>Matching $g_{00}(t, x)$ and $\hat{g}_{\alpha\beta}(u, w)$ in the Newtonian Approximation</td>
</tr>
<tr>
<td>5.2.5.2</td>
<td>Matching $g_{ij}(t, x)$ and $\hat{g}_{\alpha\beta}(u, w)$</td>
</tr>
<tr>
<td>5.2.5.3</td>
<td>Matching $g_{0i}(t, x)$ and $\hat{g}_{\alpha\beta}(u, w)$</td>
</tr>
<tr>
<td>5.2.5.4</td>
<td>Matching $g_{00}(t, x)$ and $\hat{g}_{\alpha\beta}(u, w)$ in the Post-Newtonian Approximation</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Final Form of the PPN Coordinate Transformation</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>6</td>
<td>Relativistic Celestial Mechanics</td>
</tr>
<tr>
<td>6.1</td>
<td>Post-Newtonian Equations of Orbital Motion</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Macroscopic Post-Newtonian Equations of Motion</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Mass and the Linear Momentum of a Self-Gravitating Body</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Translational Equation of Motion in the Local Coordinates</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Orbital Equation of Motion in the Global Coordinates</td>
</tr>
<tr>
<td>6.2</td>
<td>Rotational Equations of Motion of Extended Bodies</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The Angular Momentum of a Self-Gravitating Body</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Equations of Rotational Motion in the Local Coordinates</td>
</tr>
<tr>
<td>6.3</td>
<td>Motion of Spherically-Symmetric and Rigidly-Rotating Bodies</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Definition of a Spherically-Symmetric and Rigidly-Rotating Body</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Coordinate Transformation of the Multipole Moments</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Gravitational Multipoles in the Global Coordinates</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Orbital Post-Newtonian Equations of Motion</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Rotational Equations of Motion</td>
</tr>
</tbody>
</table>
Contents

6.4 Post-Newtonian Two-Body Problem 501
6.4.1 Introduction 501
6.4.2 Perturbing Post-Newtonian Force 503
6.4.3 Orbital Solution in the Two-Body Problem 505
6.4.3.1 Osculating Elements Parametrization 505
6.4.3.2 The Damour–Deruelle Parametrization 508
6.4.3.3 The Epstein–Haugan Parametrization 511
6.4.3.4 The Brumberg Parametrization 512
References 513

7 Relativistic Astrometry 519
7.1 Introduction 519
7.2 Gravitational Liénard–Wiechert Potentials 524
7.3 Mathematical Technique for Integrating Equations of Propagation of Photons 529
7.4 Gravitational Perturbations of Photon’s Trajectory 538
7.5 Observable Relativistic Effects 541
7.5.1 Gravitational Time Delay 541
7.5.2 Gravitational Bending and the Deflection Angle of Light 547
7.5.3 Gravitational Shift of Electromagnetic-Wave Frequency 552
7.6 Applications to Relativistic Astrophysics and Astrometry 557
7.6.1 Gravitational Time Delay in Binary Pulsars 557
7.6.1.1 Pulsars – Rotating Radio Beacons 557
7.6.1.2 The Approximation Scheme 560
7.6.1.3 Post-Newtonian Versus Post-Minkowski Calculations of Time Delay in Binary Systems 565
7.6.1.4 Time Delay in the Parameterized Post-Keplerian Formalism 567
7.6.2 Moving Gravitational Lenses 572
7.6.2.1 Gravitational Lens Equation 572
7.6.2.2 Gravitational Shift of Frequency by Moving Bodies 580
7.7 Relativistic Astrometry in the Solar System 584
7.7.1 Near-Zone and Far-Zone Astrometry 584
7.7.2 Pulsar Timing 590
7.7.3 Very Long Baseline Interferometry 593
7.7.4 Relativistic Space Astrometry 600
7.8 Doppler Tracking of Interplanetary Spacecrafts 604
7.8.1 Definition and Calculation of the Doppler Shift 607
7.8.2 The Null Cone Partial Derivatives 609
7.8.3 Doppler Effect in Spacecraft-Planetary Conjunctions 611
7.8.4 The Doppler Effect Revisited 613
7.8.5 The Explicit Doppler Tracking Formula 617
7.9 Astrometric Experiments with the Solar System Planets 619
7.9.1 Motivations 619
7.9.2 The Unperturbed Light-Ray Trajectory 624
7.9.3 The Gravitational Field 626
Contents

7.9.3.1 The Field Equations 626
7.9.3.2 The Planet's Gravitational Multipoles 628
7.9.4 The Light-Ray Gravitational Perturbations 631
7.9.4.1 The Light-Ray Propagation Equation 631
7.9.4.2 The Null Cone Integration Technique 632
7.9.4.3 The Speed of Gravity, Causality, and the Principle of Equivalence 636
7.9.5 Light-Ray Deflection Patterns 640
7.9.5.1 The Deflection Angle 640
7.9.5.2 Snapshot Patterns 642
7.9.5.3 Dynamic Patterns of the Light Deflection 646
7.9.6 Testing Relativity and Reference Frames 650
7.9.6.1 The Monopolar Deflection 652
7.9.6.2 The Dipolar Deflection 653
7.9.6.3 The Quadrupolar Deflection 655
References 656

8 Relativistic Geodesy 671
8.1 Introduction 671
8.2 Basic Equations 676
8.3 Geocentric Reference Frame 681
8.4 Topocentric Reference Frame 684
8.5 Relationship Between the Geocentric and Topocentric Frames 687
8.6 Post-Newtonian Gravimetry 689
8.7 Post-Newtonian Gradiometry 694
8.8 Relativistic Geoid 703
8.8.1 Definition of a Geoid in the Post-Newtonian Gravity 703
8.8.2 Post-Newtonian u-Geoid 704
8.8.3 Post-Newtonian a-Geoid 705
8.8.4 Post-Newtonian Level Surface 706
8.8.5 Post-Newtonian Clairaut's Equation 707
References 709

9 Relativity in IAU Resolutions 715
9.1 Introduction 715
9.1.1 Overview of the Resolutions 716
9.1.2 About this Chapter 718
9.1.3 Other Resources 719
9.2 Relativity 720
9.2.1 Background 720
9.2.2 The BCRS and the GCRS 722
9.2.3 Computing Observables 724
9.2.4 Other Considerations 727
9.3 Time Scales 728
9.3.1 Different Flavors of Time 729
9.3.2 Time Scales Based on the SI Second 730
9.3.3 Time Scales Based on the Rotation of the Earth 733
Contents

9.3.4 Coordinated Universal Time (UTC) 735
9.3.5 To Leap or not to Leap 735
9.3.6 Formulas 737
9.3.6.1 Formulas for Time Scales Based on the SI Second 737
9.3.6.2 Formulas for Time Scales Based on the Rotation of the Earth 740
9.4 The Fundamental Celestial Reference System 743
9.4.1 The ICRS, ICRF, and the HCRF 744
9.4.2 Background: Reference Systems and Reference Frames 746
9.4.3 The Effect of Catalogue Errors on Reference Frames 748
9.4.4 Late Twentieth Century Developments 750
9.4.5 ICRS Implementation 752
9.4.5.1 The Defining Extragalactic Frame 752
9.4.5.2 The Frame at Optical Wavelengths 753
9.4.6 Standard Algorithms 753
9.4.7 Relationship to Other Systems 754
9.4.8 Data in the ICRS 755
9.4.9 Formulas 757
9.5 Ephemerides of the Major Solar System Bodies 758
9.5.1 The JPL Ephemerides 759
9.5.2 DE405 760
9.5.3 Recent Ephemeris Development 761
9.5.4 Sizes, Shapes, and Rotational Data 762
9.6 Precession and Nutation 763
9.6.1 Aspects of Earth Rotation 764
9.6.2 Which Pole? 765
9.6.3 The New Models 768
9.6.4 Formulas 771
9.6.5 Formulas for Precession 774
9.6.6 Formulas for Nutation 778
9.6.7 Alternative Combined Transformation 781
9.6.8 Observational Corrections to Precession-Nutation 782
9.6.9 Sample Nutation Terms 783
9.7 Modeling the Earth’s Rotation 786
9.7.1 A Messy Business 786
9.7.2 Nonrotating Origins 788
9.7.3 The Path of the CIO on the Sky 790
9.7.4 Transforming Vectors Between Reference Systems 791
9.7.5 Formulas 794
9.7.5.1 Location of Cardinal Points 795
9.7.5.2 CIO Location Relative to the Equinox 795
9.7.5.3 CIO Location from Numerical Integration 797
9.7.5.4 CIO Location from the Arc-Difference 798
9.7.5.5 Geodetic Position Vectors and Polar Motion 799
9.7.5.6 Complete Terrestrial to Celestial Transformation 801
9.7.5.7 Hour Angle 802
References 805