Index

Note: Italicized ‘s and ‘t refer to figures and tables.

ABCA1 transport protein, 200–201
ABCG5 transport protein, 200–201
ABCG8 transport protein, 200–201

COPYRIGHTED MATERIAL
atherosclerosis, 103–4, 164–5
chronic kidney disease and, 185–6
development of, 202–4
advanced lesions and plaque disruption, 203–4
endothelial dysfunction, 202–3
foam cell formation, 203
macrophages, 203
monocyte recruitment, 203
T cell recruitment and activation, 205
atherosclerotic lesions, 221–3
atorvastatin, 240–42
ATP-binding cassette transporters, 200–201
bariatric surgery, 61
cancer and, 75
economic costs of, 73
effect on mortality, 74–5
myocardial infarction and, 75
stroke and, 75
basal energy expenditure (BEE), 4, 7
basal metabolic rate, 4–5
beta-cell function, 35–6
Bezafibrate Infarction Prevention (BIP) study, 243
biotin, 414–15
blood glucose, 143–4
blood pressure, 50
alcohol consumption and, 321–3
effects of beverage types, 322–3
effects of heavy consumption, 321–2
short-term effects, 322
clinical trials, 326–8
observational studies, 326–8
calcium intake and, 279
bone diseases, 62
c825t polymorphism, 287
caffeine
blood pressure and, 326–8
clinical trials, 326–8
observational studies, 326–8
stroke and, 328–9
calcium, 279–80
blood pressure and intake of, 279
intake of, 20
cellular turnover, 407–8
cardiovascular disease
homocysteine and, 403–8
epidemiologic studies, 403–4
intervention studies with lipid-lowering agents, 406–8
intervention studies with vitamins, 404–6
prospective studies, 404
retrospective studies, 403–4
cardiovascular disease (CVD)
alcohol consumption and, 368–9
blood pressure and, 444
cell-cell interactions in, 379–80
cholesterol and, 444–5
sympathetic nervous system and, 328
weight loss and, 106–9
calorie restriction, 85–6, 417–19, 425–8
cancer, 44
effects of bariatric surgery on, 75
nutrition and, 81–3
weight loss and, 61–2
carbohydrates
body mass index and, 107–8
classification, 105–6
calorie restriction, 85–6, 417–19, 425–8
nutrition and, 81–3
weight loss and, 61–2
sympathetic nervous system and, 328
weight loss and, 106–9
body fat distribution, 258
body mass index (BMI), 14–15, 16
dietary carbohydrates and, 107–8
body-mass index (BMI)
in children, 24–6
normal values, 24
bone diseases, 62
bmi, 24, 46
chronic kidney disease and, 185–6
development of, 202–4
endothelial dysfunction, 202–3
foam cell formation, 203
macrophages, 203
monocyte recruitment, 203
T cell recruitment and activation, 205
atherosclerotic lesions, 221–3
atrovastatin, 240–42
ATP-binding cassette transporters, 200–201
bariatric surgery, 61
cancer and, 75
economic costs of, 73
effect on mortality, 74–5
myocardial infarction and, 75
stroke and, 75
basal energy expenditure (BEE), 4, 7
basal metabolic rate, 4–5
beta-cell function, 35–6
Bezafibrate Infarction Prevention (BIP) study, 243
biotin, 414–15
blood glucose, 143–4
blood pressure, 50
alcohol consumption and, 321–3
effects of beverage types, 322–3
effects of heavy consumption, 321–2
short-term effects, 322
clinical trials, 326–8
observational studies, 326–8
calcium intake and, 279
calcium, 279–80
blood pressure and intake of, 279
intake of, 20
cellular turnover, 407–8
cardiovascular disease
homocysteine and, 403–8
epidemiologic studies, 403–4
intervention studies with lipid-lowering agents, 406–8
intervention studies with vitamins, 404–6
prospective studies, 404
retrospective studies, 403–4
cardiovascular disease (CVD)
alcohol consumption and, 368–9
blood pressure and, 444
cell-cell interactions in, 379–80
cholesterol and, 444–5
dyslipidemia and, 192
gene-environment interactions, 389–90
high-density lipoprotein and, 160–62
high-density lipoprotein as therapeutic target for, 164–5
micronutrients and, 170–73
nutrition and, 78–81
anticongestive agents, 80–81
electrolytes, 81
fats, 78–9
fibers, 79
folic acid, 80
fruits, 79
olive oil, 79, 171–2
blood pressure, 50
alcohol consumption and, 321–3
effect of beverage types, 322–3
effects of heavy consumption, 321–2
effects of light to moderate consumption, 322
short-term effects, 322
clinical trials, 326–8
observational studies, 326–8
calcium intake and, 279
blood pressure and intake of, 279
intake of, 20
potassium intake and, 294–5
salt intake and, 273–8
studies, 307–19
Chicago Western Electric Study, 311
DASH diet, 317–19
DASH-Sodium Feeding Trial, 318
INTERMAE, 311–17
INTERSALT studies, 307–10
Multiple Risk Factor Intervention Trial, 311
OMNIBHEART trial, 317–19
Primary Prevention of Hypertension Trial, 317
Treatment of Mild Hypertension Study, 317
supplementation in pregnancy and preeclampsia, 279–80
weight loss and, 268
body fat distribution, 258
body mass index (BMI), 14–15, 16
dietary carbohydrates and, 107–8
body-mass index (BMI)
in children, 24–6
normal values, 24
bone diseases, 62
C825T polymorphism, 287
caffeine
blood pressure and, 326–8
clinical trials, 326–8
observational studies, 326–8
stroke and, 328–9
calcium, 279–80
blood pressure and intake of, 279
intake of, 20
cellular turnover, 407–8
cardiovascular disease
homocysteine and, 403–8
epidemiologic studies, 403–4
intervention studies with lipid-lowering agents, 406–8
intervention studies with vitamins, 404–6
prospective studies, 404
retrospective studies, 403–4
cardiovascular disease (CVD)
alcohol consumption and, 368–9
blood pressure and, 444
cell-cell interactions in, 379–80
cholesterol and, 444–5
dyslipidemia and, 192
gene-environment interactions, 389–90
high-density lipoprotein and, 160–62
high-density lipoprotein as therapeutic target for, 164–5
micronutrients and, 170–73
nutrition and, 78–81
anticongestive agents, 80–81
electrolytes, 81
fats, 78–9
fibers, 79
folic acid, 80
fruits, 79
olive oil, 79, 171–2
basal energy expenditure (BEE), 4, 7
basal metabolic rate, 4–5
beta-cell function, 35–6
Bezafibrate Infarction Prevention (BIP) study, 243
biotin, 414–15
blood glucose, 143–4
blood pressure, 50
alcohol consumption and, 321–3
effects of beverage types, 322–3
effects of heavy consumption, 321–2
effects of light to moderate consumption, 322
short-term effects, 322
clinical trials, 326–8
observational studies, 326–8
calcium intake and, 279
calcium, 279–80
blood pressure and intake of, 279
intake of, 20
cellular turnover, 407–8
cardiovascular disease
homocysteine and, 403–8
epidemiologic studies, 403–4
intervention studies with lipid-lowering agents, 406–8
intervention studies with vitamins, 404–6
prospective studies, 404
retrospective studies, 403–4
cardiovascular disease (CVD)
alcohol consumption and, 368–9
blood pressure and, 444
cell-cell interactions in, 379–80
cholesterol and, 444–5
dyslipidemia and, 192
gene-environment interactions, 389–90
high-density lipoprotein and, 160–62
high-density lipoprotein as therapeutic target for, 164–5
micronutrients and, 170–73
nutrition and, 78–81
anticongestive agents, 80–81
electrolytes, 81
fats, 78–9
fibers, 79
folic acid, 80
fruits, 79
olive oil, 79, 171–2

454 Index

cardiovascular disease (cont.)
 omega-3 fatty acids, 80
 phenolic compounds, 171
 phytosterols, 79
 soy, 79
 tomato, 172–3
 vitamin B6, 80
 olive oil and, 372–4
 omega-3 fatty acids and, 168–9
 physical activity and, 124–8
 phytosterols as biomarkers for, 226–7
 protrombotic state, 92
 salt intake and, 273–5
 smoking and, 445
 sodium intake and, 291–2
 subclinical hypothyroidism as risk factor for, 192–3
 wine and, 369–70
 carnitine, 413
 CD40, 378
 CD40 ligand, 378
 cell–cell interactions in cardiovascular disease (CVD), 379–80
 dietary polyphenols and, 380–86
 intervention studies, 381–3
 studies in experimental in vivo models, 381
 studies in humans, 381
 studies in vitro, 381, 386
 modulation of, 380
 in thrombosis
 adhesive proteins, 378, 379
 leukocyte rolling on endothelial cells, 376–7
 platelet adhesion to endothelial cells in, 376–7
 P-selectin - β2 integrin cross-talk, 377–8
 soluble adhesive molecules, 378, 379
 cereals, 112–17
 consumption, 112
 dietary fiber, 113
 fermentation products, 114–15
 food structure, 113–14
 insulin responses to, 112
 intervention studies, 116–17
 phenolic compounds in, 115–16
 "rye factor", 114
 cerebrovascular disease, cognitive impairments in, 436
 Chicago Western Electric Study, 311
 childhood obesity
 body mass index, 24–6
 ectopic fat deposition in, 36–8
 impaired glucose tolerance in, 35
 inflammation and, 40–41
 insulin resistance in, 36–8
 prevalence of, 34
 children
 atherosclerosis in, 219–21
 early atherosclerotic lesions in, 221–3
 familial hypercholesterolemia in, 211–18
 clinical diagnosis, 211–14
 therapeutic aspects, 214–18
 cholelithiasis, 46
 cholesterol, 444–5
 Cholesterol and Recurrent Events (CARE), 239
 cholesterol-7-alpha-hydroxylase (CYP7A1), 200
 Cholesterol-Lowering Atherosclerosis Study, 245
 cholesterol ester transfer protein (CETP), 161, 260, 423
 chromosome 1 linkage, 164
 chronic diseases, 449
 chronic kidney disease (CKD), 183–9, 345–52
 atherosclerosis and, 185–6
 biochemistry, 184
 cardiovascular prevention in, 187–8
 dyslipidemia in, 183–9
 evolution of, 186–7
 hypertensive nephropathy as cause of, 347–8
 inflammation and, 349–51
 adipokines, 349–51
 cytokines, 349–50
 glomerular hypertrophy, 351
 lipids and kidney damage, 349–50
 renal hemodynamic factors, 351
 renin-angiotensin-aldosterone system, 351–2
 lipoprotein(a) in, 184
 metabolic syndrome and, 346–7
 obesity and, 346
 prevalence of, 183, 343
 prevention and treatment of, 352
 serum cholesterol in, 184–5
 chylomicronemia, 157
 coagulation, 388
 abnormalities of, 402–3
 coagulation factor VII, 373
 Collaborative Atorvastatin Diabetes Study (CARDS), 241–2
 compensatory obesity, 28–30
 Continuum Action on Salt and Health (CASH), 336
 Coronary Drug Project, 245
 coronary heart disease (CHD)
 ω-3 polyunsaturated fatty acids for, 395–8
 dietary potassium and, 295–6
 risk factors, 388
 C-reactive protein, 61, 207–8
 cyclic adenosine monophosphate (cAMP), 287
 Cynara cardunculus, 173–4
 cytochrome P450, 287
 cytokines, 349–50
 DAHD diet, 277, 317–19, 381–3
 DASH-Sodium Feeding Trial, 138
 dementia, 429–35
 alcohol consumption and, 432–3
 antihypertensive treatments and, 437–8
 antioxidants and, 432
 diabetes and, 440–41
 dietary fats and, 438–39
 dietary glucose and, 433–4
 estrogen and, 441–2
 hypercholesterolemia and, 438
 hyperhomocysteinemia and, 439–40
hypertension and, 437
lifestyle and, 441
macronutrients and, 430–34
metabolic syndrome and, 440
micronutrients and, 430–34
obesity and, 441
overview, 429–30
plasma insulin and, 433–4
stroke prevention, 441
treatments and, 441
vitamin B and, 431–2
vitamins and, 432
vitamins supplementation and, 440

demographic transition, 448
diabetes, 59
bariatric surgery for, 61
dementia and, 440–41
functional foods for, 144–6
lifestyle as risk factor for, 142–3
metabolic syndrome as predictor of, 93
physical activity in prevention of, 132–3
physical exercise in treatment of, 134–5
aerobic exercise, 134
combined aerobic and resistance training, 135
resistance training, 134
sympathetic nervous system and, 298–9
weight-loss medications for, 59–61

Diabetes Atherosclerosis Intervention Study (DAIS), 244
Diabetes Mellitus
beta-cell function in, 35–6
in childhood obesity, 35
functional foods for, 144–6
lifestyle as risk factor for, 142–3
metabolic syndrome and, 44
physical activity in prevention of, 132–3
physical exercise in treatment of, 134–5
aerobic exercise, 134
combined aerobic and resistance training, 135
resistance training, 134
sympathetic nervous system and, 298–9
weight-loss medications for, 59–61
Diabetes Mellitus Atherosclerotic Intervention Study (DAIS), 244
Diabetes mellitus
beta-cell function in, 35–6
in childhood obesity, 35
functional foods for, 144–6
lifestyle as risk factor for, 142–3
metabolic syndrome and, 44
physical activity in prevention of, 132–3
physical exercise in treatment of, 134–5
aerobic exercise, 134
combined aerobic and resistance training, 135
resistance training, 134
sympathetic nervous system and, 298–9
weight-loss medications for, 59–61
456 Index

exogenous lipoprotein pathway, 195
expenditure due to physical activity (EEPA), 5–6
extracellular matrix (ECM) proteins, 219–20
extracellular signal-regulated kinases (ERKs), 417
factor VII, 373
Familial Atherosclerosis Treatment Study, 245
familial combined hyperlipidemia (FCHL), 153–7
diagnostic criteria for, 154–5
genetics, 153–4
management, diet, 156
management, drugs, 156
pathophysiology of, 153
type III hyperlipoproteinemia, 156–7
familial hyperlipidemia, 149–57
familial combined hyperlipidemia (FCHL), 153–7
definition of, 153
diagnostic criteria for, 154–5
genetics, 153–4
management, diet, 156
management, drugs, 156
pathophysiology of, 153
type III hyperlipoproteinemia, 156–7
familial combined hyperlipidemia (FCHL), 153–7
definition of, 153
diagnostic criteria for, 154–5
genetics, 153–4
management, diet, 156
management, drugs, 156
pathophysiology of, 153
type III hyperlipoproteinemia, 156–7
familial dyslipidemias, 149–57
familial combined hyperlipidemia (FCHL), 153–7
definition of, 153
diagnostic criteria for, 154–5
genetics, 153–4
management, diet, 156
management, drugs, 156
pathophysiology of, 153
type III hyperlipoproteinemia, 156–7
familial hypercholesterolemia (FH), 149–53
in children, 211–18
clinical diagnosis, 211–14
therapeutic aspects, 214–18
clinical features, 150–52
definition of, 149
genetics, 150
interventions for, 152–3
management of, 152
pathophysiology of, 149–50
familial hypertriglyceridemia, 157
familial hypercholesterolemia (FH), 149–53
in children, 211–18
clinical diagnosis, 211–14
therapeutic aspects, 214–18
clinical features, 150–52
definition of, 149
genetics, 150
interventions for, 152–3
management of, 152
pathophysiology of, 149–50
familial hypertriglyceridemia, 157
familial hypercholesterolemia (FH), 149–53
in children, 211–18
clinical diagnosis, 211–14
therapeutic aspects, 214–18
clinical features, 150–52
definition of, 149
genetics, 150
interventions for, 152–3
management of, 152
pathophysiology of, 149–50
familial hypertriglyceridemia, 157
familial hypercholesterolemia (FH), 149–53
in children, 211–18
clinical diagnosis, 211–14
therapeutic aspects, 214–18
clinical features, 150–52
definition of, 149
genetics, 150
interventions for, 152–3
management of, 152
pathophysiology of, 149–50
familial hypertriglyceridemia, 157
fat free food, 451
fatty insulin, elevated, 91
fatty liver, dietary, 79–80
fatty acids, 116–7
fatty acids (FFAs), 349–50
fats, dietary, 78–9, 166–7
dementia and, 430–31
sympathetic nervous system and, 302
fenofibrate, 244
fenofoibrate Intervention and Event Lowering in Diabetes (FIELD) study, 244
fibers, 79, 335
fibrolysis, 374, 402–3
first law of thermodynamics, 3
fisch, omega-3 fatty acids in, 168–9
fish eye disease (FED), 200
flow mediated dilation (FMD), 231
foam cell formation, 205
foam, 96
fossil energy, 3–4
fossil security, 452–3
fracture, frequency of, 71
free fatty acids (FFAs), 249–50
French paradox, 369
fruit and vegetable intake, 332–6
antioxidants, 336
fibers, 335
hypertension and, 332–3
phytochemicals, 336
potassium, 334–5
stroke and, 332–3
obesity, 332–3
risk of stroke, 333–4
serum cholesterol, 332
functional foods, 138–46
blood glucose levels and, 143–4
body fat deposition and, 140–41
for diabetes, 144–6
energy expenditure and, 142
energy intake and, 141–2
cumulative, 141
for obesity, 140
substantiation of claims, 138–40
gene-diet interactions. See also diet and dietary patterns
apolipoprotein E, 13–14
environment as modulator, 13–14
alcohol consumption, 14
dietary intake, 13–14
physical activity, 14
smoking, 14
obesity as modulating phenotype, 14–15
overview, 12–13
genetic markers, 390
Gosi Prevention trial, 396–8
Godelman’s syndrome, 283
glutaraldehyde, 449, 452–3
glomerular hypertension, 351
glucocorticoid-removable aldosteronism, 283
glucose
cognition and, 433–4
elevated, 91–2
glycemic control, 22–3
glycemic index, 136–7, 144–5
glycemic load, 107, 144–5
G-protein betas-3, 161
Greek Atherosclerosis and Coronary Heart Disease Evaluation (GREAACE), 240
HDL Atherosclerosis Treatment Study (HATS), 245
health, 125
health policy, 452–3
health-related quality of life (HRQL), effects of weight loss on, 72
heart disease, weight loss and, 56–9
Heart Protection Study, 239–40
Helsinki Heart Study, 243
hemoglobin, 230
hemostasis, 373–4
hepatic lipase, 16
hepatic steatosis, 200
high-density lipoprotein cholesterol (HDL-C), 39–40, 78–9, 203–6, 243–6
high-density lipoprotein (HDL), 159–65, 199
 cardiovascular disease and, 160–62
 genetic disorders, 162–3
 metabolism, 159–60, 161
 reverse cholesterol transport, 161–3
 structure, 159
 as therapeutic target for cardiovascular disease, 164–5
homocysteine, 400–408
 cardiovascular disease and, 403–8
 epidemiologic studies, 403–4
 intervention studies with lipid-lowering agents, 406–8
 intervention studies with vitamins, 404–6
 prospective studies, 404
 retrospective studies, 403–4
 dementia and, 419–40
 thrombogenic mechanism of, 401–3
 abnormalities of coagulation/fibrinolysis, 402–3
 abnormalities of platelet/endothelial cells, 401–2
 vascular cognitive impairments and, 439–40
 homocysteine thiolactone (HTL), 401
3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase, 199
hyperaldosteronism, familial, 283
hyper-alphalipoproteinemias, familial, 162–3
hypercholesterolemia, 149–53
 in children, 211–18
 clinical diagnosis, 211–14
 therapeutic aspects, 214–18
 clinical features, 150–52
 definition of, 149
 dementia and, 438
 genetics, 150
 interventions for, 152–3
 management, diet, 155–6
 management, drugs, 156
 pathophysiology of, 149–50
 studies on treatment of, 238–43
hyperhomocysteinemia, 439–40
hyperinsulinemia, sympathetic nervous system and, 298–9
hyperlipidemias, 247–54
 cardiovascular disease prevention and, 252–3
 case finding, 249
 familial combined, 153–7
 diagnostic criteria for, 154–5
 genetics, 153–4
 inflammation and, 154–5
 management, diet, 155–6
 management, drugs, 156
 pathophysiology of, 153
 type III hyperlipoproteinemia, 156–7
 lipid levels, 251–2
 management of, 249
 medical education, 253
 medications, 250
 risk estimation, 250
 risk reduction, 253
 therapeutic goals, 250
 treatment of, 247–54
algorithms, 250–51
 clinical judgment, 250–51
 guidelines, 250–51
 history, 248
 inadequate response, 249
 patient profile, 248
 side effects of lipid-active drugs, 248
 hyperlipoproteinemia (HLP), 156–7
 hypertension, 257–64
 classification of, 330–31
 dementia and, 437
 fruit/vegetable consumption and, 333
 weight gain, 257
 weight loss, 257
 prevalence of, 330
 stroke and, 330
 weight loss and, 58–9
 hypertensive nephropathy, 347–8
 hypertriglyceridemia, 243–4
 hypertriglyceridemia, familial, 157
 hypo-alphalipoproteinemias, familial, 162
 immunoglobulins, 379
 impaired glucose tolerance (IGT), prevalence of, 34, 36
 incomes, 451
 inflammation, 40–41, 388
 biomarkers, 206
 chronic kidney disease and, 349–51
 adipokines, 350–3
 cytokines, 349–50
 glomerular hypertensation, 351
 lipids and kidney damage, 349–50
 renal hemodynamic factors, 351
 renin-angiotensin-aldosterone system, 351–2
 in hypertension, 348–9
 in obesity, 348–9
 in overweight, 348–9
 inflammatory markers, 61
 insulin resistance, 36–8, 89, 91
 cognition and, 433–4
 sympathetic nervous system and, 298–9
 interleukin-1, 209–10
 interleukin-6, 101, 209
Index

INTERMAP, 311–17, 354
international trade policy, 452–3
INTERSALT studies, 354
phase 1, 309–10
phase 2, 307–9
intestinal absorption, 20
intestinal fatty acid-binding protein (IFABP), 198
intima-media thickening (IMT), 221–3
intramyocellular lipid (IMCL), 38
intrauterine life, 21
iron, 414
joint diseases, 62
joint disorders, effects of weight loss on, 71
joule, 3
JUPITER study, 243
kilocalories, 3
knowledge-based work, 22
L-arginine, 235–7
LCAT deficiency, familial, 162
left ventricular hypertrophy (LVH), 51–3
leptin, 98–9
leukocytes, 376–7
Liddle’s syndrome, 282–3
life expectancy, 43–4
chronic diseases and, 449
demographic transition, 448
demographic and, 449
health policy and, 452–3
nutrition transition, 449–52
life expectancy of, 43–4
Liddell’s syndrome, 282–3
life expectancy, 43–4
chronic diseases and, 449
demographic transition, 448
demographic and, 449
health policy and, 452–3
nutrition transition, 449–52
child health, 431
income and diet structure, 431
malnutrition to overnutrition, 451–2
stages in, 431–2
leptin, 98–9
lifestyle
dementia and, 441
effects of weight loss on, 72
as risk factor for type 2 diabetes, 142–3
lipid clinic, 247–54
cardiovascular disease prevention and, 252–3
case finding, 249
clinical judgment, 250–51
guidelines, 250–51
history, 248
inadequate response to treatment, 249
lipid levels, 251–2
management of hyperlipidemias, 249
medical education, 255
modifications, 250
patient profile, 248
risk estimation, 250
risk reduction, 253
side effects of lipid-active drugs, 248
therapeutic goals, 250
treatment algorithms, 250–51
lipid deposition, 36–8
LIPID study, 239
lipid-lowering drugs, 406–8
lipoprotein lipase, 198
lipoprotein(a), 184
lipoprotein-associated phospholipase A_2 (Lp-PLA_2), 208
lipoproteins, 39–40
metabolism, 198
longevity, 85–6
lipoprotein-related candidate genes and, 422–3
low-density lipoprotein cholesterol (LDL-C), 39–40, 78–9, 204–5, 227–8
low-density lipoprotein (LDL), 198
low-density lipoprotein receptor (LDLR), 198–9
macrophages, 416–17
macronutrients, 415–16, 430–34
macrophages, 203
magnesium, 280–81, 414.
See also salt intake
blood pressure and intake of, 280–81
cardiovascular risk and, 281
in drinking water, 281
effect of supplementation on blood pressure, 281
malnutrition, 451–2
matrix metalloproteinases (MMPs), 388
Mediterranean diet (MD), 77–8, 339–41
benefits of, 121
epidemiologic aspects, 119–20
intervention studies, 120–21
preventing arterial thrombosis with, 367–8
megavole, 5
metabolic equivalents (MEFs), 5–6
metabolic syndrome, 89–94
cardiovascular damage in, 54–5
chronic kidney disease and, 346–7
components of, 90–92
atherogenic dyslipidemia, 90
elevated fasting insulin, 91
elevated glucose, 91–2
hypertension, 91
obesity, 90
promflammatory state, 92
prothrombotic state, 92
definition of, 90
dementia and, 440
diabetes and, 440
diabetes mellitus and, 44
diabetes, 280–81
as predictor of CVD, 93
as predictor of diabetes, 95

458

458

458
ind

to Com e

t to Come
obesity (cont.)
- inflammation in, 348–9
- left ventricular anatomy in, 50–51
- left ventricular hypertrophy and, 51–3
- low protein intake and, 28–9
- micronutrient deficiencies and, 27–8
- as modulating phenotype, 14–15
- output of energy and, 20–21
- physical exercise in treatment of, 129–32
 - aerobic exercise, 130–32
 - resistance training, 132
- physical inactivity and, 29–30
- prevalence of, 26–7
- public health response to, 30–33
 - changing consumer behavior, 31–3
 - changing food supply, 31–3
 - focus on children, 31
 - health education, 30–31
 - promotion of physical activity, 31
- quality of life in, 47
- sympathetic nervous system and, 299–300
- systemic hemodynamics and, 49–50
- treatment of, 56–62
 - effects on morbidity, 58–61
 - effects on mortality, 56–8
 - intermediate risk factors, 58
- obstructive sleep apnea syndrome (OSAS), 45–6
- oldest old, 443–7
 - blood pressure, 444
 - cardiovascular risk factors in, 446–7
 - nutrition, 446
 - physical activity in, 446–7
 - reduction of risk factor levels, 446
 - smoking in, 445
- treatment of risk factors in, 445–6
- olive oil, 79, 171–2
 - cardiovascular disease and, 372–4
 - chronic inflammation and, 373
 - hemostasis and, 374
 - platelets and, 374
- obesity and, 14, 20–21
- prevention of obesity with, 129–30
- prevention of type 2 diabetes with, 132–3
- physical fitness, 125
- physical inactivity, 125
- phytochemicals, 336
 - as biomarkers
 - to identify cholesterol hyperabsorbers, 225–6
 - to predict CVD risk, 226–7
 - as food supplements to lower LDL-C, 227–8
 - metabolic syndrome and, 224–5
- plaques, 205–4
 - platelet paradox, 379
 - platelets, 373, 376–7
- polyunsaturated fatty acids, 393–9, 415–16
 - biochemistry and physiology of, 394–5
 - dementia and, 430–31
 - metabolism, 394–5
 - prevention of cardiovascular death, 398
 - prevention of coronary heart disease, 395–8
 - recommended intakes, 394
- potassium, 278–9
- pregnancy, 279–80
- pravastatin, 239, 241
- preeclampsia, 279–80
- pravastatin, 239, 241
- pregnancy, 279–80
- dietary carbohydrates and, 107
- inflammation in, 348–9
- peroxisome proliferator-activated receptor-α (PPAR-α), 161
- phenolic compounds, 115–16, 171
- physical activity, 3–6
 - definition of, 125
 - measures of, 123–6
 - obesity and, 14, 20–21
 - in oldest old, 446–7
 - prevention of obesity with, 129–30
 - prevention of type 2 diabetes with, 132–3
 - risks for cardiovascular diseases and, 124–8
 - physical activity level (PAL), 6–7
 - physical activity ratio (PAR), 3–6
- physical exercise, 132
 - definition of, 125
 - physiological mechanisms, 135–6, 136f
 - prevention/treatment of obesity with, 129–32
 - aerobic exercise, 130–32
 - resistance training, 132
 - treatment of metabolic syndrome with, 132–3
- physical fitness, 125
- physical inactivity, 125
- phytochemicals, 336
- platelet paradox, 379
- as biomarkers
 - to identify cholesterol hyperabsorbers, 225–6
 - to predict CVD risk, 226–7
- as food supplements to lower LDL-C, 227–8
- metabolic syndrome and, 224–5
- plaques, 205–4
- platelet paradox, 379
- platelets, 373, 376–7
- polyunsaturated fatty acids, 393–9, 415–16
 - biochemistry and physiology of, 394–5
 - dementia and, 430–31
 - metabolism, 394–5
 - prevention of cardiovascular death, 398
 - prevention of coronary heart disease, 395–8
 - recommended intakes, 394
- potassium, 278–9
- pregnancy, 279–80
- pravastatin, 239, 241
- preeclampsia, 279–80
- pravastatin, 239, 241
- pregnancy, 279–80
- dietary carbohydrates and, 107
- inflammation in, 348–9
- peroxisome proliferator-activated receptor-α (PPAR-α), 161
- phenolic compounds, 115–16, 171
- physical activity, 3–6
 - definition of, 125
 - measures of, 123–6
 - obesity and, 14, 20–21
 - in oldest old, 446–7
 - prevention of obesity with, 129–30
 - prevention of type 2 diabetes with, 132–3
 - risks for cardiovascular diseases and, 124–8
 - physical activity level (PAL), 6–7
 - physical activity ratio (PAR), 3–6
- physical exercise, 132
 - definition of, 125
 - physiological mechanisms, 135–6, 136f
 - prevention/treatment of obesity with, 129–32
 - aerobic exercise, 130–32
 - resistance training, 132
 - treatment of metabolic syndrome with, 132–3
- physical fitness, 125
- physical inactivity, 125
- phytochemicals, 336
- platelet paradox, 379
- as biomarkers
 - to identify cholesterol hyperabsorbers, 225–6
 - to predict CVD risk, 226–7
- as food supplements to lower LDL-C, 227–8
- metabolic syndrome and, 224–5
- plaques, 205–4
- platelet paradox, 379
- platelets, 373, 376–7
- polyunsaturated fatty acids, 393–9, 415–16
 - biochemistry and physiology of, 394–5
 - dementia and, 430–31
 - metabolism, 394–5
 - prevention of cardiovascular death, 398
 - prevention of coronary heart disease, 395–8
 - recommended intakes, 394
- potassium, 278–9
- pregnancy, 279–80
- pravastatin, 239, 241
- preeclampsia, 279–80
- pravastatin, 239, 241
- pregnancy, 279–80
Index

Primary Prevention of Hypertension Trial, 317
proinflammatory state, 92
protein intake, 28–9
proteins, 416
PROVE IT-TIMI 22 study, 241
P-selectin, 375–8
pulmonary dysfunction, 45–6
quantitative trait loci, 288–9
Recommended Dietary Allowance (RDA), 413
renal homodynamic factors, 351
renal sodium handling, 259–60
renin-angiotensin system, 283–4
renin-angiotensin-aldosterone system (RAAS), 260, 266–71, 351–2
adipocyte-derived AGT in blood pressure regulation, 267–8
adipose tissue, 266
angiotensin II effects on adipogenesis, 268–9
angiotensin II effects on adipokines, 270
angiotensin receptors, 269
AT1-receptor-mediated regulation of blood flow and lipolysis, 269–70
obesity and, 267
weight loss and, 268
resistance training. See also physical activity
vs. aerobic exercise, 132, 135
physiological mechanisms, 135–6, 136
in treatment of metabolic syndrome with, 132–3
in treatment of obesity, 132
in treatment of type 2 diabetes with, 134–5
resistin, 99–100
resting energy expenditure (REE), 20
resveratrol, 419–21
REVERSAL study, 242
reverse cholesterol transport, 161, 162–3, 199
sodium, 290–92
blood pressure and intake of, 290–91
cardiovascular disease and, 291–2
cardiovascular risk and, 290–91
stroke and, 293
sodium transport, 285–6
soy, 79
statins, 187–8, 439
sterol-regulator element-binding proteins (SREBPs), 349–50
stroke, 330
alcohol consumption and, 323–6
effect of beverage types, 325–6
hemorrhagic stroke, 324–5
ischemic stroke, 324
total stroke, 323–4
caffeine and, 328–9
classification of, 330–31
dietary potassium and, 296–7
dietary sodium and, 293
effects of bariatric surgery on, 75
fruit/vegetable consumption and, 332–3
France, 359
future perspectives, 360
Ireland, 359
labeling, 362
Netherlands, 359
United Kingdom, 356–8
United States, 359–60
sources of, 355
sympathetic nervous system and, 302
salt-sensitivity of blood pressure (BPSS), 282–9
definition of, 274
genetic variation in homeostasis, 283–7
candidate gene approach, 283
genes encoding for adducin, 284–5
genes encoding for renin-angiotensin system components, 283–4
genes in dopaminergic system, 286
genes in sodium transport, 285
polymorphism of nitric oxide synthase gene, 286
gene-wide scan, 286–9
monogenic hypertension and, 282–3
quantitative trait loci, 288–9
Scandinavian Simvastatin Survival Study, 238
scavenger receptor B type I, 200
sedentary behaviors, 21
sedentary lifestyle, 125
selectins, 379
serum amyloid A, 208–9
serum cholesterol, 184–5, 332
ubiquitin, 60–61
sodium, 290–92
smoking, 14, 445
smooth muscle cells (SMCs), 219–20
soy, 79
stains, 187–8, 439
sterol-regulator element-binding proteins (SREBPs), 349–50
stroke, 330
alcohol consumption and, 323–6
effect of beverage types, 325–6
hemorrhagic stroke, 324–5
ischemic stroke, 324
total stroke, 323–4
caffeine and, 328–9
classification of, 330–31
dietary potassium and, 296–7
dietary sodium and, 293
effects of bariatric surgery on, 75
fruits/vegetable consumption and, 332–3
obesity, 332–3
risk of stroke, 333–4
serum cholesterol in, 332
prevalence of, 330
vascular cognitive impairments and, 441
subclinical hypothyroidism, 191
as risk factor for cardiovascular disease, 192–3
screening for, 193–4
Swedish Obese Subjects (SOS) study, 63–76
aims of, 63–5
bariatric surgery, 73
baseline characteristics, 65, 66–7
biliary diseases in, 72
effects of weight loss on cardiovascular system, 68–71
on fracture frequency, 71
on health related quality of life, 72
on lifestyle, 72
on risk factors, 68
on sleep apnea, 71
follow-up rates, 66
reference study, 66
study design, 64–6
matching and intervention studies, 64–6
weight changes in, 67–8, 67
risks of subclinical hypothyroidism, 191
thyroid hormone (TH)
effect on lipids, 191–2
thyrotropin-releasing hormone (TRH), 190
thyrotropin-stimulating hormone (TSH), 190
as risk factor for cardiovascular disease, 192–3
treatment to New Targets (TNT) study, 241
stroke, cont.
thyroid hormone (TH)
effect on lipids, 191–2
as risk factor for cardiovascular disease, 192–3
thyrotropin-releasing hormone (TRH), 190
thyrotropin-stimulating hormone (TSH), 190
treatment to New Targets (TNT) study, 241
Thyroid Pulegioides, 173–4
thyroid gland, physiology of, 190
vegetables, 332–6
antioxidants, 336
fibers, 335
phytochemicals, 336
potassium, 334–5
vascular cognitive impairments, 436–42
antihypertensive treatments and, 435–8
definition of, 436
diabetes and, 440–41
oxygen and, 441–2
homocysteine and, 439–40
hypercholesterolemia and, 438
hypertension and, 437
lifestyle and, 441
metabolic syndrome and, 440
obesity and, 441
statins and, 439
stroke prevention, 441
treatments and, 443
vegetable diet, 121–3
vegetable and fruit intake, 332–3
alcohol intake, 332–3
antioxidants, 336
fiber, 335
phytochemicals, 336
potassium, 334–5
stroke and, 332–3
obesity, 332–3
risk of stroke, 333–4
serum cholesterol, 332
vegetarian diets, 121–3, 338–9
very low-density lipoproteins (VLDLs), 13, 159, 349–50
Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial (VA-HIT), 243–4
vitamin B, 431–2
vitamin B6, 80
vitamin C, 174
vitamin D, 414
vitamin E, 174, 432
vitamins, 404–6
dementia and, 432, 440
weight gain, 27–9
early programming of disease sensitivity to, 27–9
metabolic syndrome and, 27
nutritional determinants of, 29
obesity hypertension and, 257
physical activity determinants of, 29
weight loss, 56–62
benefits and risks of, 56–62
bone diseases and, 62
cancer and, 61–2
decrease in blood pressure, 268
dietary carbohydrates and, 108–9
effects on morbidity, 58–61
effects on mortality, 56–8
heart disease and, 58–9
hypertension and, 58–9
inflammatory markers, 61
intermediate risk factors, 58
joint diseases and, 62
medications, 59–61
obesity hypertension and, 257
 RAAS activity and, 268
West of Scotland Coronary Prevention Study (WOSCOPS), 239
wild plants, 173–4
wine
antiatherogenic properties, 372
antioxidant properties, 371
antithrombotic properties, 371–2
cardiovascular disease and, 568–70
World Action on Salt and Health (WASH), 359
zinc, 414–15