Index

Note: Page numbers in italics denote figures and page numbers in bold denote tables.

- absorption, distribution, metabolism, excretion (ADME) properties, 66, 68
- active agents combination, 117
- activity cliff, 66
- activity data, 68
- acute liver failure (ALF), 235
- acute viral hepatitis, 232
- adverse drug reaction (ADR), 5–7, 338
- adverse event (AE) see also recurrent adverse events classification, 294–5
- confidence/credible intervals binomial model (see binomial model, adverse events) coverage and interpretation, 126–7 metrics, 126
- Poisson model (see Poisson model, adverse events) DMC data review operations, 301 efficacy, 142
- frequency, graphical displays, 26–2, 28, 29, 30, 31, 32–4 hypothesis testing, 142
- incidence, exposure, report count, and maximum intensity, 123, 124–5
- multiplicity adjustments, 142
- potential toxicity risk, 123
- R functions, 151–77
- safety, 142
- SAS® macro, 123
- screening process critical odds ratio values, 149, 150
distributional model, 146–8 objectives, 142, 146
- parent distributions, 146
- posterior cdf of odds ratio, 149, 150
- posterior probability, 146
- specification of priors, 148, 148–9
- sequential probability ratio test, 323–5
treatment vs., 303
two-level random-effects model, 142
- Agresti–Caffo approach, 129
- alanine aminotransferase values, 37, 38
- Aldara®, 22, 23, 23
- amyloidosis, 234
- Andersen–Gill model, 185
- angiotensin converting enzyme inhibitors (ACEIs), 338
- assay sensitivity, 302–4, 304
- autoimmune hepatitis, 233
- Baptista–Pike exact conditional interval, 132
- Bayesian methods for masked/pooled analysis, 299–301
- pooled treatment groups, 307
- spontaneous reporting databases, 335–7

biliary tract disease, 234
binomial model, adverse events
binomial probability functions, 127
computational results
 Baptistia–Pike mid-
 p test, 137
Bayesian credible intervals, 133,
 136
conventional confidence
 intervals, 133, 134–5
coverage probabilities, 137, 138,
 139
score test, 137
likelihood of outcomes, 127
odds ratios
 Bayesian intervals, 133, 133
 conventional intervals, 132–3
risk ratio
 Bayesian intervals, 131, 131–2
 conventional intervals, 130
vs. risks
 Bayesian intervals, 129–30, 130
 conventional intervals, 128–9
bleeding analysis
 event chart, individuals, 189, 189–90
 grades, 188
Nelson–Aalen estimates, mean
 function, 190, 190
number of individuals, 188, 189
Centers for Disease Control and Prevention
 (CDC), 325
chemical descriptors, 67–8
chronic hepatitis, 232–3
ciBinomial function, 128, 130, 133
common terminology criteria for adverse
events (CTCAE), 294
competition bias, 339
confidence/credible intervals
 binomial model (see binomial model,
adverse events)
 coverage and interpretation, 126–7
 metrics, 126
Poisson model (see Poisson model,
adverse events)
Council for International Organizations of
Medical Sciences (CIOMS), 8
counting process, 187
Cox regression, 185
data monitoring committee (DMC), 296,
 301–12
dilution bias, 338–9
drug development
 adverse events vs. adverse drug
 reactions, 5–7
data measurement and
 interpretation, 2
discovery, 2
efficacy, 3–4
failures, 2
National Medical Product Safety
 Monitoring Strategy, 5
new molecular entities, 2
product withdrawals, 2
safety issues, 2
stages, safety evaluation, 4–5
drug-induced liver injury (DILI)
 clinical trial design, 243–5
 liver toxicology, 241–3
 pre-clinical toxicology, 240
EEGs see electroencephalograms (EEGs)
efficacy see also safety evaluation
ICH guidelines, 9–10
medical products, 3–4
electroencephalograms (EEGs)
 Alzheimer’s disease, 278
data reduction, 277
electrical activity of brain, 275
Hotelling's T^2 test, 279
mixed effect models, 279–81
muscle-induced artifacts, 282–6
pharmaco, 277
potential extensions, 285
quantitative information, 278
signal processing methods, 277
smooth localized complex exponential
 collection, 278
spatial smoothing, 281–2
electronic health record (EHR)
databases, 346
ethical basics, 85–6
European adverse drug reaction, 346
European Medicines Agency (EMA), 85
evaluation of drug-induced serious hepatotoxicity (eDISH), 253
events per person-years analysis, 184
exposure-adjusted incidence rate, 184
extra-Poisson variation, 188
fibrosis, 234–5
first-in-man trials objectives, 89
Food and Drug Administration (FDA)
drug safety, 2, 5, 8, 346
empirical Bayes method, 335–6
Gamma Poisson Shrinker (GPS), 350
granularity, 311
graphical displays
adverse event frequency, 26–7, 28, 29, 30, 31, 32–4
alanine aminotransferase values, 37, 38
Aldara®, 22, 23, 24
construction, 24, 26
functional/multidimensional data, 44–8
goals, 28
individual patient trends monitor, 53
multivariate outlier detection, 48–52
objectives, 22, 24
principles, 26, 28
product safety evaluation, 25–6
purposes, 25
R code, 54–60
regulatory guidance, 27
satisfaction, 25
single software platform, 25
temporal variation, vital sign and laboratory measurements, 36–44
timing, adverse events reports, 33–5
gsDesign package, 128, 130, 133
hepatotoxicity
acetaminophen toxicity, 265
clinical laboratory tests, 235–40
drug-induced liver injury, 240–45
Hy’s rule, 252–3
liver abnormalities, 240–41
liver biology and chemistry, 230–32
liver pathology, 232–5
pharmaceuticals use, 266
point-of-care technology, 265
reference limits, 245–7, 248–52
statistical distributions, 245–50
stochastic process models, 253–65
hereditary hemochromatosis, 233
hERG see human ether-à-go-go related gene (hERG)
Hotelling’s T^2 test, 279
human ether-à-go-go related gene (hERG) data, 77–81
pIC50 distribution, 75, 76
QSAR models, error rates, 76
Hy’s rule, 252–3
indication bias/prescription channeling, 338
inferential matters
contractual analysis, 86
serious side-effects analysis, 87
timing of events, 87
infoepidemiology, 356
infosurveillance, 356
International Conference on Harmonisation (ICH), 8–9
E14 guideline, 195
guidelines, 9–10
International sensitivity index (ISI), 239
Jeffreys CI confidence interval, 128
Kaplan–Meier analysis
estimation, 185
life table analysis, 305–6
lipid storage disease, 234
liver
biology and chemistry
 cellular level function, 231–2
 organ level function, 230–31
pathology
 acute liver failure, 235
 biliary tract disease, 234
 cirrhosis, 234–5
 end-stage disease, 234–5
liver (continued)

- fibrosis, 234–5
- infectious and inflammatory diseases, 232–3
- inherited and metabolic disorders, 233–4
- neoplastic and space occupying lesions, 233
- systemic disorders, 234
- terminology, 232

log-rank statistics, 185

Longitudinal Gamma Poisson Shrinker (LGPS), 350

Markov chain Monte Carlo (MCMC) software, 275

Medical Dictionary for Regulatory Activities (MedDRA), 294

model-based approaches, phase 1 trials, 104–8

multivariate outlier detection, 48–52

National Medical Product Safety Monitoring Strategy, 5

Nelson-Aalen estimates
- R function, 187
- statistical methods, 183
- transfusion trial, bleeding, 190, 190

neurotoxicity
- Bayesian methods, 274
- EEG (see electroencephalograms (EEGs))
- GLIMMIX procedure, 274
- hindlimb grip strength of rats, 275–7, 276, 277
- Markov chain Monte Carlo software, 275
- mathematical functions, 272
- mixed-effects version, 273
- NLMIXED procedure, 274
- nonlinear mixed effect models, 272
- OpenBUGS code, 287–8
- potential, 271
- screening experiments, 287
- time of peak effect, 273
- toxico-diffusion model, 273
- new molecular entities (NMEs), 2

non-alcoholic fatty liver disease (NAFLD), 233

non-monotonic toxicity, 108–10

non-Poisson processes, 188

observational databases
- case–control approach, 351–2
- disproportionality analysis, 347, 348, 349
- LGPS and LEOPARD, 350
- SCCS, 350–51
- self-controlled cohort, 352
- temporal association rules, 354–5
- temporal pattern discovery, 353–4
- vaccine safety, 355–6

observational medical outcomes partnership (OMOP), 346

OpenBUGS code, 275, 287–8

Ornstein–Uhlenbeck (OU) process model
- Brownian motion, 254
- conditional reference limits, 256
- data analysis, 258–63
- disease/reaction patterns, 253
- liver homeostasis, 257
- Markovian process, 255
- measurement variance, 257
- pathodynamics, 255
- reference limits, 263–5
- state-space modeling technique, 256
- stochastic differential equation, 254

pairwiseCI package, 129

pharmacovigilance
- observational databases, 347–56
- web-based, 356–7

phase 1 trials
- active agents combination, 117
- model-based approaches, 104–8
- non-monotonic toxicity, 108–10
- software calculations, 117, 118
- toxicity and efficacy, designs consideration, 110–16
- toxicity dose determination, 101–4

Poisson model, adverse events, 182, 183

computational results
conventional and Bayesian
confidence
intervals, 142, 143–4
coverage probabilities, 142, 145
vs. event rates ratio, 140–41
gamma conjugate priors, 140
maximum likelihood estimates, event
rate parameters, 140
porphyria, 233
program safety analysis plan (PSAP), 294
propCIs package, 128, 130
quantitative structure–activity relationship
(QSAR) models
activity cliff, 66
activity data, 68
chemical descriptors, 67–8
data example, 74–6
description, 66
hERG data, 77–81
model building
random forests, 69–70
stochastic gradient
boosting, 70–1
model validation and
interpretation, 71–4
R session transcript, 77–81
query log reaction score (QLRS), 357
recurrent adverse events
Andersen–Gill model, 185
bleeding analysis, transfusion trial
event chart, individuals, 189,189–90
grades, 188
Nelson–Aalen estimates, mean
function, 190, 190
number of individuals, 188, 189
computing and software
counting process, 187
data frame recurrent.dat, 186
extra-Poisson variation, 188
Nelson-Aalen estimate, 187
non-Poisson processes, 188
regression coefficient, 187
R function, 186
simulated data, 186, 187
S-PLUS function, 186
summary statement, 187–8
survival analysis software, 186
consistent variance estimator, 185
and death, 183–4
“events per person-years”
analysis, 184
fatal and non-fatal incidence, 181
Kaplan–Meier estimation, 185
log-rank statistics, 185
mortality rate, 183
multivariate test, treatment
effects, 184
null hypothesis testing, 185
proportional rate model, 185
randomization tests, 186
rate estimation, 184
regression models, 185
robust variance estimation, 185
severities, 180–81, 181, 185
statistical methods
censoring time, 182
covariance matrix, 183
instantaneous conditional
probability, 182
intensity function, 182
maximum likelihood
estimation, 182–3
Nelson-Aalen estimate, mean
function, 183
nonparametric analyses, 183
partial likelihood, 182
Poisson likelihood, 182, 183
randomization, 181
robust covariance matrix, 183
summary of, 184–5
tests, 190
times and counting process
relationship, 181, 181
times of events vs. counting
process, 181, 181
surveillance, data quality, 191
transfusion trial, bleeding
event chart, 189, 189
Nelson-Aalen estimates, mean
functions, 190, 190
number of individuals, 188, 189
INDEX

366

recurrent adverse events (continued)

WHO bleeding scale, 188
two-sample test statistics, 185
reference limits, 245–7, 248–52
risk–benefit evaluation process, 5–7, 6
riskscoreci function, 130
Roussel–Uclaf causality assessment method (RUCAM), 253
Royal Statistical Society (RSS) report, 94–5
working party, 85

safety evaluation
adverse events vs. adverse drug reactions, 5–7
elements of strategies for, 7
historical perspective on, 7–8
stages, 4–5
safety graphics see graphical displays
Safety Planning, Evaluation and Reporting Team (SPERT), 294
self-controlled case series (SCCS), 350–51
sequential generalized likelihood ratio tests
implementation, 327–8
multiparameter exponential families, 327, 328, 329
and stopping boundaries, 325–7
sequential probability ratio test (SPRT)
adverse events monitoring, 323–5
clinical trial example, 322–3, 324
for single-parameter exponential family, 321–2
Wald SPRT basics, 320
serum enzymes, 236–8
serum proteins, 237–9
single software platform (SAS®, 25 spherical harmonic functions (SPHARM), 281–2
spontaneous reporting databases
alternative approach, 342
Bayesian screening approach, 341
confounding and interactions, 341
data structure, 333–4
detection rule, 340
disproportionality methods, 334–7
issues and biases, 338–9
method comparisons, 339–40
two signals, 341
statistical analysis
adaptive designs, 312–13
(in)adequacy of, 89–90
biostatistical activities, 314
censoring time, 182
clinical trials, 313
distributions, 245–50
DMC view (partially/completely unmasked), 301–12
formal, 90
intensity function, 182
masked/pooled analysis, 297–301
maximum likelihood estimation, 182–3
multiplicity, 308–9
new technologies, 313
nonparametric analyses, 183
planning for, 294–7
randomization, 181
robust covariance matrix, 183
times and counting process relationship, 181, 181
stochastic differential equation (SDE), 254
stochastic gradient boosting, 70–71
subject safety design
contemporary dosing, 88–9
dosing interval, 88
survival analysis software, 186
TGN1412-HV
dose-escalation trial design
issues, 91–3
precision at interim stages, 93–4
treatment assignments and placebo role, 90–91
toxicity
dose determination, 101–4
and efficacy, designs consideration, 110–16
two-sample test statistics, 185
vaccine safety, 355–6
vaccine safety datalink (VSD), 325
Venetian treacle, 8

Wald SPRT basics, 320
web-based pharmacovigilance, 356–7

Wilson disease, 233
Wilson score confidence intervals, 128
World Health Organization (WHO)
 Bayesian approach, 336–7
 bleeding scale, 188
 safety database, 333