Contents

Contributors xv
Preface xix

1 The Physical Chemistry of Polyphenols: Insights into the Activity of Polyphenols in Humans at the Molecular Level 1
Olivier Dangles, Claire Dufour, Claire Tonnelé and Patrick Trouillas

1.1 Introduction 1
1.2 Molecular complexation of polyphenols 4
 1.2.1 Polyphenol–protein binding 4
 1.2.1.1 Interactions in the digestive tract 5
 1.2.1.2 Interactions beyond intestinal absorption 6
 1.2.2 Interactions with membranes 9
1.3 Polyphenols as electron donors 11
 1.3.1 The physicochemical bases of polyphenol–ROS electron transfer 12
 1.3.1.1 Thermodynamics descriptors 12
 1.3.1.2 Kinetics of hydrogen atom transfer 14
 1.3.1.3 Kinetics and mechanisms 15
 1.3.2 ROS scavenging by polyphenols in the gastrointestinal tract 20
1.4 Polyphenols as ligands for metal ions 21
 1.4.1 Interactions of polyphenols with iron and copper ions 22
 1.4.2 A preliminary theoretical study of iron–polyphenol binding 25
 1.4.2.1 Charge states, spin states, and geometries 25
 1.4.2.2 Oxidation of the bideprotonated catechol 26
1.5 Conclusions 27
References 28

2 Polyphenols in Bryophytes: Structures, Biological Activities, and Bio- and Total Syntheses 36
Yoshinori Asakawa

2.1 Introduction 36
2.2 Distribution of cyclic and acyclic bis-bibenzyls in Marchantiophyta (liverworts) 37
2.3 Biosynthesis of bis-bibenzyls 39
2.4 The structures of bis-bibenzyls and their total synthesis 50
2.5 Biological activity of bis-bibenzyls 58
2.6 Conclusions 60
Acknowledgments 61
References 61

3 Oxidation Mechanism of Polyphenols and Chemistry of Black Tea 67
Yosuke Matsuo and Takashi Tanaka

3.1 Introduction 67
3.2 Catechin oxidation and production of theaflavins 71
3.3 Theasinensins 73
3.4 Coupled oxidation mechanism 75
3.5 Bicyclo[3.2.1]octane intermediates 77
3.6 Structures of catechin oxidation products 78
3.7 Oligomeric oxidation products 82
3.8 Conclusions 84
Acknowledgments 85
References 85

4 A Proteomic-Based Quantitative Analysis of the Relationship Between Monolignol Biosynthetic Protein Abundance and Lignin Content Using Transgenic Populus trichocarpa 89
Jack P. Wang, Sermsawat Tunlaya-Anukit, Rui Shi, Ting-Feng Yeh, Ling Chuang, Fikret Isik, Chenmin Yang, Jie Liu, Quanzi Li, Philip L. Loziuk, Punith P. Naik, David C. Muddiman, Joel J. Ducoste, Cranos M. Williams, Ronald R. Sederoff and Vincent L. Chiang

4.1 Introduction 90
4.2 Results 94
4.2.1 Production of transgenic trees downregulated for genes in monolignol biosynthesis 94
4.2.2 Absolute quantification of protein abundance 95
4.2.3 Variation in protein abundance in wild-type and transgenic plants 96
4.2.4 Variation in lignin content 96
4.2.5 Relationship of lignin content and protein abundance 98
4.3 Discussion 101
4.4 Materials and methods 102
4.4.1 Production of transgenic trees 102
4.4.2 Proteomic analysis 103
5 Monolignol Biosynthesis and Regulation in Grasses

Peng Xu and Laigeng Li

5.1 Introduction 108
5.2 Unique cell walls in grasses 109
5.3 Lignin deposition in grasses 110
5.4 Monolignol biosynthesis in grasses 111
 5.4.1 Proposed pathway for monolignol biosynthesis 111
 5.4.2 Monolignol biosynthetic genes in grasses 112
 5.4.3 Functional genomics of monolignol biosynthesis in grass species 114
5.5 Regulation of monolignol biosynthesis in grasses 114
 5.5.1 Lignin regulation in secondary cell wall biosynthesis 114
 5.5.2 Repressor genes of monolignol biosynthesis in grasses 117
 5.5.3 Regulation of monolignol biosynthesis under stress 118
5.6 Remarks 119
Acknowledgments 119
References 120

6 Creation of Flower Color Mutants Using Ion Beams and a Comprehensive Analysis of Anthocyanin Composition and Genetic Background

Yoshihiro Hase

6.1 Introduction 127
6.2 Induction of flower color mutants by ion beams 129
6.3 Mutagenic effects and the molecular nature of the mutations 131
6.4 Comprehensive analyses of flower color, pigments, and associated genes in fragrant cyclamen 131
6.5 Mutagenesis and screening 133
 6.5.1 Yellow mutants 134
 6.5.2 Red–purple mutants 135
 6.5.3 White mutants 135
 6.5.4 Deeper color mutants 136
6.6 Genetic background and the obtained mutants 136
6.7 Carnations with peculiar glittering colors 137
6.8 Conclusions 139
Acknowledgments 140
References 140
7 Flavonols Regulate Plant Growth and Development through Regulation of Auxin Transport and Cellular Redox Status

Sheena R. Gayomba, Justin M. Watkins and Gloria K. Muday

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>143</td>
</tr>
<tr>
<td>7.2 The flavonoids and their biosynthetic pathway</td>
<td>144</td>
</tr>
<tr>
<td>7.3 Flavonoids affect root elongation and gravitropism through alteration of auxin transport</td>
<td>146</td>
</tr>
<tr>
<td>7.4 Mechanisms by which flavonols regulate IAA transport</td>
<td>149</td>
</tr>
<tr>
<td>7.5 Lateral root formation</td>
<td>151</td>
</tr>
<tr>
<td>7.6 Cotyledon, trichome, and root hair development</td>
<td>152</td>
</tr>
<tr>
<td>7.7 Inflorescence architecture</td>
<td>154</td>
</tr>
<tr>
<td>7.8 Fertility and pollen development</td>
<td>154</td>
</tr>
<tr>
<td>7.9 Flavonols modulate ROS signaling in guard cells to regulate stomatal aperture</td>
<td>155</td>
</tr>
<tr>
<td>7.10 Transcriptional machinery that controls synthesis of flavonoids</td>
<td>157</td>
</tr>
<tr>
<td>7.11 Hormonal controls of flavonoid synthesis</td>
<td>160</td>
</tr>
<tr>
<td>7.12 Flavonoid synthesis is regulated by light</td>
<td>161</td>
</tr>
<tr>
<td>7.13 Conclusions</td>
<td>162</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>162</td>
</tr>
<tr>
<td>References</td>
<td>163</td>
</tr>
</tbody>
</table>

8 Structure of Polyacetylated Anthocyanins and Their UV Protective Effect

Kumi Yoshida, Kin-ichi Oyama and Tadao Kondo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>171</td>
</tr>
<tr>
<td>8.2 Occurrence and structure of polyacetylated anthocyanins in blue flowers</td>
<td>173</td>
</tr>
<tr>
<td>8.2.1 Searching for polyacetylated anthocyanins</td>
<td>175</td>
</tr>
<tr>
<td>8.2.2 Isolation and structural determination of polyacetylated anthocyanins</td>
<td>176</td>
</tr>
<tr>
<td>8.2.2.1 Structural determination of phacelianin and tecophilin</td>
<td>177</td>
</tr>
<tr>
<td>8.3 Molecular associations of polyacetylated anthocyanins in blue flower petals</td>
<td>178</td>
</tr>
<tr>
<td>8.3.1 Intermolecular associations of anthocyanins</td>
<td>179</td>
</tr>
<tr>
<td>8.3.2 Intramolecular associations of anthocyanins</td>
<td>180</td>
</tr>
<tr>
<td>8.3.3 Coexistence of inter- and intramolecular associations involved in the blue coloration</td>
<td>182</td>
</tr>
</tbody>
</table>
8.4 UV protection of polyacylated anthocyanins from solar radiation 183
 8.4.1 E,Z-isomerization of cinnamoyl derivative residues in polyacylated anthocyanins 184
 8.4.2 UV protective effect of polyacylated anthocyanins 186
8.5 Conclusions 187
References 188

9 The Involvement of Anthocyanin-Rich Foods in Retinal Damage 193
Kenjirou Ogawa and Hideaki Hara

9.1 Introduction 193
9.2 Anthocyanin-rich foods for eye health 195
9.3 Experimental models to mimic eye diseases and the effect of anthocyanin-rich foods 196
 9.3.1 3-(4-Morpholinyl) sydnonimine hydrochloride (SIN-1)-induced and N-methyl-d-aspartate receptor (NMDA)-induced retinal ganglion cell damage models to mimic glaucoma in vitro and in vivo 196
 9.3.2 Vascular endothelial growth factor (VEGF)-induced angiogenesis models that mimic diabetic retinopathy in vitro and in vivo 198
 9.3.3 Light-induced retinal damage models to mimic AMD in vitro and in vivo 199
9.4 Conclusions 201
References 203

10 Prevention and Treatment of Diabetes Using Polyphenols via Activation of AMP-Activated Protein Kinase and Stimulation of Glucagon-like Peptide-1 Secretion 206
Takanori Tsuda

10.1 Introduction 206
10.2 Activation of AMPK and metabolic change 207
 10.2.1 Activation of AMPK 207
 10.2.2 Dietary factors that exert diabetes-preventing and -suppressing effects through the activation of AMPK 208
 10.2.2.1 Blueberry (bilberry) 209
 10.2.2.2 Black soybean 210
10.3 GLP-1 action and diabetes prevention/suppression 212
 10.3.1 GLP-1 action 212
 10.3.2 Dietary factors that promote GLP-1 secretion 213
10.3.2.1 Curcumin 214
10.3.2.2 Edible young leaves of sweet potato (culinary sweet potato leaves) 217
10.3.2.3 Delphinidin 3-rutinoside (D3R) 218
10.4 Future issues and prospects 220
References 222

11 Beneficial Vascular Responses to Proanthocyanidins: Critical Assessment of Plant-Based Test Materials and Insight into the Signaling Pathways 226
Herbert Kolodziej

11.1 Introduction 227
11.2 Appraisal of test materials 228
 11.2.1 Analytical challenges of proanthocyanidin composition 229
 11.2.2 Chemical data on proanthocyanidin-containing materials 230
11.3 Endothelial dysfunction 233
11.4 In vitro test systems 234
11.5 Vasorelaxant mechanisms 235
 11.5.1 Endothelium-dependent vasorelaxation 235
 11.5.2 eNOS-NO-cGMP signaling pathway 235
 11.5.2.1 Key role of the NO-cGMP signaling pathway 236
 11.5.2.2 Activation of eNOS via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway 242
 11.5.2.3 Role of reactive oxygen species and redox-sensitive kinases 243
 11.5.3 Eicosanoid-mediated vasorelaxation 245
 11.5.4 Endothelium-derived hyperpolarizing signaling cascade 245
 11.5.4.1 Modulation of K+ channel functions 247
 11.5.4.2 Ca2+ signaling events and modulation of Ca2+ channel functions 248
11.6 Bioavailability and metabolic transformation: the missing link in the evidence to action in the body 249
11.7 Conclusions 250
References 251

12 Polyphenols for Brain and Cognitive Health 259
Katherine H. M. Cox and Andrew Scholey

12.1 Introduction 259
12.2 Studies of total polyphenols and cognition 260
 12.2.1 Tea 262
 12.2.2 Cocoa 265
13 Curcumin and Cancer Metastasis

Ikuo Saiki

13.1 Introduction 290
13.1.1 Antimetastatic mechanisms 291
13.1.2 Curcumin, a polyphenol from Curcuma longa 292

13.2 Effects of curcumin on intra-hepatic metastasis of liver cancer 293
13.2.1 Effect of curcumin on the growth of the implanted HCC and intrahepatic metastasis 293
13.2.2 Effect of curcumin on tumor invasion and expression of invasion-related molecules 293
13.2.3 Effect of curcumin on tumor cell adhesion to fibronectin, laminin, and poly-L-lysine substrates 295
13.2.4 Effect of curcumin on the expression of some integrin subunits 295
13.2.5 Effect of curcumin on the haptotactic migration 295
13.2.6 Effect of curcumin on the formation of actin stress fibers 297

13.3 Effects of curcumin on lymph node metastasis of lung cancer 298
13.3.1 Comparison of metastatic properties of Lewis lung carcinoma (LLC) and its metastatic variant cell line 298
13.3.2 Effect of curcumin on the growth of the inoculated tumor and lymph node metastasis of orthotopically implanted LLC cells 299
13.3.3 Combined effect of curcumin and CDDP (cis-diamine-dichloroplatinum) in the lung cancer model 299
13.3.4 Effect of curcumin on the growth and invasion of LLC cells in vitro 300
13.3.5 Anti-AP-1 transcriptional activity of curcumin in LLC cells 301
13.3.6 Effect of curcumin on the expression of mRNAs for u-PA and u-PAR in LLC 301

13.4 Effects of curcumin on tumor angiogenesis 303
13.4.1 Curcumin inhibits the formation of capillary-like tubes in rat lymphatic endothelial cells (TR-LE) 303
13.4.2 Inhibition of IKK is independent of the inhibitory effect of curcumin 304
13.4.3 Involvement of Akt’s inhibition in curcumin’s activities 304
13.4.4 Involvement of MMP-2 in lymphangiogenesis 306

13.5 Conclusions 307

References 307
14 Phytochemical and Pharmacological Overview of *Cistanche* Species

Hai-Ning Lv, Ke-Wu Zeng, Yue-Lin Song, Yong Jiang and Peng-Fei Tu

14.1 Introduction 313
14.2 Chemical constituents of *Cistanche* species 314
 14.2.1 Phenylethanoid glycosides (PhGs) 315
 14.2.2 Benzyl glycosides 315
 14.2.3 Iridoids 315
 14.2.4 Monoterpenoids 315
 14.2.5 Lignans 321
 14.2.6 Polysaccharides 322
 14.2.7 Other types of compounds 322
14.3 Bioactivities of the extracts and pure compounds from *Cistanche* species 322
 14.3.1 Antioxidation 323
 14.3.2 Neuroprotection 324
 14.3.2.1 Anti-Parkinson’s disease (PD) 324
 14.3.2.2 Cognitive improvement 328
 14.3.2.3 Sedation 331
 14.3.3 Vasorelaxation 331
 14.3.4 Antifatigue and longevity promotion 331
 14.3.5 Anti-inflammation and immunoregulation 332
 14.3.6 Antitumor 333
 14.3.7 Defecation promotion 333
 14.3.8 Hepatoprotection 333
 14.3.9 Antimyocardial ischemia 333
 14.3.10 Radiation resistance 334
 14.3.11 Tissue repairing 334
14.4 Conclusions 334

References 334

Index 342