Contents

List of Contributors xv
Preface and Introduction xix
Acknowledgments xxi
About the Editor xxiii

Part I Somatic Genome Variation in Animals and Humans 1

1 Polyploidy in Animal Development and Disease 3
 Jennifer L. Bandura and Norman Zielke
 1.1 Introduction 3
 1.2 Mechanisms Inducing Somatic Polyploidy 4
 1.2.1 Cell Fusion 4
 1.2.2 Acytokinetic Mitosis 4
 1.2.3 Endomitosis 5
 1.2.4 Endoreplication 5
 1.2.5 Gene Amplification 7
 1.2.6 Ploidy Reversal 7
 1.3 The Core Cell Cycle Machinery 8
 1.4 Genomic Organization of Polyploid Cells 9
 1.5 Endoreplication: An Effective Tool for Post-Mitotic Growth and Tissue Regeneration 10
 1.6 Initiation of Endoreplication in Drosophila 11
 1.6.1 Endocyte Entry in Ovarian Follicle Cells 11
 1.6.2 Signaling Pathways Regulating Endocyte Entry in Follicle Cells 13
 1.6.3 Endocyte Entry in Other Tissues 14
 1.7 Mechanisms of Endocyte Oscillations in Drosophila 15
 1.7.1 An Autonomous Oscillator Drives Endocycling in the Salivary Gland 15
 1.7.2 Alternative Modes of Endoreplication 17
 1.8 Gene Amplification in Drosophila Follicle Cells 17
 1.8.1 Molecular Mechanism of Gene Amplification 17
 1.8.2 The Endocyte-to-Amplification Switch 19
 1.9 Endocyte Entry in the Trophoblast Lineage 19
 1.10 Mechanisms of Endocyte Oscillations in Trophoblast Giant Cells 22
 1.11 Cardiomyocytes 23
Contents

1.11.1 Upstream Control of Cardiomyocyte Polyploidization 23
1.11.2 Mechanisms of Cardiomyocyte Polyploidization 24
1.11.3 Polyploidization as a Response to Tissue Damage 25
1.12 Hepatocytes 25
1.12.1 Mechanisms of Hepatocyte Polyploidization 25
1.12.2 The Ploidy Conveyor Model 26
1.12.3 Liver Regeneration 26
1.13 Megakaryocytes 28
1.13.1 Mechanisms of MKC Polyploidization 28
1.14 Concluding Remarks 30

Acknowledgments 31

References 31

2 Large-Scale Programmed Genome Rearrangements in Vertebrates 45

Jeramiah J. Smith

2.1 Introduction 45
2.2 Hagfish 46
2.2.1 Content of Eliminated DNA 47
2.2.2 Results and Mechanisms of Deletion 47
2.3 Sea Lamprey 48
2.3.1 Content of Eliminated DNA 48
2.3.2 Results and Mechanisms of Deletion 48
2.4 Zebra Finch 48
2.4.1 Mechanisms of Deletion 49
2.4.2 Content of Eliminated DNA 49
2.5 Emerging Themes and Directions 49
2.5.1 The Biological Function of PGR 49
2.5.2 Mechanisms of Deletion 50
2.5.3 Other Vertebrates? 51

References 51

3 Chromosome Instability in Stem Cells 55

Paola Rebuzzini, Maurizio Zuccotti, Carlo Alberto Redi and Silvia Garagna

3.1 Introduction 55
3.2 Pluripotent Stem Cells 56
3.2.1 Primate Embryonic Stem Cells 56
3.2.2 Mouse Embryonic Stem Cells 57
3.2.3 Parthenogenetic Embryonic Stem Cells 57
3.2.4 Induced Pluripotent Stem Cells 58
3.3 Somatic Stem Cells 58
3.3.1 Mesenchymal Stem Cells 58
3.3.2 Neural Stem Cells 59
3.4 Mechanisms of Chromosomal Instability 59
3.4.1 Dysfunction in the Spindle Assembly Checkpoints 60
3.4.2 Defects of Microtubule Attachment to the Kinetochore 60
3.4.3 Supernumerary Centrosomes 61
3.4.4 Sister Chromatids Cohesion 62
3.5 Mechanisms of Chromosomal Instability in Stem Cells 63
References 63

Part II Somatic Genome Variation in Plants 75

4 Mechanisms of Induced Inheritable Genome Variation in Flax 77
Christopher A. Cullis
4.1 Introduction 77
4.2 Restructuring the Flax Genome 79
4.3 Specific Genomic Changes 80
4.4 What Happens When Plastic Plants Respond to Environmental Stresses? 83
4.5 When Do the Genomic Changes Occur and Are they Adaptive? 83
4.6 Is this Genomic Response of Flax Unique? 84
4.7 Concluding Remarks 87
Acknowledgments 87
References 87

5 Environmentally Induced Genome Instability and its Inheritance 91
Andrey Golubov
5.1 Introduction 91
5.2 Stress and its Effects on Genomes 92
5.2.1 Genetic Changes 92
5.2.2 DNA Repair 92
5.2.3 Epigenetic Changes 93
5.2.3.1 DNA Methylation 93
5.2.3.2 Histone Modifications 95
5.2.4 The Link between Genetic and Epigenetic Changes 95
5.3 Transgenerational Inheritance 96
5.4 Concluding Remarks 97
Acknowledgments 97
References 97

6 The Mitochondrial Genome, Genomic Shifting, and Genomic Conflict 103
Gregory G. Brown
6.1 Introduction 103
6.2 Heteroplasmy and Sublimons 105
6.3 Cytoplasmic Male Sterility (CMS) in Plants 108
6.4 Mitochondrial Sublimons and CMS 109
6.5 Restorer Gene Evolution: Somatic Genetic Changes Drive Nuclear Gene Diversity? 111
6.6 Concluding Remarks 112
References 113
7 Plastid Genome Stability and Repair 119
Éric Zampini, Sébastien Truche, Étienne Lepage, Samuel Tremblay-Belzile and Normand Brisson
7.1 Introduction 120
7.2 Characteristics of the Plastid Genome 121
7.2.1 General Composition of the Plastid Genome 121
7.2.2 The Structure of the Plastid Genome 123
7.3 Replication of Plastid DNA 124
7.3.1 Plastid DNA Content during Development 124
7.3.2 Plastid DNA Replication Machinery 125
7.3.3 Replication Mechanisms 126
7.3.4 Origins of Replication 129
7.3.5 Nucleus and Plastid Coordination during DNA Replication 130
7.4 Transcription in the Plastid 130
7.5 The Influence of Replication and Transcription on Plastid Genome Stability 131
7.6 Plastid Genome Stability and DNA Repair 133
7.6.1 Oxidative Stress, Photo-Adaptation, and ROS Detoxification 133
7.6.2 UV-Induced DNA Damage 138
7.6.3 Recombination and DNA Double-Strand Break Repair 141
7.7 Outcomes of DNA Rearrangements 145
7.8 Concluding Remarks 147
References 148

Part III Somatic Genome Variation in Microorganisms 165

8 RNA-Mediated Somatic Genome Rearrangement in Ciliates 167
John R. Bracht
8.1 Introduction 168
8.2 Ciliates: Ubiquitous Eukaryotic Microorganisms with a Long Scientific History 168
8.3 Two's Company: Nuclear Dimorphism in Ciliates 170
8.4 Paramecium: Non-Mendelian Inheritance Comes to Light 171
8.5 Tetrahymena and the Origin of the scanRNA Model 173
8.6 Small RNAs in Stylonychia and Oxytricha 175
8.7 Long Noncoding RNA Templates in Genome Rearrangement 176
8.8 Long Noncoding RNA: An Interface for Short Noncoding RNA 177
8.9 Short RNA-Mediated Heterochromatin Formation and DNA Elimination 179
8.10 Transposable Elements and the Origins of Genome Rearrangements 182
8.11 Transposons, Phase Variation, and Programmed Genome Engineering in Bacteria 185
8.12 Transposases, Noncoding RNA, and Chromatin Modifications in VDJ Recombination of Vertebrates 186
8.13 Concluding Remarks: Ubiquitous Genome Variation, Transposons, and Noncoding RNA 187
9 Mitotic Genome Variations in Yeast and Other Fungi 199
Adrianna Skoneczna and Marek Skoneczny

9.1 Introduction 199
9.2 The Replication Process as a Possible Source of Genome Instability 200
9.2.1 DNA Polymerases as Guardians of Genome Maintenance 201
9.2.2 dNTP Cellular Level and their Pool Bias Contribute to Genome Stability 205
9.2.3 Mismatch Repair (MMR) and Ribonucleotide Excision Repair (RER) Are Used to Clean-up after Replication 218
9.3 Post-Replicative Repair (PRR) or Homologous Recombination (HR) Are Responsible for Error-Free and Error-Prone Repair of Blocking Lesions and Replication Stall-Borne Problems 219
9.3.1 Sumoylated PCNA-, Srs2-, and Replicative Polymerase-dependent DNA Synthesis on Damaged Template 221
9.3.2 Ubiquitinated PCNA- and Specialized Pol-Dependent Translesion Synthesis 223
9.3.3 The Polyubiquitinated PCNA- and Rad5-Dependent Damage Avoidance Pathway 225
9.3.4 The Alternative PCNA-, RPA-, and 5’-Junction-Dependent Pathway Involved in Gap Filling and Telomere Maintenance 226
9.3.5 Crosstalk between RFC Complexes Adapts Cellular Response to Different Stresses Arising from Genome Perturbations 226
9.3.6 Break-Induced Replication (BIR) Is a Vastly Inaccurate Repair Pathway 227
9.4 Ploidy Maintenance and Chromosome Integrity Mechanisms 229
9.4.1 Processes that Affect Aneuploidy in Yeasts 230
9.4.2 Ploidy Changes in Yeasts 231
9.4.3 Possible Mechanism of Ploidy Change in Yeast 232
9.5 Concluding Remarks 234

References 235

Part IV General Genome Biology 251

10 Genome Variation in Archaeans, Bacteria, and Asexually Reproducing Eukaryotes 253
Xiu-Qing Li

10.1 Introduction 254
10.2 Chromosome Number in Prokaryote Species 254
10.3 Genome Size Variation in Archaeans and Bacteria 255
10.4 Archaeal and Bacterial Genome Size Distribution 256
10.5 Genomic GC Content in Archaeans, Bacteria, Fungi, Protists, Plants, and Animals 257
10.6 Correlation between GC Content and Genome or Chromosome Size 259
10.7 Genome Size and GC-Content Variation in Primarily Asexually Reproducing Fungi 260
10.8 Variation of Gene Direction 263
10.9 Concluding Remarks 263
Acknowledgments 264
References 264

11 RNA Polyadenylation Site Regions: Highly Similar in Base Composition Pattern but Diverse in Sequence—A Combination Ensuring Similar Function but Avoiding Repetitive-Regions-Related Genomic Instability 267
Xiu-Qing Li and Donglei Du
11.1 General Introduction to Gene Number, Direction, and RNA Polyadenylation 268
11.2 Base Selection at the Poly(A) Tail Starting Position 269
11.3 Most Frequent Upstream Motifs in Microorganisms, Plants, and Animals 271
11.4 Motif Frequencies in the Whole Genome 273
11.5 The Top 20 Hexamer Motifs in the Poly(A) Site Region in Humans 273
11.6 Polyadenylation Signal Motif Distribution 273
11.7 Alternative Polyadenylation 275
11.8 Base Composition of 3′UTR in Plants and Animals 276
11.9 Base Composition Comparison between 3′UTR and Whole Genome 276
11.10 Base Composition of 3′COR in Plants and Animals 277
11.11 Base Composition Pattern of the Poly(A) Site Region in Protists 278
11.12 Base Composition Pattern of the Poly(A) Site Region in Plants 280
11.13 Base Composition Pattern of the Poly(A) Site Region in Animals 280
11.14 Comparison of Poly(A) Site Region Base Composition Patterns in Plants and Animals 280
11.15 Common U-A-U-A-U Base Abundance Pattern in the Poly(A) Site Region in Fungi, Plants, and Animals 284
11.16 Difference between the Most Frequent Motifs and Seqlogo-Showed Most Frequent Bases 284
11.17 RNA Structure of the Poly(A) Site Region 286
11.18 Low Conservation in the Overall Nucleotide Sequence of the Poly(A) Site Region 286
11.19 Poly(A) Site Region Stability and Somatic Genome Variation 286
11.20 Concluding Remarks 287
Acknowledgments 288
References 288

12 Insulin Signaling Pathways in Humans and Plants 291
Xiu-Qing Li and Tim Xing
12.1 Introduction 291
12.2 Ranking of the Insulin Signaling Pathway and its Key Proteins 293
12.3 Diseases Caused by Somatic Mutations of the PI3K, PTEN, and AKT Proteins in the Insulin Signaling Pathway 293
12.4 Plant Insulin and Medical Use 295
12.5 Role of the Insulin Signaling Pathway in Regulating Plant Growth 295
12.6 Concluding Remarks 295
References 296

13 Developmental Variation in the Nuclear Genome Primary Sequence 299
Xiu-Qing Li
13.1 Introduction 299
13.2 Genetic Mutation, DNA Damage and Protection, and Gene Conversion in Somatic Cells 300
13.3 Programmed Large-Scale Variation in Primary DNA Sequences in Somatic Nuclear Genome 302
13.4 Generation of Antibody Genes in Animals through Somatic Genome Variation 303
13.5 Developmental Variation in Primary DNA Sequences in the Somatic Cells of Plants 303
13.6 Heritability and Stability of Developmentally Induced Variation in the Somatic Nuclear Genome in Plants 303
13.7 Concluding Remarks 304
References 305

14 Ploidy Variation of the Nuclear, Chloroplast, and Mitochondrial Genomes in Somatic Cells 309
Xiu-Qing Li, Benoit Bizimungu, Guodong Zhang and Huaijun Si
14.1 Introduction 310
14.2 Nuclear Genome in Somatic Cells 311
14.2.1 Ploidy Variation of the Individual or Species in Plants and Animals 311
14.2.2 Effects of Species Ploidy Variation on the Growth of Animals and Plants 312
14.2.3 Ploidy of Bacteria 313
14.2.4 Endopolyploidy in Animal and Plant Somatic Cells 313
14.2.5 Somatic Cell Haploidization 315
14.2.6 Aneuploid Cells in Plant Somatic Tissues 315
14.2.7 Aneuploid Cells in Cancerous Masses 316
14.2.8 Nuclear B Chromosomes in Somatic Cells 316
14.3 Plastid Genome Variation in Somatic Cells 317
14.3.1 Types of Plastids 317
14.3.2 Plastid Genome and its Size in Somatic Cells 317
14.3.3 Recombination among Repeated Sequences in the Plastid Genome 318
14.3.4 Integrity of the Organelle Genome in Green Leaves under Light 318
14.3.5 Plastid Genome Ploidy or Copy Number Variation in Somatic Cells 319
14.4 Mitochondrial Genome in Somatic Cells 320
14.4.1 Mitochondrial Genome and its Size 320
14.4.2 Recombination among Repeated Sequences and Subgenomic Molecules in Mitochondria 321
14.4.3 Mitochondrial Subgenome Copy Number Variation in Somatic Cells 322
14.4.4 Nuclear and Tissue-Specific Regulation of Mitochondrial Gene Expression 322
14.4.5 Stoichiometric Variation and Effects on Mitochondrial Subgenomic Molecules 323
14.5 Organelle Genomes in Somatic Hybrids 324
14.6 Effects of Nuclear Genome Ploidy on Organelle Genomes 325
14.7 Concluding Remarks 326
Acknowledgments 326
References 326

15 Molecular Mechanisms of Somatic Genome Variation 337
Xiu-Qing Li
15.1 Introduction 338
15.2 Mutation of Genes Involved in the Cell Cycle, Cell Division, or Centromere Function 338
15.3 DNA Damage 338
15.4 Variation in Induction and Activity of Radical-Scavenging Enzymes 339
15.5 DNA Cytosine Deaminases 340
15.6 Variation in Protective Roles of Pigments against Oxidative Damage 340
15.7 RNA-Templated DNA Repair 341
15.8 Errors in DNA Repair 341
15.9 RNA-Mediated Somatic Genome Rearrangement 342
15.10 Repetitive DNA Instability 342
15.11 Extracellular DNA 343
15.12 DNA Transposition 343
15.13 Somatic Crossover and Gene Conversion 343
15.14 Molecular Heterosis 344
15.15 Genome Damage Induced by Endoplasmic Reticulum Stress 344
15.16 Telomere Degeneration 344
15.17 Concluding Remarks 344
References 345

16 Hypotheses for Interpreting Somatic Genome Variation 351
Xiu-Qing Li
16.1 Introduction 352
16.2 Cell-Specific Accumulation of Somatic Genome Variation in Somatic Cells 352
16.3 Developmental Age and Genomic Network of Reproductive Cells 353
16.4 Genome Generation Cycle of Species 353
16.5 Somatic Genome Variation and Tissue-Specific Requirements during Growth or Development 354
16.6 Costs and Benefits of Somatic Genome Variation 354
16.7 Hypothesis on the Existence of a Primitive Stage in both Animals and Plants 355
16.8 Sources of Genetic Variation from in Vitro Culture Propagation 357
16.9 Hypothesis that Heterosis Is Created by Somatic Genome Variation 357
16.10 Genome Stability through Structural Similarity and Sequence Dissimilarity 358
16.11 Hypothesis Interpreting the Maternal Transmission of Organelles 358
16.12 Ability of Humans to Deal with Somatic Genome Variation and Diseases 359
16.13 Concluding Remarks 360
References 360

17 Impacts of Somatic Genome Variation on Genetic Theories and Breeding Concepts, and the Distinction between Mendelian Genetic Variation, Somagenetic Variation, and Epigenetic Variation 363
Xiu-Qing Li
17.1 Introduction 364
17.2 The Term ‘Somatic Genome’ 365
17.3 Mendelian Genetic Variation, Epigenetic Variation, and Somagenetic Variation 365
17.4 What Is a Gene? 367
17.5 Breeding Criteria, Genome Cycle, Pure Lines, and Variety Stability 368
17.6 The Weismann Barrier Hypothesis and the Need for Revision 370
17.7 Implications for Species Evolution 370
17.8 Concluding Remarks 371
References 372

18 Somatic Genome Variation: What it is and What it Means for Agriculture and Human Health 377
Xiu-Qing Li
18.1 Introduction 378
18.2 Natural Attributes of Somatic Genome Variation 378
18.3 Implications of Somatic Genome Variation for Human and Animal Health 380
18.3.1 Cellular-Level Variation 380
18.3.2 Ploidy and Chromosome Number Variation of the Whole Organism 380
18.3.3 Endoploidy Variation 381
18.3.4 DNA Cytosine Deaminases, Somatic Mutation, Immunoglobulin Diversity, and Tumors 381
18.3.5 Mitochondrial Genome Sequence or DNA Amount Variation 384
18.3.6 Nuclear or Ooplasmic Transfer-Based Therapy 385
18.3.7 Differential Treatments of Beneficial and Harmful SGVs 385
18.4 Implications of Somatic Genome Variation for Agriculture 385
18.4.1 Cellular-Level Variation 385
18.4.2 Ploidy and Chromosome Number Variation of the Whole Organism 386
18.4.3 Endoploidy Variation 387
18.4.4 Intra- and Interchromosomal Variation 387
18.4.5 Dedifferentiation- and Redifferentiation-Induced Variation 388
18.4.6 DNA Damage, Epigenetics, Gene Mutation, and Bud Mutation 389
18.4.7 Plastid Genome Sequence or DNA Amount Variation 389
18.4.8 Mitochondrial Genome Sequence or DNA Amount Variation 390
18.4.9 DNA Transfer, Organelle Transmission, and Organelle Genome Segregation 390
18.4.10 Intercompartmental Interaction and DNA Exchange 391
18.5 Concluding Remarks 391
Acknowledgments 392
References 392

Index 405