Index

A factors 266–8
absolute power production constraint 234
AC see alternating current
accuracy requirements 788–95, 866–8
active management (AM)
 base case scenarios 943
 case studies 942–9
 distributed generation 937–50
 economic factors 947–50
 network losses 947–8
 optimal power flow method 941–4, 947
 quantifying the benefits 941–9
 test system description 942–3
 voltage control 939–42, 944–50
 voltage-rise effect 938–9, 942
active power control
 active management 939–40, 941, 944–5
 dynamic modelling concepts 791
 full-scale verification 876, 887
 generic wind turbine-type models 806–7, 819
 integration 562, 564, 604, 701, 745
 isolated power systems 725, 727–8
 limited transmission capacity 442, 444
 measurement of electrical characteristics 175, 182, 185–7
 performance validation and certification 245
 power quality 160, 163, 172, 200–1
 power system stability 894–5, 899–901
 power systems 51, 53, 69
 reduced-order models 831, 834–6
 technical regulations 218–20
 wind power plants 922, 929–30
see also pitch control
active stall control
 dynamic modelling 775, 887
 generator and power electronics 75, 77
 offshore wind power plants 354–9
advanced static VAR compensation (ASVC) 101–2
AEC see aeroelastic code
AEE see Wind Energy Association
AER see alternative energy requirement
aerodynamic modelling 770–7, 778, 795, 807, 883–7
aeroelastic code (AEC) 776–7, 885–6
AFC see alkaline fuel cells
Africa 723–4
AGC see automatic generation control
aggregated modelling 914, 921–5, 931–2
aggregation of wind power production
 dynamic modelling 894
 integration 381, 383, 395, 411, 577–9
 power systems 57–9
 variability of wind power 8–9, 13–14
AIGS see All Island Grid Study
Alaska Village Electric Cooperative (AVEC) 722
alkaline fuel cells (AFC) 1005–6, 1009
All Island Grid Study (AIGS) 474, 630–1
alternating current (AC)
 hybrid systems 711–12
 power systems 47, 50–1
see also flexible AC transmission systems;
 high-voltage alternating current
alternative energy requirement (AER) 626
Alternative Transient Program (ATP) 822
American Recovery and Reinvestment Act (ARRA) 432
ammonia production 1012
AMP (Sweden) regulations 212
ancillary services 660–1, 686, 922, 929, 937
ANN see artificial neural networks
annual load profiles 943
arbitrage 11
area-based voltage control 945–7

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
ARRA see American Recovery and Reinvestment Act
artificial neural networks (ANN) 755
ASVC see advanced static VAR compensation
asynchronous generators see generators
asynchronous machines 69–70, 71
ATC see available transfer capacity
ATP see Alternative Transient Program
Australia
historical development 37
isolated power systems 724
wind power production 12
automatic generation control (AGC) systems
economic factors 498–9
performance validation and
certification 255–6
power systems 65–6
value of wind power 137
wind power plants 286–7
automatic voltage regulators (AVR) 975–7, 989–97
available transfer capacity (ATC) 531
AVEC see Alaska Village Electric Cooperative
AVR see automatic voltage regulators
B factors 266–7, 268–9, 276
back-to-back converters 98–9
back-up generation 8–9
balance responsibility 143
balance-responsible market players (BRP) 528, 529
balanced RMS validation 868–9, 873–4
balancing markets 501, 510–15
balancing power
generator and power electronics 101
hydrogen production 1010–11
integration 525–38, 541–3, 612–17, 621, 694–6, 745, 749
isolated power systems 717–18, 727–8
power systems 50, 54, 58, 61–71, 106–9, 118–22, 127–8
technical regulations 220
value of wind power 135–9, 141–2
wind power production 7–8, 10–13, 15
base case exchange (BCE) 445–7
base-load power plants see coal power production;
nuclear power production
battery storage 467–8, 710–12, 720
BCE see base case exchange
BDEW see Federal Association of Energy and Water Industries
BE see best estimate
Belgium 31
BEM see blade element momentum
benchmarking 537–8
best estimate wind (BE) scenario 401, 403
Betz’s limit 771
bifurcated radial feeders 270–1
bilateral trading 500
bipolar HVAC transmission systems 329, 331–43
bipolar junction transistors (BJT) 81
bipolar strings 334–5, 340–3
BJT see bipolar junction transistors
blackstart 967
blade element momentum (BEM)
method 776–7
blade model 829–30
Brazil 34–5
BRP see balance-responsible market players
bus test systems 901–5, 907–8, 942–3
bus zone protection 684
C factors 267, 269
cable systems
active management 940
bipolar HVAC transmission systems 329, 331–43
cost context 329
design examples 337–40
high-phase-order 329–31, 332–4, 341–3
offshore wind power plants 300–1, 307–8, 329–43
submarine cable connections 334–7
technical background 329–31
transformer groups 333–4
voltage definitions 332
wind power plants 275–6
CAES see compressed air energy storage
California Independent System Operator (CAISO) 426–9
California Transmission Planning Group (CTPG) 426, 429
Canada 32–3, 254–6
capacitance 276, 278, 281, 444–5
capacitive fixed power factor (CPF) 902–3
capacitor banks
generator and power electronics 73, 81, 97
isolated power systems 726
power quality 204, 207
power systems 71
capacity credit
design integration 584
value of wind power 132, 133–5, 142–3
wind power production 16
capacity factors (CF)
integration 395
power systems 60–1, 111
transmission systems 416
wind power production 17–18
capacity outage probability table (COPT) 371
capacity value
integration 371–3, 380–3, 398–9, 662
transmission systems 419
variability of wind power 7
Cape Verde 723–4
carbon dioxide emissions
historical development 40
hydrogen production 1004, 1010, 1012
integration 399, 403–4, 541–2
power systems 48, 123–5
storage 482–3
transmission systems 421
wind power production 9
CBA see cost–benefit analysis
CCGT see combined-cycle gas turbines
CCT see critical clearance time
CECRE see Special Regime Control Centre
cell controller architectures 969–70
Cell Controller Pilot Project 966–72
CEPRI see China Electric Power Research Institute
CER see Commission for Electricity Regulation
certification see performance validation and certification
CF see capacity factors
CFD see computational fluid dynamics
Chile 35
China
balancing power 694–6
compliance testing 701–4
current context 689
development status of wind power 691–2
forecasting 698–700
grid codes 699–704
historical development 27, 36–7
integration 689–706
limited transmission capacity 692–3
low-voltage ride-through capability 697–8, 701–3
penetration levels 692–6
policy incentives 691
power systems 689–706
regional power grids and power sources 689–91
strong smart grid concept 704–6
transient stability 694
transmission reinforcement 696
transmission systems 689–90, 692–706
voltage control 693–4, 697–8, 701–3
China Electric Power Research Institute (CEPRI) 699, 702–3
CHP see combined heat and power
circuit-breaker failures 678
Clipper configuration 79
colour power production 17–18, 61, 416, 690
COE see cost of energy
collection systems
cables and lines 275–6
design objectives 263–5
dynamic modelling 800–2
electrical design 270–81
grounding and surge protection 276–7, 280
harmonic currents 280–1
protection 280
reactive power and voltage design 277–80
transformers 271–5, 280
wind plant topologies 270–2
collector feeders 270–1, 275–6
combined heat and power (CHP)
dynamic modelling 882, 923
economic factors 491–3, 505–7
hydrogen production 1005–6
integration 522, 524–5, 528, 539, 546, 571, 607, 694–6
power systems 111, 122, 124
smart grid concept 966
combined-cycle gas turbines (CCGT) 471, 474, 479–80, 483–4
combustion turbines 12
Commission for Electricity Regulation (CER) 625–6
communications
smart grid concept 952–3, 955–7, 961–2
voltage control 992
wind power plants 290–2
competitive renewable energy zones (CREZ) 414, 426–31, 435, 654–6, 665
complex power 51
compressed air energy storage (CAES) 467–8, 472, 474, 485
hydrogen production 1003, 1008–9
integration 557, 567
compressed hydrogen 1002, 1003–4
computational fluid dynamics (CFD) 788, 795
computer simulation see dynamic modelling
concentrating solar power (CSP) 424
conductors 329–30, 340–1, 449
connection costs 489–95
connection offer process 639
connection points (CP) 490–3, 693–4
see also point of common coupling
constant-power representation 775
constraints management 607
consumer requirements
- economical power supply 66
- isolated power systems 732
- power availability on demand 64–6
- power systems 62, 63–6
- smart grid concept 953–4
- voltage level at connection point 63
contingency tests 988–9
continuous control 991–5
continuous operation 161, 168–9, 198–9
control signals 291–2
control value 132, 135–9, 143–9
controlled generation 985
controller functions 233–4
converter control model 810, 814–16
converter current limit model 810–11
converter model 835–6, 842
coordinated voltage control 940–2
COPT see capacity outage probability table
Coral Bay power station 724
cost–benefit analysis (CBA) 364, 947–9
cost-competitiveness 17–18
cost of energy (COE) 730–2
CP see connection points
CPF see capacitive fixed power factor
CREZ see competitive renewable energy zones
critical clearance time (CCT) 634–5
cross-bonding 340–1
cross-border power flows
- limited transmission capacity 445–7
crowbar protection 833, 836, 901, 918
CSC see current source converters
CSP see concentrating solar power
CTPG see California Transmission Planning Group
current-carrying capacity 441–2, 449
current source converters (CSC) 81–2
curtailments
- active management 939–40, 941, 944–7
- integration 580–1, 593, 610–11, 628, 637–8, 661
- limited transmission capacity 453–61
storage 470, 472, 474–8, 480, 484
wind power plants 286
cut-in speeds 56, 60, 181–3
cut-out speeds 14
economic factors 496–7
measurement of electrical characteristics 181
power quality 198
power systems 56, 57, 60
wind power plants 290
daily control value 137–8, 143
daily load cycles see load cycles
daily time shifting 469
damping torque 824, 858–9, 892–3
day-ahead markets see spot markets
day-ahead prediction 756–7, 759, 763, 1010–11
dedicated control centres 406
de-energized tapchanger (DETC) 273
deep connection charges 493, 495
deferrable loads 719
delta production constraint 234
demand shifting 370
Denham power station 724
Denmark
- balancing power 525–38, 541–3
- capacity and generation 4
- case study 540–5
- dynamic modelling 876–83, 922–5
- economic factors 490–1, 495, 498–515
- electricity trading 529–30
- energy markets 519–20, 527–39, 544
- forecasting 535–8
- historical development 25–7, 30
- increasing capacity 543–5
- integration 369, 375–6, 378–9, 519–48
- market tools and operational issues 527–9
- offshore wind power plants 298–300, 311–12
- optimal system operation 535–8
- organization and technical structure 521–3, 526–7
- power systems 114–15, 117–18, 121–2, 521–5, 534–8
- reserve power 526–7, 533–4
- smart grid concept 966–72
- structure of energy production system 524–5
- system analysis and modelling issues 538–45
- technical regulations 215
- value of wind power 133–4
- wind power production 8, 13–14, 18
deregulated markets 2, 496–500, 625–9
detailed modelling 914, 915–21, 932
DETC see de-energized tapchanger
deterministic calculation of reserves 614–15, 617
deterministic load–flow analysis 730
developer business model 265
DFIG see doubly fed induction generators
DG see distributed generation
DGEG see Directorate General for Energy and
Geology
diagonal-facing cable cores 335
dimensioning power 152
dimensioning of power systems 66
direct current (DC) link dynamics 818–19
direct current (DC)-based hybrid
systems 710–11
Directorate General for Energy and Geology
(DGEG) 575, 580–1
discrete control 991
dispatch commands 286
dispatch models 10–11
integration 369–70, 694–6, 729
isolated power systems 729
storage 476, 484–5
dispatching down 628, 630
dispatching feasibility 601–3, 606–7, 610, 617–18
distributed generation (DG)
active management 937–50
base case scenarios 943
case studies 942–9
economic factors 947–50
integration 522–3, 525
network losses 947–8
optimal power flow method 941–4, 947
quantifying active management
benefits 941–9
smart grid concept 966
test system description 942–3
voltage control 939–42, 944–50
voltage-rise effect 938–9, 942
Distribution Code (GB G59/2) 213–14, 218–33
distribution network companies (DNC) 490–3
distribution network operators (DNO) 672–3, 682–3
distribution systems
hydrogen production 1012–16
isolated power systems 726
technical regulations 221, 227
diurnal variations see variability of wind power
DNC see distribution network companies
DNO see distribution network operators
documentation 159
doubly fed induction generators (DFIG) 92–3, 100
advantages 850
components 850–1
dynamic modelling 780, 832–9, 849–64,
915–24, 932
flux equations 856–7
high-order models 849–64
integration 683
lower-order models 862–3
machine equations 851–9
mechanical equations 857–9
notation of quantities 854
sequencers 861
state-of-the-art technologies 78, 83–6
technical regulations 210
test system for simulation 861–2
vector method 851–4
voltage equations 854–6
voltage-source converters 849–51, 859–61,
863–4
wind turbine equations 859
DRCI see dynamic reactive current injection
duration curves
integration 395
limited transmission capacity 454–7
power systems 111
transmission systems 415–16
wind power plants 268, 274–5
dynamic line ratings 380, 406
dynamic modelling 2–3
active management 941–9
active power control 806–7, 819
aerodynamic modelling 770–7, 778, 795, 807,
883–7
aggregated modelling 914, 921–5, 931–2
block description of wind turbines 777–84
context and basic considerations 769–70
DC link dynamics and unbalanced
faults 818–19
detailed modelling 914, 915–21, 932
doubly fed induction generators 849–64
electrical parameters 868–71
forced-event records 881–3
frequency stability 906–9
full-scale verification 865–89
future developments 819
generalization of control structures 817–18
generator and power electronics 771, 779–82
generic wind turbine-type models 780–1, 785,
789–90, 799–820
high-order models 849–64, 879–81
initial conditions 871
integration 369–70, 387–412, 538–45, 683
isolated power systems 728–31, 906–7
dynamic modelling (Continued)

known issues and improvement areas 817–19
limited transmission capacity 447
machine equations 851–9
main control systems 782–3
measurement errors 816–17
mechanical systems 778–9, 784–8, 857–9
notation of quantities 854
offshore wind power plants 317–20, 346–7, 354–9
on-site tests 876–81
partial validation 883–7
per unit systems 784–8, 829, 831–2, 855–6, 858, 861
pitch control 807–8, 817
pitch servos 782
power flows and equivalencing 800–2
power quality 172
power system security 891–912
protection systems and relays 783–4
reduced-order modelling 821–47
representations of turbine rotors 775–7
rotor angle stability 892–7
rotor characteristics 770–5
scale effects 919–20
scheduled tasks 871–6
sequencers 861
short-term stability 915–21
simulation types and accuracy requirements 788–95, 866–8
supply security 891, 903–4
technical regulations 229–32
test system for DFIG 861–2
transmission systems 424–6
turbine design 2–3, 769–97, 865–89
validation 246, 812–17, 865–89
vector method 851–4
voltage control 982–8
voltage equations 854–6
voltage-source converters 849–51, 859–61, 863–4
voltage stability 897–905, 922–3
WECC generic models 799, 801–12
wind power plant controllers 913–16, 921, 926–32
wind power plants 799–820, 909–11, 913–33
dynamic operation 315–16
dynamic power curves 354–5
dynamic reactive current injection (DRCI) 698
dynamic reactive power capabilities 283
dynamic voltage control 602–4
earthing 276–7, 280
Eastern Interconnection (EI) 413, 417–18, 433–4
Eastern Wind Integration and Transmission Study (EWITS) 418–21, 432
ecoENERGY programme 33
economic factors 2
accommodation limits of grid operations 18–19
active management 947–50
cable systems 331, 338–9
capacity credit and capacity factors 16–18
deregulated markets 496–500
European integration experience 396–9, 402–4, 410
forecasting 754
Germany integration experience 557–8, 576–7
historical development 27–36, 38–9, 42
hydrogen production 1009, 1012–16
integration 15, 364, 367, 369–71, 373–84, 500
Ireland and NI integration experience 625–9, 637–8, 645–6
isolated power systems 729–32
limited transmission capacity 452, 459–61
network connection and upgrade costs 489–95
New Zealand integration experience 670–1, 685–6
Nord Pool power exchange 498–9, 500–15
offshore wind power plants 293, 297–8, 307–8, 310–11
Portugal integration experience 591–3
power systems 66, 121, 489–516
production costs 38–9
smart grid concept 954, 956–61, 963–5, 968–9
Spain integration experience 601
storage 10–11, 468, 478–83
transmission systems 16, 416–17, 489–95, 508
United States integration experience 655, 662–4
wind power plants 264–5, 266–9
wind power production 10–11, 15–19
see also energy markets; value of wind power
EEA see European Environmental Agency
EECP see emergency electric curtailment plan
EEG see Renewable Energy Sources Act 2009
EEPR see European Energy Programme for Recovery
Index

1025
effective load-carrying capability (ELCC) 371–2, 383
Egypt 37–8
EHV see extra high voltage
El see Eastern Interconnection
eigenfrequencies 788
eigenvalues 894–6
EIPC see Electricity Industry Participation Code
EirGrid
integration 625, 627, 633, 637, 639, 642–3
interconnection 214–15, 218–33
power system stability 904–5, 909
Elbas pricing 498, 530–1, 532
ELCC see effective load-carrying capability
Electric Reliability Council of Texas (ERCOT)
ancillary services 660–1
capacity value 662
competitive renewable energy zones 654–6, 665
energy markets 651–2, 662–4
forecasting 661, 760–1
frequency control 660
future developments 655, 665
integration 649–66
low-voltage ride-through 659–60
ramping 658–9
reactive power control 656–8
regulatory factors 652–3
renewable portfolio standards 654
storage 476–80
Texas electric system 649–51
transmission access 651
transmission congestion 663
transmission planning 413, 429–31, 435
wind development in Texas 653–6
electric vehicles 956, 965
electrical characteristics measurement 175–93
active power control 175, 182, 185–7
context 175–6
flicker 175, 178–82
grid protection testing 191–2
harmonic currents 175, 182–5
power quality 176–7
reactive power control 175, 182, 187–90
specification 178–92
switching operations 180–2
voltage dips 175, 189, 190–2
voltage fluctuations 180–2
electrical control model 805–6
Electricity Industry Participation Code (EIPC) 670–2
Electricity Supply Board (ESB) 624–6
electricity trading 499, 529–30
electromagnetic transients programs (EMTP) 205, 792, 793–4, 812–13, 822
Elspot pricing 498–9, 502–4, 530–1, 535–6
EMCC see European Market Coupling Company
emergency electric curtailment plan (EECP) 661
emergency power control 565–6
emergency shut-down 290
EMTP see electromagnetic transients programs
EN 45011 regulations 251
EN 50160 regulations 164–7, 170–1, 195
EN see enhanced network
Energinet.dk
dynamic modelling 881–3
integration 519–20, 522–3, 527–8, 536–7
interconnection 215, 218–33, 235
offshore wind power plants 299
energy agreements 520
energy losses 453–4
energy markets
Danmark integration experience 519–20, 527–39, 544
deregulated markets 496–500
European integration experience 406
forecasting 754
generator and power electronics 82–90
historical development 23
hydrogen production 1012, 1015–16
Ireland and NI integration experience 625–9, 645–6
market value of wind power 141–54
New Zealand integration experience 670–1, 685–6
Portugal integration experience 591–3
power systems 121, 496–515
smart grid concept 959–61, 963–5, 968–9
Spain integration experience 606–8
United States integration experience 651–2, 662–4
wind power production 12, 17, 19
energy yield calculations 353–4, 355–8
Engineering Recommendations (ER) 213–14
enhanced network (EN) scenario 401, 403–4, 407–8
ensemble prediction system (EPS) 757–60
ENTSO-E see European Network of Transmission System Operators for Electricity
environmental factors 40, 311
E.ON Netz GmbH 242–3, 551
EPS see ensemble prediction system
equivalencing 800–2
ER see Engineering Recommendations
ERCOT see Electric Reliability Council of Texas
error distribution 763
ESB see Electricity Supply Board
ETP see European Technology Platform
EUHYFIS see European Hydrogen Filling Station
European Directives 569–71, 625
European Energy Programme for Recovery (EEPR) 312
European Environmental Agency (EEA) 1008
European Hydrogen Filling Station (EUHYFIS) concept 1013
European Market Coupling Company (EMCC) 530
limited transmission capacity 451
New Zealand integration experience 678–80
performance validation and certification 241–3, 245, 250, 254–8
Portugal integration experience 572, 579–80
Spain integration experience 602–3, 605–6, 609
technical regulations 225, 229, 231, 235–6
voltage control 980–1
wind power plants 284–5, 914, 917–19, 921–5
Federal Association of Energy and Water Industries (BDEW) 212–13, 218–33, 244, 252
Federal Energy Regulatory Commission (FERC) 413, 431, 434
Federation of German Windpower and Other Renewable Energy Sources (FGW) 241–2, 245–6, 249–51
feed-in tariffs 27–31, 33, 35, 626, 645
FEM see finite element models
FERC see Federal Energy Regulatory Commission
FGW see Fördergesellschaft Windenergie
fifth-order models 781–2
finite element models (FEM) 788, 795
Finland 13, 113, 144–6, 148–9
fixed feed-in tariffs see feed-in tariffs
fixed-speed turbines
dynamic modelling concepts 772–4, 776, 779–82, 791–2
full-scale verification 865
generator and power electronics 73–4, 75–7, 87–9, 91
generic wind turbine-type models 802–4, 817
measurement of electrical characteristics 179–83
offshore wind power plants 354–8
power limitation 354–8
power quality 200–2, 207
power system stability 892–3, 896–901, 907–8
reduced-order models 822, 824–32, 845
flexible AC transmission systems (FACTS)
integration 605–6
limited transmission capacity 449
voltage control 975–6, 979–82, 987–8, 996–7
flexible generation
integration 374, 556–7, 582–4, 618–20
power systems 50, 118, 122, 124
storage 465, 472–3, 475–8, 483–4
wind power production 11–13
FlexiSlip® 78, 92
flicker
dynamic modelling 793
measurement of electrical characteristics 175, 178–82
performance validation and certification 255
power quality 159, 160–2, 167–9, 195, 197–203, 207
flicker coefficients 161, 179, 181
flicker step factors 162
flow batteries 720
flywheels 468, 720
FOA see Funding Opportunity Announcements
FOR see forced outage rates
forced-event records 881–3
forced outage rates (FOR) 371
Fördergesellschaft Windenergie (FGW) 176–7, 187, 190–1
forecasting 2
China integration experience 698–700
cost 753–4
day-ahead prediction 756–7, 759, 763
Denmark integration experience 535–8
ensemble forecast models 757–60
error evaluation 14–15, 117–18, 537–8, 611, 761–3
forecast horizons 754
future developments 765
hydrogen production 1010, 1014
integration 368, 373–4, 383, 753–66
limited transmission capacity 447, 453
nowcasting 760
numerical weather prediction 754–5, 756–61, 763–5
online measurement of weather data and power output 757
operational experience 763–5
Portugal integration experience 584
power systems 108–10, 116–18, 120
prediction tools 754–6
ramp forecasting 760–1
Spain integration experience 610–12, 615–16
storage 470, 473
transmission systems 419–20
United States integration experience 661, 760–1
wind power production 11, 14–15
wind-to-power model 754–5, 757
four-core cables 334–7, 338–43
four-phase transmission systems 329, 332–4
free-market model 671
frequency control
dynamic modelling 780, 887, 906–9, 929–30
economic factors 497, 498
generator and power electronics 80
integration 555, 558, 632–4, 660, 687, 743–4, 748–9
isolated power systems 724–5
measurement of electrical characteristics 191–2
power quality 206–8
power systems 70, 107–10
storage 470–1
technical regulations 218–24, 234
wind power plants 287–9
frequency converters 78–9, 81, 98–9, 915–17, 919
frequency-response time frames 907
friction velocity 826
FRT see fault ride-through
fuel cells 1000, 1004–6, 1009, 1013, 1015–16
fuel consumption
integration 541–4
isolated power systems 712, 714, 717, 721
full load hours 111
full-scale frequency converters 78–9, 840–1
full-scale verification 865–89
balanced RMS validation 868–9, 873–4
context 865–6
electrical parameters 868–71
forced-event records 881–3
general validation procedures 866–8
initial conditions 871
on-site tests 876–81
partial validation 883–7
scheduled tasks 871–6
unbalanced RMS validation 870–1, 873–6
validation types 871–87
functions (mathematical representations) 775
Funding Opportunity Announcements (FOA) 432
fuzzy logic 755
gas-fired generation 416
gate turn-off (GTO) thyristors 81, 98
GBI see Generation Based Incentives
GCR see Grid Code Requirements
GEB see Gujarat Electricity Board
Gedser turbines 25–6, 42
GEMAS programme 609
Generation Based Incentives (GBI) 36
generation nodes 603–4
generator model 830–2, 833–5, 840–2
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>grid-oriented smart grid concept</td>
<td>960–2, 965–6, 967–8</td>
</tr>
<tr>
<td>grid outages</td>
<td>742–3, 748</td>
</tr>
<tr>
<td>grid protection</td>
<td>160, 164, 191–2</td>
</tr>
<tr>
<td>grid reinforcement see transmission reinforcement</td>
<td></td>
</tr>
<tr>
<td>grid-side converters</td>
<td>836, 839, 842–3, 918–19</td>
</tr>
<tr>
<td>grounding</td>
<td>276–7, 280</td>
</tr>
<tr>
<td>group processing approach (GPA)</td>
<td>639</td>
</tr>
<tr>
<td>Gujarat Electricity Board (GEB)</td>
<td>743</td>
</tr>
<tr>
<td>GWEC see Global Wind Energy Council</td>
<td></td>
</tr>
<tr>
<td>GXP see grid exit points</td>
<td></td>
</tr>
<tr>
<td>harmonic currents</td>
<td></td>
</tr>
<tr>
<td>dynamic modelling</td>
<td>881</td>
</tr>
<tr>
<td>integration</td>
<td>744</td>
</tr>
<tr>
<td>measurement of electrical characteristics</td>
<td>175, 182–5</td>
</tr>
<tr>
<td>power quality</td>
<td>160, 162–3, 171, 203–5</td>
</tr>
<tr>
<td>wind power plants</td>
<td>266, 275–6</td>
</tr>
<tr>
<td>harmonic voltages</td>
<td>170–1</td>
</tr>
<tr>
<td>dynamic modelling</td>
<td>793</td>
</tr>
<tr>
<td>integration</td>
<td>744</td>
</tr>
<tr>
<td>isolated power systems</td>
<td>725</td>
</tr>
<tr>
<td>measurement of electrical characteristics</td>
<td>185</td>
</tr>
<tr>
<td>power quality</td>
<td>195, 203–4</td>
</tr>
<tr>
<td>Hawaii Clean Energy Initiative (HCEI)</td>
<td>378</td>
</tr>
<tr>
<td>high-contribution power systems</td>
<td>716–17, 722–3, 728</td>
</tr>
<tr>
<td>high load power</td>
<td>150–1</td>
</tr>
<tr>
<td>high-order models</td>
<td>849–64, 879–81</td>
</tr>
<tr>
<td>high-speed cut-out</td>
<td>290</td>
</tr>
<tr>
<td>high-temperature conductors</td>
<td>449</td>
</tr>
<tr>
<td>high-voltage alternating current (HVAC)</td>
<td></td>
</tr>
<tr>
<td>integration</td>
<td>521–2, 674, 680</td>
</tr>
<tr>
<td>limited transmission capacity</td>
<td>450</td>
</tr>
<tr>
<td>offshore wind power plants</td>
<td>298, 301–3, 307–12, 320–1, 329, 331–2</td>
</tr>
<tr>
<td>wind power plants</td>
<td>270–2</td>
</tr>
<tr>
<td>high-voltage direct current (HVDC)</td>
<td>4</td>
</tr>
<tr>
<td>dynamic modelling</td>
<td>882–3, 910, 923</td>
</tr>
<tr>
<td>generator and power electronics</td>
<td>101</td>
</tr>
<tr>
<td>integration</td>
<td>521–2, 527–9, 629, 632–4, 667–70, 676–8</td>
</tr>
<tr>
<td>limited transmission capacity</td>
<td>450</td>
</tr>
<tr>
<td>offshore wind power plants</td>
<td>298–9, 301–2, 303–22</td>
</tr>
<tr>
<td>transmission planning</td>
<td>417–18</td>
</tr>
<tr>
<td>wind power plants</td>
<td>270–2</td>
</tr>
<tr>
<td>high-voltage generators (HVG)</td>
<td>95</td>
</tr>
<tr>
<td>higher frequency components see overfrequency</td>
<td></td>
</tr>
<tr>
<td>historical development</td>
<td>23–45</td>
</tr>
<tr>
<td>Asia–Pacific</td>
<td>36–7</td>
</tr>
<tr>
<td>current status of global capacity</td>
<td>27–40</td>
</tr>
<tr>
<td>current status of turbine technology</td>
<td>41–4</td>
</tr>
<tr>
<td>economic factors</td>
<td>27–36, 38–9, 42</td>
</tr>
<tr>
<td>electrical power generation</td>
<td>25–7</td>
</tr>
<tr>
<td>environmental issues</td>
<td>40</td>
</tr>
<tr>
<td>European capacity</td>
<td>27–32</td>
</tr>
<tr>
<td>integration</td>
<td>550</td>
</tr>
<tr>
<td>isolated power systems</td>
<td>38</td>
</tr>
<tr>
<td>mechanical power</td>
<td>24–5</td>
</tr>
<tr>
<td>Middle East and Africa</td>
<td>37–8</td>
</tr>
<tr>
<td>North America</td>
<td>32–5</td>
</tr>
<tr>
<td>performance validation and certification</td>
<td>242–4</td>
</tr>
<tr>
<td>power systems</td>
<td>47–8</td>
</tr>
<tr>
<td>production costs</td>
<td>38–9</td>
</tr>
<tr>
<td>South and Central America</td>
<td>34–5</td>
</tr>
<tr>
<td>holistic markets</td>
<td>645–6</td>
</tr>
<tr>
<td>HOMER model</td>
<td>731</td>
</tr>
<tr>
<td>horizontal-axis turbines</td>
<td>41</td>
</tr>
<tr>
<td>HQT see Hydro-Québec TransÉnergie</td>
<td></td>
</tr>
<tr>
<td>Hütter turbines</td>
<td>25–6, 42</td>
</tr>
<tr>
<td>HVAC see high-voltage alternating current</td>
<td></td>
</tr>
<tr>
<td>HVDC see high-voltage direct current</td>
<td></td>
</tr>
<tr>
<td>HVG see high-voltage generators</td>
<td></td>
</tr>
<tr>
<td>hybrid power systems</td>
<td>707, 710–12, 735</td>
</tr>
<tr>
<td>Hybrid2 model</td>
<td>731</td>
</tr>
<tr>
<td>hydro power production</td>
<td></td>
</tr>
<tr>
<td>capacity factors</td>
<td>17</td>
</tr>
<tr>
<td>economic factors</td>
<td>502–4</td>
</tr>
<tr>
<td>integration</td>
<td>381–2, 557–8, 570–1, 583–5, 669, 690</td>
</tr>
<tr>
<td>limited transmission capacity</td>
<td>440, 452–3, 455, 458, 461</td>
</tr>
<tr>
<td>power systems</td>
<td>112, 122, 126</td>
</tr>
<tr>
<td>transmission systems</td>
<td>415–16</td>
</tr>
<tr>
<td>value of wind power</td>
<td>133, 138–9, 141, 144, 147–9</td>
</tr>
<tr>
<td>hydro pump storage</td>
<td>619, 726</td>
</tr>
<tr>
<td>Hydro-Québec TransÉnergie (HQT)</td>
<td>254–6</td>
</tr>
<tr>
<td>hydrogen production</td>
<td></td>
</tr>
<tr>
<td>applications for wind energy storage</td>
<td>1008–12</td>
</tr>
<tr>
<td>chemical and physical properties</td>
<td>1000–1</td>
</tr>
<tr>
<td>chemical products and fuels</td>
<td>1011–12</td>
</tr>
<tr>
<td>context</td>
<td>999</td>
</tr>
<tr>
<td>demonstration projects</td>
<td>1015–16</td>
</tr>
<tr>
<td>distribution system blueprint</td>
<td>1012–16</td>
</tr>
<tr>
<td>economic factors</td>
<td>1009, 1012–16</td>
</tr>
<tr>
<td>electrolytic processes</td>
<td>1001–2</td>
</tr>
<tr>
<td>fuel cells</td>
<td>1000, 1004–6, 1009, 1013, 1015–16</td>
</tr>
<tr>
<td>grid control</td>
<td>1009–11</td>
</tr>
<tr>
<td>interim surplus energy storage</td>
<td>1008–9</td>
</tr>
</tbody>
</table>
hydrogen production (Continued) 720
isolated power systems 720
offshore wind power plants 322
potential for wind energy storage 1006–8
storage of hydrogen 1002–3
technology and efficiency 1001–4
transport of hydrogen 1003–4, 1013
wind power production 999–1018
hysteresis 57
HyWindBalance concept 1010
IC see installed capacity
ICT see information and communication technology
IEA WIND R&D Task 25 363–4
IEC see International Electrotechnical Commission
IEEE see Institute of Electrical and Electronic Engineers
IGBT see insulated gate bipolar transistors
IGCT see integrated gate commutated thyristors
Ilex study 374–6
impedance 52–3
dynamic modelling 873
limited transmission capacity 442–5
power quality 171, 196–7, 207
transformers 273
wind power plants 273, 276, 281
implementation issues 309, 318–19
in-area scenario 424–5
Independent System Operators (ISO) 106, 414, 432, 433
India
balancing power 745, 749
capacity and generation 4
frequency control 743–4, 748–9
grid influence on wind turbines 748–51
harmonic and interharmonic distortions 744
historical development 26–7, 36
integration 739–52
network characteristics 741–5
penetration levels 739
power quality 740, 748–9
reactive power control 744–5, 746–7, 750–1
safety 749–50
steady-state voltage and outages 742–3, 746, 748–9
stresses on electric components 750
structural lifetime 750
transmission capacity 741–2
transmission systems 739–52
wind turbine characteristics 745
wind turbine influence on grids 745–7
inductance 281
inertia 785–8
inertial controls 288–9
inflow value 145–6
information and communication technology
(ICT) 952–3, 955–7, 961–2
infrastructure systems 1–2
initialization 871
installed capacity (IC)
China integration experience 690–2, 700
Denmark integration experience 522–3
economic factors 498
Germany integration experience 550–1
India integration experience 739
Portugal integration experience 570
power systems 60, 105, 115, 125–6
Spain integration experience 595–9, 605–6, 610
storage 479–81
technical regulations 221
value of wind power 134–5
instantaneous contribution 715
instantaneous value simulation (IVS) 822
Institute of Electrical and Electronic Engineers (IEEE) 209–11, 952
insulated gate bipolar transistors (IGBT) 81, 98
dynamic modelling 918
integration 745
offshore wind power plants 305–6, 315–16
integrated gate commutated thyristors (IGCT) 81
integration 1, 2, 4, 363–86
balancing costs 375–7
capacity value 371–3, 380–3
China 689–706
Denmark 369, 375–6, 387–9, 519–48
dispatch and unit commitment models 369–70
economic factors 500
European context 387–412
European Wind Integration Study 388–90, 399–411
forecasting 368, 373–4, 383, 753–66
future research directions 383–4
future transmission needs in Europe 408–10
Germany 369, 375–6, 381, 549–68, 764
grid impacts 370–1, 378–80, 393–7, 401–4
India 739–52
Ireland 374–5, 377, 623–47
isolated power systems 707–37
issues studied 364–5
Index

limited transmission capacity 439–40, 452–61
New Zealand 667–88
Northern Ireland 623–47
penetration levels 365–6, 379–80, 382
Portugal 379, 569–94
reserve requirements 367–9, 373–4, 382
Spain 595–622
storage 468–73, 484–5
study methodologies 366–73
study recommendations 382–3
study results 373–82
study set-up 364–6
time series data 366–7
TradeWind study 388–99, 408–11
United States of America 374–5, 377–9, 381, 649–66, 760–1
wind power production 11, 15
interconnection
absolute power production constraint 234
active power control 218–20
China integration experience 690
comparison 218–33
current practice 238–9
delta production constraint 234
Denmark integration experience 521–2, 533, 541
discussion 232–3
economic factors 489–95
European integration experience 396, 411
fault ride-through capability 225, 229, 231, 235–6
frequency control 218–24, 234
integration 365–6, 377
Ireland and NI integration experience 624
limited transmission capacity 453–4
modelling information and verification 229–32
new wind plant level requirements 233–7
New Zealand integration experience 679–80
offshore wind power plants 312–14
power gradient constraint 237
regulations 209–10, 218–38
Spain integration experience 595–7, 618–20
startup and shutting down 218–20
synthetic inertia 237
system protection 234, 237
transmission systems 420, 426, 433
voltage control 221–8
voltage quality 225, 230
wind power plants 263–4, 266, 272, 277–9, 286
interface controllers 969
interharmonics
integration 744
measurement of electrical characteristics 183
power quality 160, 162–3, 171, 203–4
interim tight volume coupling (ITVC) 530
International Electrotechnical Commission (IEC)
dynamic modelling 793, 799, 819, 872
integration 578, 733, 750
measurement of electrical characteristics 176–9, 190–2
performance validation and certification 245–50
power quality 159–64, 165, 168, 171–2, 197–8, 203–5
technical regulations 209, 211
wind power plants 292
inter-trip systems 684
intra-day markets 500, 519, 536–7, 606–7, 754
inverters 81, 97–8, 183
investment costs
integration 403, 410, 576–7
offshore wind power plants 293, 307–8
storage 472
Investment Tax Credit (ITC) 33
Iran 38
Ireland
current context 624–5
dynamic modelling 904–5, 909
energy markets 625–9, 645–6
energy mix 624
frequency control 632–4
future developments 629–31
infrastructure 638–40
integration 374–5, 377, 623–47
operational experience 627–9, 636–8
operational studies 632–6
penetration levels 629–38, 640–1, 644–5
policy development 629–31, 640–3
portfolio performance 643–5
power systems 623–47
regulatory factors 626–7
storage 475–6, 480, 484
structural transformation 625–6
supply security 638–46
technical regulations 214–15
transient stability 634–5
wind power production 18
islanded operation 878–9, 967
ISO see Independent System Operators
isolated power systems

balancing power 717–18, 727–8
context 707–8
distribution systems 726
dynamic modelling 728–31, 906–7
historical development 38
hybrid power systems 707, 710–12, 735
hydrogen production 1012, 1016
integration 707–37
loads and load control 718–19
operational experience 721–4, 730–5
power quality 724–8
recommendations 734–5
regulatory factors 732–3
retrofitting existing diesel plants 733–4
storage 719–20, 725–6
system categorization 709
system configurations and concepts 709–10
transmission systems 726, 730
wind contribution 715–17, 721, 722–3, 728
wind–diesel systems 708–9, 712–35

Italy 31
ITC see Investment Tax Credit
ITVC see intermittent tight volume coupling
IVS see instantaneous value simulation

Japan 37
Joint Coordinated System Plan (JCSP) 16, 417–18

Kirchhoff’s laws 983
Korea 37
Kriegers Flak project 311–12

large-signal simulation model 982–5
LCC see line commutated converters
levelized cost of energy (LCOE) 39
limited transmission capacity 439–63
context 439–40
curtailed wind energy 453–61
determination of transmission capacity 445–7
energy losses 453–4
HVAC to HVDC conversion 450
impact of wind power 450–2
integration 439–40, 452–61
measures to increase transmission capacity 447–50, 452–61
thermal limits 440–2, 448–9
transient stability 445
voltage stability limits 442–5, 450
limited variable speed configurations 78
line commutated converters (LCC) 301–2, 303–5, 307–12
line-to-line voltage 52, 248–9
linear programming (LP) 370
link dynamics 818–19
liquid hydrogen 1002, 1003–4
LMP see locational marginal price
load cycles
active management 943
India 742–3
integration 586–9, 613–14, 619–20
isolated power systems 718–19
wind power production 8, 12, 17
load–duration curves see duration curves
load-flow analyses 165–6, 172
dynamic modelling 790–2, 894–5
integration 545–6
isolated power systems 729–30
offshore wind power plants 317–20
power quality 207
load losses 266–7, 268–9, 273–4, 276
local production 524
local-priority scenario 424–5
locational marginal price (LMP) 651
LOEE see loss of energy expectation
logistic analysis 729
LOLE see loss of load expectation
LOLP see loss of load probability
LOM see low-impact operation mode
long-term seasonal storage 469
long-term small-disturbance voltage
stability 903–5
Long-Term Study Task Force (LTSTF) 435
looped radial feeder configurations 271
loss of energy expectation (LOEE) 107
loss of load expectation (LOLE) 16, 107, 371–2
loss of load probability (LOLP) 16, 107, 125–6, 132, 371
loss reduction value 132, 139–41, 149
low-contribution power systems 715–16, 728
low-frequency transmission 320–1
low-impact operation mode (LOM) 988, 990–1, 993–5
low-voltage (LV) networks 212–14, 235
low-voltage power logic (LVPL) 805–6
low-voltage ride-through see fault ride-through
LP see linear programming
LTSTF see Long-Term Study Task Force
LV see low voltage
LVPL see low-voltage power logic
machine equations
 flux equations 856–7
 mechanical equations 857–9
 notation of quantities 854
 vector method 851–4
 voltage equations 854–6
MAE see mean absolute error
main control systems 782–3
Mandatory Renewable Energy Target (MRET) 37
marginal losses 139–40
market model 402–4
market value of wind power 141–54
 capacity credit 142–3
 control value 143–9
 grid investment value 150–4
 loss reduction value 149
 multiyear control value 144–6
 new power sources 146–7
 numerical examples 148–9
 operating cost value 142
see also energy markets
market-oriented smart grid concept 959–61, 964–5, 968–9
MARS modelling tool 539
mathematical representations 775
MatLAB 731, 814–16, 822, 845, 870
maximum loadability point 443
maximum power point (MPP) tracking 348–9
maximum power utilization 54
MCFC see molten carbonate fuel cells
mean absolute error (MAE) 14, 117–18, 537–8, 611, 761–3
MEASNET see Measurement Network of Wind Energy Institutes
measurement errors 816–17
Measurement Network of Wind Energy Institutes (MEASNET) 176–7, 192
mechanical dimensioning 795
mechanical power 24–5, 351–2, 771, 774–5, 792, 828–9
mechanical systems 778–9, 784–8, 885–6
medium-contribution power systems 716–17, 722
medium voltage (MV) networks
 technical regulations 212–14, 235
 voltage control 989–97
 wind power plants 270–2, 276–7
mega-project scenario 424–5
metal hydrides 1002–3
metal oxide semiconductor field effect transistors (MOSFET) 81
methane 1000–1
methane emissions 40, 1004
methanol production 1012
Mexico 35
MIBEL 591–3, 606–8
mid-line compensation 684
Midwest Independent System Operator (MISO) 17
mini-island tests 971
MIP see mixed integer programming
MISO see Midwest Independent System Operator; multiple-input and single-output mixed control 991
mixed integer programming (MIP) 370
molten carbonate fuel cells (MCFC) 1005–6
monitoring-based model validation 813
monitoring signals 291
Morocco 37–8
MOSFET see metal oxide semiconductor field effect transistors
MPP see maximum power point
MRET see Mandatory Renewable Energy Target
MSEPS see multi-scheme ensemble prediction system
multi-plant coordination 285
multi-scheme ensemble prediction system (MSEPS) 758–9
multi-terminal HVDC systems 312–20
multi-transformer designs 274–5
multi-year control value 138–9, 144–6
Multibrid configuration 79
multiple-input and single-output (MISO) systems 987
MV see medium voltage
National Grid Electricity Transmission (NGET) 216, 218–33, 236
national meteorological centres (NMC) 756
National Renewable Energy Action Plan (NREAP) 631
National Renewable Energy Laboratory (NREL) 8–9, 653
National Wind Power Integration Research and Test Centre (NWIC) 704
natural gas plants 17
natural load 444
NERC see North American Electric Reliability Corporation
net load variability 8, 12, 367–8
net present value (NPV) active management 948
cable systems 331, 338–9
storage 472, 480–1, 483
net transmission capacities (NTC) 393, 445–7
NETA see New Electricity Trading System
Netherlands 377
NETOMAC model 402, 822
network availability on demand 66
network connection see interconnection
network integration see integration
network losses 947–8
network model 402–4
network upgrade costs 494–5
New Electricity Trading System (NETA) 499
New Zealand
ancillary services 686
current context 672–3
design and enhancement 683–5
dynamic modelling 683
energy markets 670–1, 685–6
frequency control 687
future developments 685–7
integration 667–88
on-site reticulation 675–6
performance validation and certification 676–8
power quality standards 682
power systems 667–88
technological development 673
transmission systems 667–70, 674–5, 681
West Wind case study 674–80
White Hill case study 680–5
wind resources 670
NGET see National Grid Electricity Transmission
NGO see nongovernment organizations
nitrogen oxides emissions 40
NMC see national meteorological centres
no-load losses 266–8, 273–4
no-wind reactive power 283
nodal voltages 983
NOIE see non-opt-in entities
NOIS see Nordic Operational Information System
noise levels 42
noncontrollable generation 561–2
nondispatchable generation 607, 610
nongovernment organizations (NGO) 433–4
non-opt-in entities (NOIE) 651
Nordel 521, 523, 526–7
Nordic Grid Code 216–17, 218–33
Nordic Operational Information System (NOIS) 527, 530, 533
North American Electric Reliability Corporation (NERC) 413, 426, 653, 765, 819
north–south mode 560
Northern Ireland
current context 624–5
energy markets 625–9, 645–6
energy mix 624
frequency control 632–4
future developments 629–31
infrastructure 638–40
integration 623–47
operational experience 627–9
operational impacts 636–8
operational studies 632–6
penetration levels 629–38, 640–1, 644–5
policy development 629–31, 640–3
portfolio performance 643–5
power systems 623–47
regulatory factors 626–7
structural transformation 625–6
supply security 638–46
technical regulations 214, 215
transient stability 634–5
Norway 144–6, 148–9, 216
nose curves 442–3
nowcasting 760
NPV see net present value
NREAP see National Renewable Energy Action Plan
NREL see National Renewable Energy Laboratory
NTC see net transmission capacities
nuclear power production 17–18, 61
numerical weather prediction (NWP) 754–5, 756–61, 763–5
NWIC see National Wind Power Integration Research and Test Centre
NWP see numerical weather prediction
OCGT see open-cycle gas turbines
offshore grid operations 293, 308–9, 312–20, 397–8, 410, 547
offshore wind power plants 293–327
cable systems 300–1, 307–8, 329–43
cluster approach 312, 331–2
comparison of transmission solutions 307–12
context 293–7
dynamic power curves 354–5
economic factors 293, 307–8, 310–11
energy yield calculations 353–4, 355–8
environmental factors 311
existing and planned projects 294–6
Index

general electrical challenges 297–301
generator and power electronics 297–8, 304–5, 321–3
high-voltage alternating current
transmission 298, 301–3, 307–12, 320–1, 329
high-voltage direct current
transmission 298–9, 301–2, 303–22
historical development 37, 40, 42
hydrogen production 322
implementation issues 309, 318–19
integration 396–8, 410, 551–3, 566
line commutated converters 301–2, 303–5, 307–12
low frequency transmission 320–1
maximum power point tracking 348–9
mechanical power 351–2
new system solutions 320–2
operational issues 314–16
park-variable concept 346, 347–59
permanent-magnet-excited induction machines 345–6, 359
power dips 352–3
power losses 308
power systems 120, 312–20
rating issues 307–8
redundancy 300–1
substations 298–300
technical issues 307–10
technical regulations 228
test system and case studies 316–20
transmission systems 2, 298–9, 301–22, 329–43
voltage-source converters 301–2, 305–20
on-load tap changers (OLTC) 273, 937–42, 945–50, 986, 989–92
on-site reticulation 675–6
on-site tests 876–81
open-cycle gas turbines (OCGT) 382, 465, 472–4, 480, 483–4
operating costs
active management 947–50
integration 364, 369, 375–6, 397, 404, 557–8
isolated power systems 714
power systems 489, 496–515
storage 478–83
value of wind power 131, 133, 142
operation planning 536
optimal power flow (OPF) method 941–4, 947
optimistic wind (OW) scenario 401, 403
optional loads 719
OptiSlip® 78, 92
oscillation damping 893–8
overcapacity 580–1, 593
overfrequency 160, 162–3, 183, 187, 191–2
overhead lines
active management 940
integration 742
limited transmission capacity 441
offshore wind power plants 329–31
wind power plants 275–6
overloading 494
overspeeding 783
overvoltages
dynamic modelling 901
integration 679
measurement 191–2
technical regulations 229, 231
wind power plants 276–7
OW see optimistic wind

P–V curves 693–4, 697, 904–5
P/Q diagrams 979–81
PAFC see phosphoric acid fuel cells
PAM see pulse amplitude modulation
Park transformation 852
park-variable concept 346, 347–59
dynamic power curves 354–5
energy yield calculations 353–4, 355–8
maximum power point tracking 348–9
mechanical power 351–2
power dips 352–3
power limitation 349–53, 354–9
partial validation 883–7
partial-scale frequency converters 78, 915–17, 919
passive stall control see stall control
PBR see production-balance-responsible
PCC see point of common coupling
pdf see probability density functions
PEFC see polymer electrolyte fuel cells
penetration levels 1–3
China integration experience 692–6
dynamic modelling 904–7
generator and power electronics 82–90
hydrogen production 1006–7
India integration experience 739
integration 365–6, 379–80, 382
Ireland and NI integration experience 623, 629–38, 640–1, 644–5
limited transmission capacity 459–61
metrics 365–6
penetration levels (Continued)
Portugal integration experience 573–81, 585–93
power systems 48–9, 105, 118, 121–2, 124–6, 128–9
storage 469–71, 473–83
transmission systems 420, 424–5
wind power production 8, 10–11, 18–19
per unit (pu) systems 784–8, 829, 831–2, 855–6, 858, 861
performance validation and certification 2
adoption of guidelines 252–3
analysis of requirements 244
Canada 254–6
certification institutes 254
changes to guidelines 253–4
dynamic modelling 246, 812–17, 865–89
external influences on certification process 249–50
Germany 242–3, 252–4
grid codes 241–59
history of certification process 242–4
implementation of requirements 245
integration 560–2, 605–6, 643–5, 676–8
model validation 246
plant certification process 250–2, 253
report and requirements 246
response to voltage dips 245, 246–9
Spain 255–8
unit certification process 244–50
voltage control systems 988–9
workflow 250–2
permanent-magnet-excited induction machines (PMIM) 345–6, 359
permanent magnet synchronous generators (PMSG) 76, 79, 83–5, 87, 90, 93–4
phase compensation 53
phase-lock loops (PLL) 781
phosphoric acid fuel cells (PAFC) 1005–6
photovoltaic (PV) production 424, 596, 618, 710–12
pitch angle controller model 838–9, 844
pitch control
dynamic modelling 772–5, 807–8, 817, 834, 838–9, 844–5, 885–7
generator and power electronics 75, 77, 83–6
integration 749
measurement of electrical characteristics 185
offshore wind power plants 347, 349–53, 354–9
park-variable concept 349–53, 354–9
power quality 198–9
power systems 56, 58
value of wind power 136–7
wind power plants 286
pitch controller model 807–8
pitch servos 782
plant certification process 250–2
PLL see phase-lock loops
PMIM see permanent-magnet-excited induction machines
PMSG see permanent magnet synchronous generators
PNBEPH plan 583, 585
POC see point of connection
POI see point of interconnection
point of common coupling (PCC) 165
dynamic modelling 913–14, 916, 931
integration 573–4
measurement of electrical characteristics 179
offshore wind power plants 332
performance validation and certification 241, 243–4, 252–3
power quality 196–7
voltage control 976
point of connection (POC) 693–4
point of interconnection (POI) 278–9
polymer electrolyte fuel cells (PEFC) 1005–6, 1009, 1013
polynomial approximations 775
portfolio optimization 483–4
Portugal
aggregation of wind power production 577–9
dynamic management of reserves 590–1
energy markets 591–3
energy mix 570–1
innovative strategies 571–2
integration 379, 569–94
operational experience 585–93
overcapacity and unit curtailment 580–1, 593
penetration levels 573–81, 585–93
planning for energy resources 574–7
power systems 570–85, 588–90
reactive power control 579–80
regulatory context 569–70
reserve power 584–5, 590–3
storage and transmission reinforcement 582–4
supply security 581–5
system operation and adequacy 592–3
transmission systems 574–7
wind power production 18
positive-sequence reactance 277, 879–81
post-emergency restart 290
power availability on demand 64–6, 264–5
power contribution 715
power control see active power control; balancing power; pitch control; reactive power control; stall control
power converters 74, 171
power curve models 393
power curves 56–7, 748–9, 827–8
power dips 352–3
power electronics 73–5, 80–90, 96–9
advantages and disadvantages 80
dynamic modelling concepts 771, 779–82, 792
fixed-speed turbines 73–4, 87–9
high-order models 849–51, 859–61, 863–4
integration 604, 673, 675, 678, 684, 744
interfaces 70, 71–2
offshore wind power plants 305
penetration levels 82–90
power quality 171
power system stability 910
reduced-order models 835–44
state-of-the-art technologies 80–2
storage 470–1
variable-speed turbines 74, 83–9
wind farms 100–2
wind power plants 915–19
power exchanges (PX) 498–515, 523
power factors (PF) 51
active management 944–5
dynamic modelling 902–5
integration 684
limited transmission capacity 443–4
performance validation and certification 255–6
power quality 166–7, 201
prescriptive interpretation of rules 282–3
voltage control 993–5
wind power plants 278, 282–3
power flows
dynamic modelling 800–2
integration 394–6, 398, 402–3, 404, 408
power systems 106–7
voltage control 984
see also cross-border power flows
power gradient constraint 237
power losses 308
power peaks 175, 178, 185
power plant characteristics 80
power purchase agreements (PPA) 570–1, 581
power quality (PQ)
active power capabilities and control 160, 163, 172
case study specifications 165
context 159–60
continuous operation 161, 168–9, 198–9
current harmonics, interharmonics and overfrequency 160, 162–3, 171, 203–5
flicker 159, 160–2, 167–9, 195, 197–203, 207
frequency control 206–8
grid protection and reconnection times 160, 164
harmonic voltages 170–1, 195, 203–5
impact of wind turbines on voltage quality 164–71
India integration experience 740, 748–9
integration 549–68, 682
isolated power systems 724–8
measurement of electrical characteristics 176–7
power quality characteristics 160–4
practical experience 195–208
rated data 160
reactive power capabilities and control 160, 163–4, 171–2
shutting down 201–3
standards 159–73, 682
startup 200–1
storage 470
switching operations 161, 168, 199–203
voltage dips 160, 163, 169–70, 195, 204–5, 208
voltage fluctuations 159, 160–2, 165–7, 195–7
power reduction 187
power system dynamics simulation (PSDS) 821–47
blade model 829–30
cross-border power flows 282–3
context and demands 821–2
converter model 835–6, 842
fixed-speed turbines 822, 824–32, 845
generator model 830–2, 833–5, 840–2
model structure 824–5, 832–3
modelling assumptions 823–4
pitch angle controller model 838–9, 844
protection system model 836–7
rotor model 827–9, 833
rotor speed controller model 837–8, 842–4
shaft model 833
terminal voltage controller model 839, 843
variable-speed turbines 823–4, 832–45
wind speed model 825–7
power system simulation tool (PSST) 393
Power System Simulator for Engineering (PSS/E) 822, 879–81, 885
power system stability 2–3, 494–5, 891–912
power system stabilizers (PSS) 406
power systems 47–72, 105–30
adequacy of network and power capacity 125–6
aggregation of wind power production 57–9
capacity factors 60–1
characteristics of wind power generation 53–61
China integration experience 689–706
configurations 105
consumer requirements 62, 63–6
current status of wind power 48–9
Denmark integration experience 521–5, 534–8
deregulated markets 496–500
dynamic modelling 891–912
economic factors 66, 121, 489–516
electrical engineering basics 50–3
faults 106–7
forecasting 108–10, 116–18, 120
frequency control 107–10, 906–9
future power systems 127–8
generator and power electronics 80
geographical distribution 58–9, 65–6, 110–12, 127
Germany integration experience 553
historical development 47–8
hydrogen production 1009–11
hysteresis and cut-out effect 56, 57
impacts of wind energy 118–28, 570–85, 588–90
integration 49–50, 61–8, 364, 370, 378, 500
Ireland and NI integration experience 623–47
isolated power systems 707–37
long-term impacts 125–6, 128
mechanical equivalents 68–72
network availability on demand 66
network connection and upgrade costs 489–95
New Zealand integration experience 667–88
Nord Pool power exchange 498–9, 500–15
offshore wind power plants 312–20
operating costs 489, 496–515
operation 106–10
oscillation damping 893–8
physics of wind power 54–5
Portugal integration experience 570–85, 588–90
power availability on demand 64–6
power curves 56–7
probability density functions 58–60
production patterns of wind power 111–12
recovery after disturbances 370
reliability 66–8, 106–7, 120, 125–6
reserve power 109–10, 119–22
rotor angle stability 892–8
short-term impacts 119–25, 128
technical network limits 494–5
United States integration experience 649–66
variability of wind power 50, 53–4, 57–8, 112–16, 125–6, 128
voltage level at connection point 63–4
voltage stability 897–905
voltage-level management 110
wind farms 57–9, 62–4, 66–8
wind power production 56–61, 105–6, 110–21, 123–6
wind spectra 53–4
see also transmission systems
power transfers 107, 136–7
power transformers see transformers
PowerFactory 822
PPA see power purchase agreements
PQ see power quality
PQ diagrams 188
predictability see forecasting
primary control systems
economic factors 496–7
performance validation and certification 254, 256
power systems 64–5, 118
value of wind power 136–7
primary production 524
primary reserves 109–10
probabilistic calculation of reserves 615–17
probabilistic estimation method 456–7, 459–60
probabilistic load–flow analysis 729–30
probability density functions (pdf) 58–60, 616
Procedure for Verification, Validation and Certification (PVVC) 605
production-balance-responsible (PBR) market players 533, 536
production costs 38–9
production–duration curves see duration curves
production simulation analysis 425
Production Tax Credit (PTC) 33
Programme of Incentives for Alternative Electricity Sources (PROINFA) 35
protection systems 783–4, 836–7
protective relaying 280
PSDS see power system dynamics simulation
pseudo-governor model 803
PSS see power system stabilizers
PSS/E see Power System Simulator for Engineering
PSST see power system simulation tool
PTC see Production Tax Credit
pu see per unit
Public Utility Commission of Texas (PUCT) 651, 653, 658, 665
Public Utility Regulatory Policies Act (PURPA) 26
PUCT see Public Utility Commission of Texas
pulse amplitude modulation (PAM) 82
pulse width modulation (PWM) 82, 99, 183
pumped hydro storage 466–7
PURPA see Public Utility Regulatory Policies Act
PV see photovoltaic
PVVC see Procedure for Verification, Validation and Certification
PWM see pulse width modulation
PX see power exchanges
quasi-steady-state analysis 425
radial feeders 270–1
ramp forecasting 760–1
ramping
capability 12, 14
dynamic modelling 825–7, 845, 924–5
integration 369, 376, 396, 593, 642–3, 658–9
isolated power systems 727
measurement of electrical characteristics 178, 186
performance validation and certification 255–6
power systems 58
wind power plants 286
rate of change of frequency (RoCoF) 632–4
rated data 160
rating issues 307–8
reactive currents 229, 231
reactive power control
active management 940, 941, 945
China integration experience 693, 697, 701
dynamic modelling concepts 791
dynamic response 981–2
full-scale verification 869–70, 876, 887
generator and power electronics 73–4, 93
generic wind turbine-type models 806–7
Germany integration experience 565–6
India integration experience 744–5, 746–7, 750–1
Ireland and NI integration experience 641–2
isolated power systems 725, 727–8
limited transmission capacity 443–4, 451
measurement of electrical characteristics 175, 182, 187–90
P/Q diagrams 979–81
performance validation and certification 245
Portugal integration experience 579–80
power quality 160, 163–4, 171–2, 200–1
power system stability 894–5, 899–902
power systems 51, 53, 70–1, 101, 127
reduced-order models 831, 834–6
technical regulations 225–9
United States integration experience 656–8
voltage control 976, 979–82, 996
wind power plants 277–80, 281–4, 922, 924–5, 927–9
real-time markets 533–4, 754
real-time network monitoring 937
re-centre control 991–2, 995–6
reciprocating-engine plants 12
reconnection times 160, 164
rectifiers 81, 97–8
recursive probabilistic convolution method 398
RED Eléctrica de España (REE) 255–8, 595–621
Rede Eléctrica Nacional (REN) 569, 571, 575–6, 584–5
reduced-order modelling 821–47
blade model 829–30
context and demands 821–2
converter model 835–6, 842
fixed-speed turbines 822, 824–32, 845
generator model 830–2, 833–5, 840–2
model structure 824–5, 832–3
modelling assumptions 823–4
pitch angle controller model 838–9, 844
protection system model 836–7
rotor model 827–9, 833
rotor speed controller model 837–8, 842–4
shaft model 833
terminal voltage controller model 839, 843
variable-speed turbines 823–5
wind speed model 825–7
redundancy 66–7, 300–1
REE see RED Eléctrica de España
reference case scenario 401, 403
reference frames 852–3
REFIT see renewable energy feed-in tariff
regional transmission organizations (RTO) 12, 414, 432, 433
regulating markets 143, 500, 511–15, 533–4, 536–7
regulatory factors 2
integration 569–71, 593, 626–7, 652–3, 691
interconnection 209–10, 218–38
isolated power systems 732–3
limited transmission capacity 452–3
measurement of electrical characteristics 175–93
power quality 159–73, 195–208
technical regulations 209–40
transmission systems 413
relays 783–4
reliability
generator and power electronics 88
integration 367–9, 372, 398–9, 553–5
power systems 66–8, 106–7, 120, 125–6
smart grid concept 954, 958
transmission planning 413–37
wind power plants 264–5, 272
REN see Rede Eléctrica Nacional
renewable energy feed-in tariff (REFIT) 626, 645
Renewable Energy Sources Act 2009 (EEG) 29–31, 244, 250
renewable energy sources control centres (RESCC) 608–9
renewable energy transmission initiatives (RETI) 426–9
Renewable Integration Development Project (RIDP) 639
renewable portfolio standards (RPS) 33, 417, 435, 654
Renewables Obligation Certificates (ROC) 31, 626, 645
RESCC see renewable energy sources control centres
reserve power
Denmark integration experience 526–7, 533–4
integration 367–9, 373–4, 382, 614–17, 621
isolated power systems 716–17, 727
Portugal integration experience 584–5, 590–3
power systems 109–10, 119–22
Spain integration experience 614–17, 621
transmission systems 424
RETI see renewable energy transmission initiatives
RETScreen 731
RFC see rotor flux coordinate
RIDP see Renewable Integration Development Project
ripple control systems 682, 684
risk analysis 404, 406–7, 448
RMS see root mean square
RMSE see root-mean-square error
ROC see Renewables Obligation Certificates
RoCoF see rate of change of frequency
root-mean-square error (RMSE) 14–15, 117–18, 762–3
root-mean-square (RMS) dynamics 978, 982–6
root-mean-square (RMS) models 246, 816, 866, 868–71, 873–6
root-mean-square (RMS) voltage/current 51–2
rotor angle stability see small-signal stability; transient stability
rotor characteristics 770–5
rotor flux coordinate (RFC) 860
rotor model 827–9, 833
rotor resistance controller model 804
rotor speed controller model 837–8, 842–4
roughness length 826
round-trip efficiency 466
RPS see renewable portfolio standards
RSC ratio 762–3
RTO see regional transmission organizations
safety issues 749–50
St Paul power system 722–3
SCADA see supervisory control and data acquisition
scheduled tasks 871–6
SCIG see squirrel cage induction generators
Scott transformers 333–4
SDLWindV 244, 250, 252–4
seasonal control value 138, 143
seasonal variations see variability of wind power
secondary control systems
economic factors 498–9
performance validation and certification 255–6
power systems 65–6
value of wind power 137
wind power plants 286–7
secondary load controllers (SLC) 970–1
secondary reserves 109–10
self-commutated converters 81–2
SEM see single electricity markets
sensitivity analysis 425, 483
sequencers 861
SERC see State Electricity Regulatory Commissions
set-point control 178, 186–90
Index

SGCC see State Grid Corporation of China 833
 shaft model 833
 shaft stiffness 785–8, 859
 shallow connection charges 490–3, 495
 shallowish connection charges 493–4
 short-circuit emulators 246–9
 short-circuits
 dynamic modelling 790–2, 872–3, 882–4, 901, 913–19, 924–5, 928
 integration 561–2, 564
 limited transmission capacity 445
 wind power plants 280
 see also fault ride-through capability
 short-term stability 899–903, 915–21
 shunt capacitors 53
 isolated power systems 726
 limited transmission capacity 444–5, 450–1
 power quality 204, 207
 shut-down
 power quality 201–3, 204–5
 technical regulations 218–20
 wind power plants 289–90
 Simpow 822
 SimPowerSystems 822
 simulation see dynamic modelling
 Simulink 870
 single electricity markets (SEM) 626, 628, 646–6
 single-input and single output (SISO) systems 987
 single-machine equivalents 800–2, 922
 single-phase faults 876, 882–4
 SIPREOLICO forecasting tool 610–12
 SISO see single-input and single output
 SIVAEL modelling tool 539–40
 six-phase transmission systems 329–31, 332–4, 342–3
 SLC see secondary load controllers
 slip power 78, 92–3
 slow voltage variations 159, 160–2, 165–7
 small-signal simulation model 986–8
 small-signal stability 794–5, 892–5
 smart grid concept 704–6, 951–73
 actors 957–8
 arguments for and timing issues 955–7
 consumer requirements 953–4
 context 951
 Danish Cell Controller Pilot Project 966–72
 definitions 952–5
 field tests 970–1
 foundational layers 952–3
 goals and concepts 957–62, 963–9
 wind power 963–6
 Smart Grid Dictionary 952
 smooth grid connections 75, 78–9, 97
 smoothing effects
 dynamic modelling 833
 forecasting 14–15
 generator and power electronics 75, 94
 integration 380, 382, 394
 measurement of electrical characteristics 180, 185
 power systems 58, 65, 112–16, 127
 SNSP see system nonsynchronous penetration
 SOFC see solid oxide fuel cells
 soft-starters
 generator and power electronics 73, 75–6, 78, 81, 97
 measurement of electrical characteristics 182
 power quality 204
 solar power production
 integration 596, 618
 isolated power systems 710–12
 transmission systems 423–6
 solid oxide fuel cells (SOFC) 1005–6, 1013
 SONI (Northern Ireland) regulations 214–15, 218–33, 625, 627, 633, 637, 639, 642–3
 Southwest Power Pool (SPP) 432, 649
 Spain
 balancing power 612–17, 621
 capacity and generation 4
 energy markets 606–8
 flexible generation 618–20
 forecasting 610–12, 615–16
 future developments 617–20
 installed capacity 595–9, 605–6, 610
 integration 595–622
 interconnection capacity 595–7, 618–20
 monitoring and controllability of wind production 608–9
 operational arrangements 608–17
 performance validation and certification 255–8, 605–6
 power systems 122
 reserve power 614–17, 621
 storage 618–20
 system adequacy 597, 617–18
 technical requirements 602–6
 transmission systems 599–601
 wind power production 18
 spatial smoothing effects 14–15
 Special Regime Control Centre
 (CECRE) 608–10, 619
 spilled energy 455–6, 459–61
switching operations
dynamic modelling 859–61, 918
integration 750
measurement of electrical
c characteristics 180–2
performance validation and
certification 247–8
power quality 161, 168, 199–203
synchronous generators see generators
synchronous machines 69, 71
synthetic inertia 237
system adequacy
integration 398, 592–3, 597, 617–18
power systems 107, 125–6, 128, 553
system monitoring 565–6
system nonsynchronous penetration
(SNSP) 629–38, 640–1, 644–5
system-oriented smart grid concept 961–3, 966
system protection 234, 237
system stability analysis 404–6
table representation 776
Tamil Nadu Electricity Board (TNEB) 741
Tanadgusix Corporation (TDX) 722–3
tapchangers see on-load tapchangers
tax instruments 265, 655, 663
TDC see transmission duration curve
TDX see Tanadgusix Corporation
technical regulations 209–40
absolute power production constraint 234
active power control 218–20
combined regulations 215–16
current practice 238–9
delta production constraint 234
Denmark 215
discussion 232–3
ENTSO-E 211, 216–18
fault ride-through capability 225, 229, 231,
235–6
frequency control 218–24, 234
Germany 212–13, 214
Great Britain 213–14, 216
harmonization efforts 216–18
interconnection regulations 209–10, 218–38
Ireland 214–15
modelling information and
verification 229–32
networks above 100kV 214–15, 235
networks below 100kV 212–14, 235
new wind plant level requirements 233–7
Nordic Grid Code 216–17
Northern Ireland 214, 215
Norway 216
overview 209–18
power gradient constraint 237
startup and shutting down 218–20
Sweden 212, 215–16
synthetic inertia 237
system protection 234, 237
voltage control 221–8
voltage quality 225, 230
temporary overvoltages (TOV) 276–7
temporary voltage drops see voltage dips
TenneT TSO GmbH 214, 218–33, 235, 551–2,
555, 564–7
TEPPC see Transmission Expansion Planning
Policy Committee
terminal voltage control (TVC) 902–5
terminal voltage controller model 839, 843
tertiary control systems 65, 137, 607
tertiary reserves 109–10
test facilities 872
TFG see transverse flux generators
THD see total harmonic distortion
thermal power production 144, 669
thermal transmission limits 440–2, 448–9
three-bladed turbines 41–2
three-core cables 335–6, 338–9
three-phase faults 861–2, 873–6, 878, 882–4,
902–3
three-phase power 52
three-phase short-circuits 561–2, 564
three-phase transmission systems 330–1, 332–5,
341–2
time-series data
integration 366–8, 392, 395, 401–2
transmission systems 419
time-series power flow (TSPF) 904
tip-speed ratios 41, 42, 772–3, 827, 833
TNEB see Tamil Nadu Electricity Board
Toksook Bay power system 722
torque
dynamic modelling, power system
stability 892–3, 909
dynamic modelling concepts 771, 788
full-scale verification 885–6
high-order models 850–1, 858–61
reduced-order models 824, 828–9, 834,
841–3
turbine design 41
torque control model 806–7
total harmonic current 266
total harmonic distortion (THD) 170–1
total transmission capacities (TTC) 446
India integration experience 739–52
Ireland and NI integration experience 624, 627, 638–40
isolated power systems 726, 730
limited transmission capacity 439–63
line commutated converters 301–2, 303–5, 307–12
low frequency transmission 320–1
measurement of electrical characteristics 175–6, 191–2
measures to increase transmission capacity 447–50, 452–61
national policy in USA 431–5
New Zealand integration experience 667–70, 674–5, 681
offshore wind power plants 298–9, 301–22, 329–43
performance validation and certification 251–2
planning for energy resources 414–17, 574–7, 599–601, 655–7
Portugal integration experience 574–7, 581–4
power quality 195, 197
power systems 47, 52–3, 66–7
regional planning systems 417–31
smart grid concept 951–73
Spain integration experience 599–601
storage 465, 470–1, 472, 484–5
technical regulations 220, 224, 228–9, 232
thermal limits 440–2, 448–9
TradeWind study 388–99, 408–11
transient stability 445
United States integration experience 413–37, 649–66
value of wind power 132, 140–1, 149–54
voltage control 989–97
voltage management 110, 125–6
voltage-source converters 301–2, 305–20
voltage stability limits 442–5, 450
wind power plants 263–4, 266, 270–2, 275–9, 280, 291–2
wind power production 7–9, 13–14, 16, 18–19
see also cable systems
transnational offshore grid 397–8
transport fuels 1012, 1015
transport of hydrogen 1003–4, 1014
transverse flux generators (TFG) 96
tripping–reconnection tests 877–81
TRM see transmission reliability margins
TSO see Transmission System Operators
TSP see transient stability programs
TSPF see time-series power flow
TTC see total transmission capacities
Tunisia 37–8
urban development 2, 4
aerodynamic modelling 770–7, 778, 795, 883–7
block description of wind turbines 777–84
design approaches and philosophies 42–4
dynamic modelling 2–3, 769–97, 865–89
electrical parameters 868–71
forced-event records 881–3
full-scale verification 865–89
generator and power electronics 73–4, 771, 779–82
generic wind turbine-type models 780–1, 785, 789–90
historical development 23–4, 25–7, 41–4
initial conditions 871
main control systems 782–3
mechanical systems 778–9, 784–8
on-site tests 876–81
partial validation 883–7
per unit systems 784–8
pitch servos 782
protection systems and relays 783–4
representations of turbine rotors 775–7
rotor characteristics 770–5
scheduled tasks 871–6
simulation types and accuracy requirements 788–95, 866–8
size and generation capacity 23–4, 31–3, 35
topologies 73–4
validation types 871–87
wind power production 12
TVC see terminal voltage control
twelve-phase transmission systems 330
two-bladed turbines 41–2
two-mass model 779, 803, 833
two-phase faults 873–4
two-terminal networks 442
type tests 813
UC see unit commitment
UCTE see Union for the Coordination of Transmission of Electricity
UKERC see United Kingdom Energy Research Centre
ultra-high voltage (UHV) transmission 704–6
unavailability factors 267, 269
unbalanced RMS validation 870–1, 873–6
uncertainty 365, 368–9, 374, 470, 584, 753, 758
see also forecasting
uncontrolled generation 984
underfrequency 191–2
underground cables 275–6, 337–43, 940
undervoltage ride through see fault ride-through
undervoltages 191–2, 229, 231, 900–1
Union for the Coordination of Transmission of Electricity (UCTE) 521, 523, 526–7
unit certification process 244–50
unit commitment (UC) models 369–70, 476, 484–5, 696, 698–9
United Kingdom
economic factors 493–4
integration 374–6
offshore wind power plants 297, 299–300
United Kingdom Energy Research Centre (UKERC) 9
United States of America (USA)
ancillary services 660–1
capacity and generation 4
capacity value 662
competitive renewable energy zones 654–6, 665
economic planning 416–17
energy markets 651–2, 662–4
forecasting 661, 760–1
frequency control 660
future developments 655, 665
historical development 26–7, 32–5
integration 374–5, 377–9, 381, 649–66, 760–1
isolated power systems 722–3
low-voltage ride-through 659–60
national transmission policy 431–5
planning for energy resources 414–17
power systems 105, 649–66
ramping 658–9
reactive power control 656–8
regional planning systems 417–31
regulatory factors 652–3
renewable portfolio standards 654
smart grid concept 952–4
Texas electric system 649–51
transmission access 651
transmission congestion 663
transmission planning 413–37
wind development in Texas 653–6
wind power production 10–13, 16, 19
unity-fixed power factor (UPF) 902–3
utilization time 61
validation see performance validation and certification
value of wind power 131–55
capacity credit 132, 133–5, 142–3
control value 132, 135–9, 143–9
grid investment value 132, 141, 150–4
loss reduction value 132, 139–41, 149
market value of wind power 141–54
multiyear control value 138–9, 144–6
new power sources 146–7
numerical examples 148–9
operating cost value 131, 133, 142
transmission systems 422
wind power plants 265
variability of wind power 7–9, 12–14, 15
dynamic modelling 916–17
fixed-speed turbines 74
forecasting 753
integration 368–9, 373–4, 382–4, 613–14
isolated power systems 727–8
power systems 50, 53–4, 57–8, 112–16, 125–6, 128
storage 465, 470
transmission systems 420
variable rotor resistance configurations 78
variable-speed turbines
dynamic modelling concepts 773–4, 776, 780–3, 788, 791–2
generator and power electronics 74, 77–9, 83–96
generic wind turbine-type models 804–19
measurement of electrical characteristics 180–6
offshore wind power plants 354–8
power limitation 354–8
power quality 162, 169, 200–3, 207
power system stability 865, 876, 892–901, 907–8
power systems 53
reduced-order models 823–4, 832–45
wind power plants 915–17
Vattenfall Europe Transmission GmbH 242
VCS see voltage control systems
VDN see Verband der Netzbetreiber
vector method 851–4
Verband der Netzbetreiber (VDN) 214, 218–33
verification 229–32
vertical-axis turbines 41
virtual power plants (VPP) 967, 968
virtual wind power plants (VWPP) 577–9
visual impacts 42
VoithDrive configuration 79
voltage change factors 162
voltage control
Index

active management 939–42, 944–50
China integration experience 693–4, 697–8, 701–3
dynamic modelling 780, 793, 818–19, 897–905, 922–3, 927–9, 982–8
dynamic response 981–2
economic factors 497
efficiency 995–6
general design methodology 988
Germany integration experience 555, 559, 564–5
India integration experience 745, 749
isolated power systems 725
large-signal simulation model 982–5
measurement of electrical characteristics 189, 191–2
medium voltage networks 989–97
P/Q diagrams 979–81
performance, validation and contingency tests 988–9
power systems 67–8
reactive power capability 976, 979–82, 996
relevance and design paradigm 975–8
small-signal simulation model 986–8
smart grid concept 968
Spain integration experience 602–4, 607–8
technical regulations 221–8
time domains 978, 982–6
United States integration experience 659–60
wind power plants 277–80, 284–5
voltage control systems (VCS) 975–8, 982–97
voltage definitions 332
voltage dips
dynamic modelling 813–16, 872, 910, 917–18
integration 561–2, 564, 602–4, 610, 678–80
measurement of electrical characteristics 175, 189, 190–2
performance validation and certification 245, 246–50
power quality 160, 163, 169–70, 195, 204–5, 208
voltage fluctuations
isolated power systems 727–8
measurement of electrical characteristics 180–2
power quality 159, 160–2, 165–7, 195–7
voltage level at connection points 63–4
voltage-level management 110
voltage quality 225, 230
voltage regulators 942, 946–7
voltage-rise effect 938–9, 942
voltage-source converters (VSC) 81–2, 99–100
dynamic modelling 823, 834, 849–51, 859–61, 863–4, 910
offshore wind power plants 301–2, 305–20
voltage stability limits 442–5, 450
VPP see virtual power plants
VSC see virtual power plants
WAMS see wide-area measurement systems
WD see wind–diesel
Weather and Wind Energy Prognosis (WEPROG) 758–9
WECC see Western Electricity Coordinating Council
weekly control value 137–8
Weibull distributions/parameters 354–9, 581
WEPROG see Weather and Wind Energy Prognosis
West Wind case study 674–80
Western Electricity Coordinating Council (WECC) 421–2, 429, 434–5, 649, 799, 801–12, 819
Western Interconnection (WI) 413, 421–3, 434–5
Western Renewable Energy Zones (WREZ) 423
Western Wind and Solar Integration Study (WWSIS) 423–6, 432
WF see wind farms
White Hill case study 680–5
WI see Western Interconnection
wide-area measurement systems (WAMS) 961
WILMAR model 473
wind–diesel (WD) systems
balancing power 717–18, 727–8
diesel engines 720–1
dynamic modelling 728–31
integration 708–9, 712–35
isolated power systems 708–9, 712–35
loads and load control 718–19
offshore wind power plants 304
operational experience 721–4, 730–5
power quality 206–8, 724–8
power systems 48
retrofitting existing diesel plants 733–4
storage 719–20, 725–6
system concepts and constraints 713–14
wind contribution 715–17, 721, 722–3, 728
Wind Energy Association (AEE) 257–8
wind energy integration see integration
wind farms (WF)

future power systems 127
generator and power electronics 100–2
geographical distribution 58–9, 65–6, 110–12, 127
integration 739–52
network availability on demand 66
number and position of turbines 57–9
performance validation and certification 241–3, 246, 250–8
power systems 57–9, 62–4, 66–8
reliability of power systems 66–8
storage 468
voltage level at connection point 64
see also wind power plants

wind power bases (WPB) 692–3, 697, 701–2, 705

wind power development 1–2
wind power forecasting see forecasting

wind power penetration see penetration levels

wind power plant controllers (WPPC)
ancillary services 922, 929
dynamic modelling 913–16, 921, 926–32
frequency and active power control 929–30
model implementation 930–1
voltage and reactive power control 927–9

wind power plants (WPP)
active power control 285–90
aggregated modelling 914, 921–5, 931–2
availability and reliability 264–5, 272
cables and lines 275–6
collection system design 263–5, 270–81
collector feeders 270–1, 275–6
communications 290–2
context 263
detailed modelling 914, 915–21, 932
developer business model 265
dynamic modelling 799–820, 865–6, 876–83, 909–11, 913–33
economic evaluation factors 266–9
economic optimization 264–5
electrical design 263–92
energy losses 453–4
grounding and surge protection 276–7, 280
harmonic currents 280–1
integration 524–5, 580–1, 667, 671–88, 700
limited transmission capacity 439, 441, 445, 451–6, 458
network connection and upgrade costs 490–5
performance requirements 265–6
protection 280
reactive power and voltage design 277–80, 281–5
scale effects 919–20
short-term stability 915–21
storage 470
substations 271–5
system operating costs 496, 499
technical regulations 209–11, 214–15, 221, 233–7
topologies 270–2
transformers 271–5, 280
voltage control 976, 989–97
voltage stability 922–3
see also offshore wind power plants

wind power production duration curve (WPDC) 454–7

wind power production (WPP) 7–20
accommodation limits of grid operations 18–19
back-up generation 8–9
capacity credit 16
capacity factors of power plants 17–18
carbon dioxide emissions 9
cost-competitiveness with coal and nuclear generation 17–18
flexible generation 11–13
forecasting 11, 14–15, 116–18
hydrogen production 999–1018
impacts of wind energy 118–21
integration 11, 15
limited transmission capacity 454–7
power systems 56–61, 105–6, 110–21, 123–6
production patterns of wind power 111–12
ramping capability 12, 14
storage 9–11
transmission systems 16, 18–19
variability of wind power 7–9, 12–14, 15, 18–19, 112–16, 125–6
see also aggregation of wind power production

wind spectra 53–4
wind speed model 825–7
wind turbine designs see turbine design
wind turbine generators (WTG) see generators
wind-to-power model 754–5, 757
Windflow configuration 79–80
WINDInertia 909
winding configurations 272–3
windmills 24–5
WINSYS model 731
workflow 250–2
wound rotor induction generators (WRIG) 76, 78, 83–7, 92–3
wound rotor synchronous generators (WRSG) 76, 79, 84, 87, 90, 93–4, 100–1
WPB see wind power bases
WPDC see wind power production duration curve
WPP see wind power plants; wind power production
WPPC see wind power plant controllers
WREZ see Western Renewable Energy Zones
WRIG see wound rotor induction generators
WRSG see wound rotor synchronous generators

WSAT assessment tool 640–1
WWSIS see Western Wind and Solar Integration Study

X/R ratios 196–7
yearly power 150
zero-sequence reactance 277